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The degree-diameter and the degree-girth problem

N(d , k) - largest order of a graph of maximum degree d and diameter k

n(d , `) - smallest order of a graph of degree d and girth `

The Moore bounds and asymptotics for fixed k , ` and d →∞ :

N(d , k) ≤ M(d , k) = 1 + d + d(d − 1) + . . .+ d(d − 1)k−1 ∼ dk

` odd: n(d , `) ≥ 1 + d + d(d − 1) + . . .+ d(d − 1)(`−3)/2 ∼ d (`−1)/2

` even: n(d , `) ≥ 2[1 + (d − 1) + . . .+ (d − 1)(`−2)/2] ∼ 2d (`−2)/2

A sample of challenging questions:

• Given any c > 0, do there exist d , k such that n(d , k) ≤ M(d , k)− c ?

• Given any ε > 0, do we have n(d , k) > (1− ε)M(d , k) for large d , k ?

Similar questions can be asked for the degree-girth problem.

Aim: To give a brief survey of lifting constructions in both problems.
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Lifts of graphs and regular coverings

G - a group; Γ = (V ,D) - a graph, D - dart set. A voltage assignment
is any mapping α : D → G s. t. α(e−) = α(e)−1 for every dart e ∈ D.

The lift Γα has vertex set V α = V × G and dart set Dα = D × G . For
e : u → v in Γ, g ∈ G we have a dart (e, g) : (u, g)→ (v , gα(e)) in Γα.

The lift is undirected: (e, g)− = (e−, gα(e)). Semiedges e: α(e)2 = 1.

Left multiplication by any fixed f ∈ G induces an automorphism of the lift.
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The lift is undirected: (e, g)− = (e−, gα(e)). Semiedges e: α(e)2 = 1.

Left multiplication by any fixed f ∈ G induces an automorphism of the lift.

Fact. A graph Λ is a lift iff it admits a free action of a group G on vertices;
then Λ ∼= Γα where Γ ∼= Λ/G and α is some voltage assignment on Γ in G .

The projection Λ→ Λ/G is equivalent to the projection π : Γα → Γ onto
the first coordinate: (v , g) 7→ v , (e, g) 7→ e.

In particular, Cayley graphs are precisely lifts of one-vertex graphs.
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Lifts of walks

Let W = e1e2 . . . em be a walk in Γ. If α is a voltage assignment on Γ in
G , define α(W ) = α(e1)α(e2) . . . α(em) - the voltage of a walk.

A u → v walk W in Γ lifts to a (u, g)→ (v , gα(W )) walk W α
g in Γα

for every g ∈ G ; in total |G | lifts.
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Jozef Širáň ATCAGC 2014 Covering constructions of extremal graphs of given degree and diameter, or girth10 / 17



Girth 6:

∆ - dipole with V = {u, v} and m u→v darts ei , i ∈ I , |I | = m.

• Let {z1, . . . , zq+1} be a perfect difference set in Zq2+q+1. If α(ei ) = zi ,
the lift ∆α is a cage of girth 6; degree q + 1, order 2(q2 + q + 1).

Incidence graphs of finite projective planes. α: Folklore 19??

• Let I = F = GF (q) and let β(ei ) = (i , i2) ∈ F+ × F+ for i ∈ I . Then
∆β is a ‘near-cage’ of girth 6; degree q, order 2q2.

Biaffine planes; Brown 1967. β: Šiagiová 2001; Dembowski, Ostrom 1968.

• Let I = F× and let γ(ei ) = (i , i) ∈ F+ × F× for i ∈ I . Then ∆γ is a
‘near-cage’ of girth 6; degree q − 1, order 2q(q − 1).

Abreu, Funk, Labbate, Napolitano 2006 γ: Macbeth, Šiagiová, Š 2012.

• Let I = F×\{1} and let δ(ei ) = (i , i − 1) ∈ F× × F× for i ∈ I . Then
∆δ is a ‘near-cage’ of girth 6; degree q − 2, order 2(q − 1)2.

Abreu, Funk, Labbate, Napolitano 2006 δ: implied by LMMŠŠT 2012.

• I = F < GF (q2), η ∈ GF (q2)\F , η2 ∈ F ; let ω(ei ) = i + η ∈ GF (q2)×.
∆ω is a ‘near-cage’, ` = 6; d = q, order 2(q2 − 1). Girth 5: Jorgensen 05
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Jozef Širáň ATCAGC 2014 Covering constructions of extremal graphs of given degree and diameter, or girth11 / 17



Girth 6: ∆ - dipole with V = {u, v} and m u→v darts ei , i ∈ I , |I | = m.

• Let {z1, . . . , zq+1} be a perfect difference set in Zq2+q+1. If α(ei ) = zi ,
the lift ∆α is a cage of girth 6; degree q + 1, order 2(q2 + q + 1).

Incidence graphs of finite projective planes. α: Folklore 19??

• Let I = F = GF (q) and let β(ei ) = (i , i2) ∈ F+ × F+ for i ∈ I . Then
∆β is a ‘near-cage’ of girth 6; degree q, order 2q2.
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Jozef Širáň ATCAGC 2014 Covering constructions of extremal graphs of given degree and diameter, or girth11 / 17



Girth 6: ∆ - dipole with V = {u, v} and m u→v darts ei , i ∈ I , |I | = m.

• Let {z1, . . . , zq+1} be a perfect difference set in Zq2+q+1. If α(ei ) = zi ,
the lift ∆α is a cage of girth 6; degree q + 1, order 2(q2 + q + 1).

Incidence graphs of finite projective planes. α: Folklore 19??

• Let I = F = GF (q) and let β(ei ) = (i , i2) ∈ F+ × F+ for i ∈ I . Then
∆β is a ‘near-cage’ of girth 6; degree q, order 2q2.
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• Let I = F×\{1} and let δ(ei ) = (i , i − 1) ∈ F× × F× for i ∈ I . Then
∆δ is a ‘near-cage’ of girth 6; degree q − 2, order 2(q − 1)2.

Abreu, Funk, Labbate, Napolitano 2006 δ: implied by LMMŠŠT 2012.
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Large vt and Cayley graphs of given degree and diameter

vt(d , k), Cay(d , k) - largest order of a v-t, Cayley (d , k)-graph

Construction: H - a group of odd order m; G = Hk - voltage group.

Our base graph: Γ = Cm
k , V = {v0, . . . , vk−1}, m edges vi→vi+1

labelled ehi , h ∈ H; (m − 1)/2 loops at each vi

A voltage assignment α on Γ in the group G :

For i mod k and h ∈ H we set α(ehi ) = (. . . , 1, h, 1, . . .) with h in the i-th
coordinate. α on loops at vi : (. . . , 1, h, 1, . . . ) with h ranging over all
non-identity elements of H and appearing in the (i + bk/2c)-th position.

The lift has d = 3m − 1, diameter k and order kmk , Cayley graph.

Cay(d , k) ≥ k((d + 1)/3)k for k ≥ 3 and d ≥ 5 such that d ≡ −1 mod 3.

Best bound on Cay(d , k); also on vt(d , k) for c(d + 3)/2 ≤ k ≤ (d + 1)/2
for c ∈ (0, 1) s.t. (2e/3)c(1− c)1−c = 1; c ≈ 0.61834.... MŠŠV 2010
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Large vt and Cayley graphs of diameter two

∆∗q - dipole with q u→v edges ex ; x ∈ F = GF (q), q ≡ 1 mod 4,
with (q − 1)/4 loops at both u, v

α in F+ × F+, α(ex) = (x , x2); loops at u, v receive (0, ξ2i ) and (0, ξ2i+1)

The lift (∆∗q)α gives vt(d , 2) ≥ 8
9 (d + 1

2 )2 for d = (3q − 1)/2.

Šiagiová 2001; McKay, Miller, Š 1998
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Γ - a complete graph, V = F× for even q, a semiedge σr at every r ∈ V

α - voltage assignment in F+: α(σr ) = r and α(r , s) = rs for all r , s ∈ F×

The lift Γα of degree q and order q(q − 1) ≈ d2 just ‘narrowly fails’ to
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Computational results on lifts

E. Loz, Š 2008: Computer search over ‘small’ base graphs with voltages in
Zm o Zn to generate large (Cayley) graphs of given degree and diameter.

Filling about 1/4 of the table of the largest known Cayley (d , k)-graphs.

Fact. Let α be a voltage assignment in a group G on a bouquet Bt such
that the lift Bαt has diameter k . Further, let the set of voltages in α be
preserved by b automorphisms of G . The probability that a randomly
chosen voltage assignment on Bt gives a lift of diameter k is at least

|Aut(G)|
b

(|G |−|I (G)|−1
t

)−1

If G = Zm oZn has trivial centre, then |Aut(G )| = mφ(m) ... manageable.

A number of sporadic results for cages - see survey by Exoo, Jajcay.

THANK YOU.
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E. Loz, Š 2008: Computer search over ‘small’ base graphs with voltages in
Zm o Zn to generate large (Cayley) graphs of given degree and diameter.

Filling about 1/4 of the table of the largest known Cayley (d , k)-graphs.

Fact. Let α be a voltage assignment in a group G on a bouquet Bt such
that the lift Bαt has diameter k . Further, let the set of voltages in α be
preserved by b automorphisms of G . The probability that a randomly
chosen voltage assignment on Bt gives a lift of diameter k is at least

|Aut(G)|
b

(|G |−|I (G)|−1
t

)−1

If G = Zm oZn has trivial centre, then |Aut(G )| = mφ(m) ... manageable.

A number of sporadic results for cages - see survey by Exoo, Jajcay.

THANK YOU.
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Jozef Širáň ATCAGC 2014 Covering constructions of extremal graphs of given degree and diameter, or girth17 / 17



Computational results on lifts
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Jozef Širáň ATCAGC 2014 Covering constructions of extremal graphs of given degree and diameter, or girth17 / 17



Computational results on lifts
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