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Definition (Homomorphism)
Let G and H be graphs. A homomorphism of G to H is a
mapping f : V (G)→ V (H) that preserves edges, i.e.

∀xy ∈ E(G)⇒ f (x)f (y) ∈ E(H)

Definition (Covering projection)

Let G and H be graphs. A homomorphism f : V (G)→ V (H) is
covering projection, if mapping f |NG(v) : NG(v)→ NH(f (v)) is
bijective for every v ∈ V (G).

Definition (Partial covering)

Let G and H be graphs. A homomorphism f : V (G)→ V (H) is
partial covering, if mapping f |NG(v) : NG(v)→ NH(f (v)) is
injective for every v ∈ V (G).
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Note that covering projection is also known as locally bijective
homomorphism.
Note that partial covering is also known as locally injective
homomorphism.

Locally
Injective

Locally
Surjective

Locally
Bijective

Quasi-covering
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H -COVER problem

For every fixed graph H we can define the following decision
problem:

Problem: H -COVER

Input: Graph G
Question: Does there exist a covering projection from G to H?
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Many partial results are known. Full dichotomy has not been
settled yet.

For positive results (at least) two techniques are known:

Using Linear Algebra

Degree Refinement Matrix (unique neighbor property)
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DEGREE PARTITION of graph

Degree partition of graph G is a partition of vertices V (G) into
classes B1,B2, . . . ,Bk , s.t. there exist numbers ri,j s.t.
∀i , j ∈ {1, . . . , k}, ∀u ∈ Bi the number of edges incident with u
and ending in Bj is ri,j .

Degree partition is unique and can be computed in polynomial
time.
Matrix formed by ri,j (i , j = 1,2, . . . , k ) is called Degree
Refinement Matrix.
The partition classes B1,B2, . . . ,Bk of graph are called blocks.

LEMMA

If G covers H then G and H have the same degree refinement
matrix.
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Theorem (J. Fiala, J. Kratochvíl, A. Proskurowski, J. A. Telle)
Let H be simple connected r-regular graph. If r ≤ 2 then
H -LBHOM is polynomially solvable. Otherwise it is
NP-complete.

Definition (of multi-cover)
Let H be r -regular graph. We say that r -regular graph G with
specified vertex u is a multi-cover of H if for every vertex
x ∈ V (H) and every permutation ϕ : NG(u)→ NH(x) there
exists a covering projection f : G→ H such that f |NG(u) = ϕ and
f (u) = x .
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Definition (of gadget Gu)

Let G with specified vertex u be a multi-cover of r -regular graph
H. We define Gu as a graph obtained from G by splitting vertex
u into r pendant vertices.

Definition (good/bad partial coverings of Gu)

Let G with specified vertex u is a multi-cover of r -regular graph
H. Consider a partial covering f : Gu → H. If all pendant
vertices of Gu are mapped to the same vertex x ∈ V (H) and all
their (unique) neighbors in Gu are mapped to the different
neighbors of x in H, we say that the partial covering f is good ,
and bad otherwise.

We are interested in gadgets Gu that do not allow any bad
partial coverings. Kratochvíl et. al. use such a gadget in the
proof that H -COVER is NP-complete for all r -regular graphs with
r ≥ 3. They reduce NP-hardness from the following problem:
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Problem: Coloring of r -regular (r − 1)-uniform hyper-graphs
Input: r -regular (r − 1)-uniform hyper-graph F
Question: Does there exist a coloring of hyper-edges of F s.t.
no vertex belongs to two or more hyper-edges of the same
color?

Reduction (pictures correspond to case r = 4):

Let H be r -regular graph and G be its multi-cover s.t. Gu does
not allow any bad partial cover.

Let F be a r -regular (r − 1)-uniform hyper-graph. We define
r -regular graph GF s.t. GF covers H iff F is r -edge colorable.
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For every vertex v of F we add the following gadget to GF :
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Question: Can we use similar reduction (at least for some)
non-regular graphs?

Definition (of multi-cover for general graphs)

Let H be graph with blocks B1,B2, . . . ,Bk . We say that graph G
with specified vertex u is a multi-cover of H for block Bi if for
every vertex x∈ Bi and every permutation ϕ : NG(u)→ NH(x)
that respects block structure of H there exists a covering
projection f : G→ H such that f |NG(u) = ϕ and f (u) = x .

Does multi-cover exist for every graph H and every block Bi? -
YES

Does there exist multi-cover G s.t. Gu only allows good partial
coverings?
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Similar reduction can also be used in case if for some i 6= j are
ri,j ≥ 3 and rj,i ≥ 3 (degrees of vertices in bipartite graph
induced on blocks Bi and Bj ).
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Thank you!!
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