On multi-covers and their applications

Marek Tesař

Charles University (Prague, Czech Republic)

ATCAGC Jan 21, 2014

Generalization for non-regular graphs

Generalization for non-regular graphs

Known results

Definition (Homomorphism)

Let *G* and *H* be graphs. A **homomorphism** of *G* to *H* is a mapping $f : V(G) \rightarrow V(H)$ that preserves edges, i.e.

 $\forall xy \in E(G) \Rightarrow f(x)f(y) \in E(H)$

Definition (Homomorphism)

Let *G* and *H* be graphs. A **homomorphism** of *G* to *H* is a mapping $f : V(G) \rightarrow V(H)$ that preserves edges, i.e.

 $\forall xy \in E(G) \Rightarrow f(x)f(y) \in E(H)$

Definition (Covering projection)

Let *G* and *H* be graphs. A homomorphism $f : V(G) \to V(H)$ is *covering projection*, if mapping $f|_{N_G(v)} : N_G(v) \to N_H(f(v))$ is bijective for every $v \in V(G)$.

Definition (Homomorphism)

Let *G* and *H* be graphs. A **homomorphism** of *G* to *H* is a mapping $f : V(G) \rightarrow V(H)$ that preserves edges, i.e.

 $\forall xy \in E(G) \Rightarrow f(x)f(y) \in E(H)$

Definition (Covering projection)

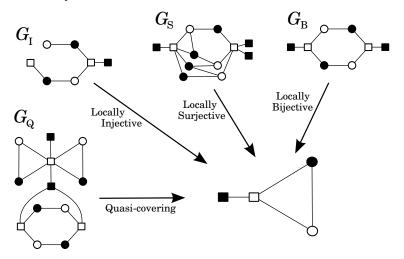
Let *G* and *H* be graphs. A homomorphism $f : V(G) \rightarrow V(H)$ is *covering projection*, if mapping $f|_{N_G(v)} : N_G(v) \rightarrow N_H(f(v))$ is bijective for every $v \in V(G)$.

Definition (Partial covering)

Let *G* and *H* be graphs. A homomorphism $f : V(G) \to V(H)$ is *partial covering*, if mapping $f|_{N_G(v)} : N_G(v) \to N_H(f(v))$ is injective for every $v \in V(G)$.

Note that covering projection is also known as *locally bijective homomorphism*.

Note that partial covering is also known as *locally injective homomorphism*.



H-COVER problem

For every fixed graph H we can define the following decision problem:

Problem: *H*-COVER **Input:** Graph *G* **Question:** Does there exist a covering projection from *G* to *H*? Known results

For positive results (at least) two techniques are known:

For positive results (at least) two techniques are known:

Using Linear Algebra

For positive results (at least) two techniques are known:

- Using Linear Algebra
- Degree Refinement Matrix (unique neighbor property)

Degree partition of graph *G* is a partition of vertices *V*(*G*) into classes B_1, B_2, \ldots, B_k , s.t. there exist numbers $r_{i,j}$ s.t. $\forall i, j \in \{1, \ldots, k\}, \forall u \in B_i$ the number of edges incident with *u* and ending in B_j is $r_{i,j}$.

Degree partition of graph *G* is a partition of vertices V(G) into classes B_1, B_2, \ldots, B_k , s.t. there exist numbers $r_{i,j}$ s.t. $\forall i, j \in \{1, \ldots, k\}, \forall u \in B_i$ the number of edges incident with *u* and ending in B_j is $r_{i,j}$.

Degree partition is unique and can be computed in polynomial time.

Degree partition of graph *G* is a partition of vertices V(G) into classes B_1, B_2, \ldots, B_k , s.t. there exist numbers $r_{i,j}$ s.t. $\forall i, j \in \{1, \ldots, k\}, \forall u \in B_i$ the number of edges incident with *u* and ending in B_j is $r_{i,j}$.

Degree partition is unique and can be computed in polynomial time.

Matrix formed by $r_{i,j}$ (i, j = 1, 2, ..., k) is called Degree Refinement Matrix.

Degree partition of graph *G* is a partition of vertices V(G) into classes B_1, B_2, \ldots, B_k , s.t. there exist numbers $r_{i,j}$ s.t. $\forall i, j \in \{1, \ldots, k\}, \forall u \in B_i$ the number of edges incident with *u* and ending in B_j is $r_{i,j}$.

Degree partition is unique and can be computed in polynomial time.

Matrix formed by $r_{i,j}$ (i, j = 1, 2, ..., k) is called Degree Refinement Matrix.

The partition classes B_1, B_2, \ldots, B_k of graph are called blocks.

Degree partition of graph *G* is a partition of vertices V(G) into classes B_1, B_2, \ldots, B_k , s.t. there exist numbers $r_{i,j}$ s.t. $\forall i, j \in \{1, \ldots, k\}, \forall u \in B_i$ the number of edges incident with *u* and ending in B_j is $r_{i,j}$.

Degree partition is unique and can be computed in polynomial time.

Matrix formed by $r_{i,j}$ (i, j = 1, 2, ..., k) is called Degree Refinement Matrix.

The partition classes B_1, B_2, \ldots, B_k of graph are called blocks.

LEMMA

If *G* covers *H* then *G* and *H* have the same degree refinement matrix.

Theorem (J. Fiala, J. Kratochvíl, A. Proskurowski, J. A. Telle)

Let H be simple connected r-regular graph. If $r \le 2$ then H-LBHOM is polynomially solvable. Otherwise it is NP-complete.

Theorem (J. Fiala, J. Kratochvíl, A. Proskurowski, J. A. Telle)

Let H be simple connected r-regular graph. If $r \le 2$ then H-LBHOM is polynomially solvable. Otherwise it is NP-complete.

Definition (of multi-cover)

Let *H* be *r*-regular graph. We say that *r*-regular graph *G* with specified vertex *u* is a multi-cover of *H* if for every vertex $x \in V(H)$ and every permutation $\varphi \colon N_G(u) \to N_H(x)$ there exists a covering projection $f \colon G \to H$ such that $f|_{N_G(u)} = \varphi$ and f(u) = x.

Definition (of gadget G_u)

Let *G* with specified vertex *u* be a multi-cover of *r*-regular graph *H*. We define G_u as a graph obtained from *G* by splitting vertex *u* into *r* pendant vertices.

Definition (of gadget G_u)

Let *G* with specified vertex *u* be a multi-cover of *r*-regular graph *H*. We define G_u as a graph obtained from *G* by splitting vertex *u* into *r* pendant vertices.

Definition (good/bad partial coverings of G_u)

Let *G* with specified vertex *u* is a multi-cover of *r*-regular graph *H*. Consider a partial covering $f: G_u \to H$. If all pendant vertices of G_u are mapped to the same vertex $x \in V(H)$ and all their (unique) neighbors in G_u are mapped to the different neighbors of *x* in *H*, we say that the partial covering *f* is **good**, and **bad** otherwise.

Definition (of gadget G_u)

Let *G* with specified vertex *u* be a multi-cover of *r*-regular graph *H*. We define G_u as a graph obtained from *G* by splitting vertex *u* into *r* pendant vertices.

Definition (good/bad partial coverings of G_u)

Let *G* with specified vertex *u* is a multi-cover of *r*-regular graph *H*. Consider a partial covering $f: G_u \to H$. If all pendant vertices of G_u are mapped to the same vertex $x \in V(H)$ and all their (unique) neighbors in G_u are mapped to the different neighbors of *x* in *H*, we say that the partial covering *f* is **good**, and **bad** otherwise.

We are interested in gadgets G_u that do not allow any bad partial coverings. Kratochvíl et. al. use such a gadget in the proof that *H*-COVER is NP-complete for all *r*-regular graphs with $r \ge 3$. They reduce NP-hardness from the following problem: **Problem:** Coloring of *r*-regular (r - 1)-uniform hyper-graphs **Input:** *r*-regular (r - 1)-uniform hyper-graph *F* **Question:** Does there exist a coloring of hyper-edges of *F* s.t. no vertex belongs to two or more hyper-edges of the same color? **Problem:** Coloring of *r*-regular (r - 1)-uniform hyper-graphs **Input:** *r*-regular (r - 1)-uniform hyper-graph *F* **Question:** Does there exist a coloring of hyper-edges of *F* s.t. no vertex belongs to two or more hyper-edges of the same color?

Reduction (pictures correspond to case r = 4):

Let *H* be *r*-regular graph and *G* be its multi-cover s.t. G_u does not allow any bad partial cover.

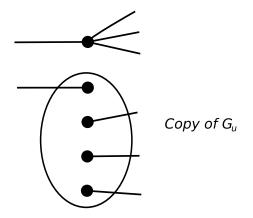
Problem: Coloring of *r*-regular (r - 1)-uniform hyper-graphs **Input:** *r*-regular (r - 1)-uniform hyper-graph *F* **Question:** Does there exist a coloring of hyper-edges of *F* s.t. no vertex belongs to two or more hyper-edges of the same color?

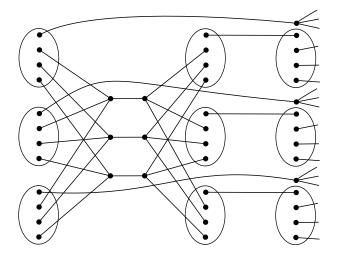
Reduction (pictures correspond to case r = 4):

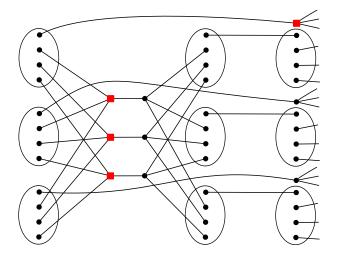
Let *H* be *r*-regular graph and *G* be its multi-cover s.t. G_u does not allow any bad partial cover.

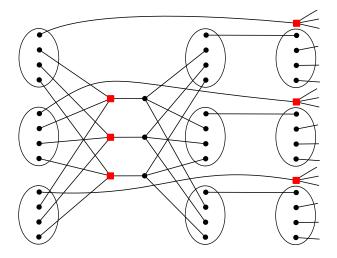
Let *F* be a *r*-regular (r - 1)-uniform hyper-graph. We define *r*-regular graph G_F s.t. G_F covers *H* iff *F* is *r*-edge colorable.

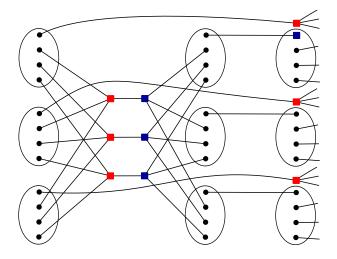
For every vertex v of F we add the following gadget to G_F :

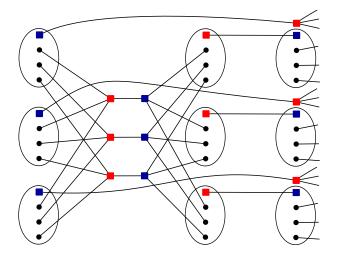












Generalization for non-regular graphs

Definition (of multi-cover for general graphs)

Let *H* be graph with blocks $B_1, B_2, ..., B_k$. We say that graph *G* with specified vertex *u* is a multi-cover of *H* for block B_i if for every vertex $x \in B_i$ and every permutation $\varphi \colon N_G(u) \to N_H(x)$ that respects block structure of *H* there exists a covering projection $f \colon G \to H$ such that $f|_{N_G(u)} = \varphi$ and f(u) = x.

Definition (of multi-cover for general graphs)

Let *H* be graph with blocks $B_1, B_2, ..., B_k$. We say that graph *G* with specified vertex *u* is a multi-cover of *H* for block B_i if for every vertex $x \in B_i$ and every permutation $\varphi \colon N_G(u) \to N_H(x)$ that respects block structure of *H* there exists a covering projection $f \colon G \to H$ such that $f|_{N_G(u)} = \varphi$ and f(u) = x.

Does multi-cover exist for every graph H and every block B_i ?

Definition (of multi-cover for general graphs)

Let *H* be graph with blocks $B_1, B_2, ..., B_k$. We say that graph *G* with specified vertex *u* is a multi-cover of *H* for block B_i if for every vertex $x \in B_i$ and every permutation $\varphi \colon N_G(u) \to N_H(x)$ that respects block structure of *H* there exists a covering projection $f \colon G \to H$ such that $f|_{N_G(u)} = \varphi$ and f(u) = x.

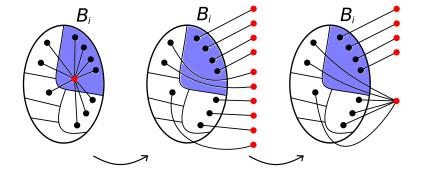
Does multi-cover exist for every graph H and every block B_i ? - YES

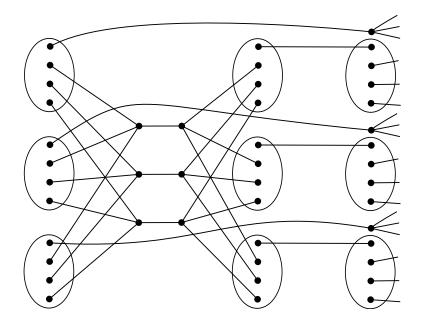
Definition (of multi-cover for general graphs)

Let *H* be graph with blocks $B_1, B_2, ..., B_k$. We say that graph *G* with specified vertex *u* is a multi-cover of *H* for block B_i if for every vertex $x \in B_i$ and every permutation $\varphi \colon N_G(u) \to N_H(x)$ that respects block structure of *H* there exists a covering projection $f \colon G \to H$ such that $f|_{N_G(u)} = \varphi$ and f(u) = x.

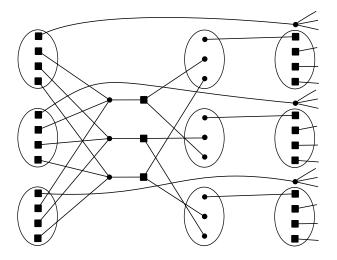
Does multi-cover exist for every graph H and every block B_i ? - YES

Does there exist multi-cover G s.t. G_u only allows good partial coverings?





Similar reduction can also be used in case if for some $i \neq j$ are $r_{i,j} \geq 3$ and $r_{j,i} \geq 3$ (degrees of vertices in bipartite graph induced on blocks B_i and B_j).



Thank you!!