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The degree-diameter and the degree-girth problem

N(d, k) - largest order of a graph of maximum degree d and diameter k
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The degree-diameter and the degree-girth problem

N(d, k) - largest order of a graph of maximum degree d and diameter k
n(d, ) - smallest order of a graph of degree d and girth ¢
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The degree-diameter and the degree-girth problem

N(d, k) - largest order of a graph of maximum degree d and diameter k
n(d, ) - smallest order of a graph of degree d and girth ¢

The Moore bounds and asymptotics for fixed k, ¢ and d — oo :
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The degree-diameter and the degree-girth problem

N(d, k) - largest order of a graph of maximum degree d and diameter k
n(d, ) - smallest order of a graph of degree d and girth ¢

The Moore bounds and asymptotics for fixed k, ¢ and d — oo :
N(d, k) < M(d, k) =1+d+d(d—1)+...+d(d—1)k1 ~dk
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The degree-diameter and the degree-girth problem

N(d, k) - largest order of a graph of maximum degree d and diameter k
n(d, ) - smallest order of a graph of degree d and girth ¢

The Moore bounds and asymptotics for fixed k, ¢ and d — oo :
N(d, k) < M(d, k) =1+d+d(d—1)+...+d(d—1)k1 ~dk
Codd: n(d,f)>1+d+d(d—1)+...+d(d—-1)E32  ~ glt=1)/2
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The degree-diameter and the degree-girth problem

N(d, k) - largest order of a graph of maximum degree d and diameter k
n(d, ) - smallest order of a graph of degree d and girth ¢

The Moore bounds and asymptotics for fixed k, ¢ and d — oo :

N(d, k) < M(d,k)=1+d+d(d—1)+...+d(d—-1)k1 ~d*
Codd: n(d,f)>1+d+d(d—1)+...+d(d—-1)E32  ~ glt=1)/2
Ceven: n(d, ) >21+(d—1)+...+(d—1)=2/2]  ~2d(=2)/2
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The degree-diameter and the degree-girth problem

N(d, k) - largest order of a graph of maximum degree d and diameter k
n(d, ) - smallest order of a graph of degree d and girth ¢

The Moore bounds and asymptotics for fixed k, ¢ and d — oo :

N(d, k) < M(d, k) =1+d+d(d—1)+...+d(d— 1)kt ~dk
Codd: n(d,f)>1+d+d(d—1)+...+d(d—-1)E32  ~ glt=1)/2
Ceven: n(d,0)>2[1+(d—1)+...+(d—1)2/? ~ 24(=2)/2

A sample of challenging questions:

Jozef Sirali  ATCAGC 2014 Covering constructions of extremal graphs of 2/17



The degree-diameter and the degree-girth problem

N(d, k) - largest order of a graph of maximum degree d and diameter k
n(d, ) - smallest order of a graph of degree d and girth ¢

The Moore bounds and asymptotics for fixed k, ¢ and d — oo :

N(d, k) < M(d,k)=1+d+d(d—1)+...+d(d—-1)k1 ~d*
Codd: n(d,f)>1+d+d(d—1)+...+d(d—-1)E32  ~ glt=1)/2
Ceven: n(d,0)>2[1+(d—1)+...+(d—1)2/? ~ 2d(¢=2)/2
A sample of challenging questions:

e Given any ¢ > 0, do there exist d, k such that n(d, k) < M(d, k) —c?
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The degree-diameter and the degree-girth problem

N(d, k) - largest order of a graph of maximum degree d and diameter k
n(d, ) - smallest order of a graph of degree d and girth ¢

The Moore bounds and asymptotics for fixed k, ¢ and d — oo :

N(d, k) < M(d,k)=1+d+d(d—1)+...+d(d—-1)k1 ~d*
Codd: n(d,f)>1+d+d(d—1)+...+d(d—-1)E32  ~ glt=1)/2
Ceven: n(d,f)>2[1+(d—1)+...+(d-1)E22]  ~2q(-2)/2
A sample of challenging questions:

e Given any ¢ > 0, do there exist d, k such that n(d, k) < M(d, k) —c?
e Given any ¢ > 0, do we have n(d, k) > (1 — e)M(d, k) for large d, k ?
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The degree-diameter and the degree-girth problem

N(d, k) - largest order of a graph of maximum degree d and diameter k
n(d, ) - smallest order of a graph of degree d and girth ¢

The Moore bounds and asymptotics for fixed k,¢ and d — oo :

N(d, k) < M(d,k)=1+d+d(d—1)+...+d(d—-1)k1 ~d*
Codd: n(d,f)>1+d+d(d—1)+...+d(d—-1)E32  ~ glt=1)/2
Ceven: n(d,0)>2[14(d—1)+...+ (d—1)2/? ~ 2d(t=2)/2
A sample of challenging questions:

e Given any ¢ > 0, do there exist d, k such that n(d, k) < M(d, k) —c?
e Given any ¢ > 0, do we have n(d, k) > (1 — e)M(d, k) for large d, k ?

Similar questions can be asked for the degree-girth problem.
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The degree-diameter and the degree-girth problem

N(d, k) - largest order of a graph of maximum degree d and diameter k
n(d, ) - smallest order of a graph of degree d and girth ¢

The Moore bounds and asymptotics for fixed k,¢ and d — oo :

N(d, k) < M(d,k)=1+d+d(d—1)+...+d(d—-1)k1 ~d*
Codd: n(d,f)>1+d+d(d—1)+...+d(d—-1)E32  ~ glt=1)/2
Ceven: n(d,0)>2[14(d—1)+...+ (d—1)2/? ~ 2d(t=2)/2
A sample of challenging questions:

e Given any ¢ > 0, do there exist d, k such that n(d, k) < M(d, k) —c?
e Given any ¢ > 0, do we have n(d, k) > (1 — e)M(d, k) for large d, k ?

Similar questions can be asked for the degree-girth problem.

Aim: To give a brief survey of lifting constructions in both problems.
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Lifts of graphs and regular coverings
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Lifts of graphs and regular coverings

G - a group; I = (V, D) - a graph, D - dart set.
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Lifts of graphs and regular coverings

G - a group; I = (V, D) - a graph, D - dart set. A voltage assignment
is any mapping a: D — G s. t. a(e”) = a(e)! for every dart e € D.
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Lifts of graphs and regular coverings
G - a group; I = (V, D) - a graph, D - dart set. A voltage assignment

is any mapping a: D — G s. t. a(e”) = a(e)! for every dart e € D.

The lift '™ has vertex set V¥ = V x G and dart set D* = D x G.

Jozef Sirali  ATCAGC 2014 Covering constructions of extremal graphs of 3/17



Lifts of graphs and regular coverings

G - a group; I = (V, D) - a graph, D - dart set. A voltage assignment
is any mapping a: D — G s. t. a(e”) = a(e)! for every dart e € D.

The lift ™ has vertex set V¥ = V x G and dart set D% = D x G. For
e: u—vinl, g€ G we have adart (e,g): (u,g) = (v,ga(e)) in I,
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Lifts of graphs and regular coverings

G - a group; I = (V, D) - a graph, D - dart set. A voltage assignment
is any mapping a: D — G s. t. a(e”) = a(e)! for every dart e € D.

The lift ™ has vertex set V¥ = V x G and dart set D% = D x G. For
e: u—vinl, g€ G we have adart (e,g): (u,g) = (v,ga(e)) in I,

The lift is undirected: (e,g)~ = (e, ga(e)).
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Lifts of graphs and regular coverings

G - a group; I = (V, D) - a graph, D - dart set. A voltage assignment
is any mapping a: D — G s. t. a(e”) = a(e)! for every dart e € D.

The lift ™ has vertex set V¥ = V x G and dart set D% = D x G. For
e: u—vinl, g€ G we have adart (e,g): (u,g) — (v,ga(e)) in .

The lift is undirected: (e,g)~ = (e, ga(e)). Semiedges e: a(e)? = 1.
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Lifts of graphs and regular coverings

G - a group; I = (V, D) - a graph, D - dart set. A voltage assignment
is any mapping a: D — G s. t. a(e”) = a(e)! for every dart e € D.

The lift ™ has vertex set V¥ = V x G and dart set D% = D x G. For
e: u—vinl, g€ G we have adart (e,g): (u,g) — (v,ga(e)) in .

The lift is undirected: (e,g)~ = (e, ga(e)). Semiedges e: a(e)? = 1.

Left multiplication by any fixed f € G induces an automorphism of the lift.
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Lifts of graphs and regular coverings

G - a group; I = (V, D) - a graph, D - dart set. A voltage assignment
is any mapping a: D — G s. t. a(e”) = a(e)™! for every dart e € D.

The lift [ has vertex set V¢ = V x G and dart set D* = D x G. For
e: u—vinl, g€ G wehave adart (e,g): (u,g) — (v,ga(e)) in .

The lift is undirected: (e,g)~ = (e, ga(e)). Semiedges e: a(e)? = 1.
Left multiplication by any fixed f € G induces an automorphism of the lift.
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Lifts of graphs and regular coverings
G - a group; I = (V, D) - a graph, D - dart set. A voltage assignment
is any mapping a: D — G s. t. a(e”) = a(e)™! for every dart e € D.

The lift [ has vertex set V¢ = V x G and dart set D* = D x G. For
e: u—vinl, g€ G wehave adart (e,g): (u,g) — (v,ga(e)) in .

The lift is undirected: (e,g)~ = (e, ga(e)). Semiedges e: a(e)? = 1.
Left multiplication by any fixed f € G induces an automorphism of the lift.

Fact. A graph N\ is a lift iff it admits a free action of a group G on vertices;

Jozef Sirali  ATCAGC 2014 Covering constructions of extremal graphs of 5/17



Lifts of graphs and regular coverings

G - a group; I = (V, D) - a graph, D - dart set. A voltage assignment
is any mapping a: D — G s. t. a(e”) = a(e)™! for every dart e € D.

The lift [ has vertex set V¢ = V x G and dart set D* = D x G. For
e: u—vinl, g€ G wehave adart (e,g): (u,g) — (v,ga(e)) in .

The lift is undirected: (e,g)~ = (e, ga(e)). Semiedges e: a(e)? = 1.
Left multiplication by any fixed f € G induces an automorphism of the lift.

Fact. A graph N\ is a lift iff it admits a free action of a group G on vertices;
then N = T% where [ = A\/G and « is some voltage assignment on I in G.
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Lifts of graphs and regular coverings
G - a group; I = (V, D) - a graph, D - dart set. A voltage assignment
is any mapping a: D — G s. t. a(e”) = a(e)™! for every dart e € D.

The lift I has vertex set V* =V x G and dart set D* = D x G. For
e: u—vinl, g€ G wehave adart (e,g): (u,g) — (v,ga(e)) in .
The lift is undirected: (e,g)~ = (e, ga(e)). Semiedges e: a(e)? = 1.
Left multiplication by any fixed f € G induces an automorphism of the lift.

Fact. A graph N\ is a lift iff it admits a free action of a group G on vertices;
then N = T% where [ = A\/G and « is some voltage assignment on I in G.

The projection A — A/G is equivalent to the projection 7w : [* — I onto
the first coordinate: (v, g) — v, (e,g) — e.
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Lifts of graphs and regular coverings
G - a group; I = (V, D) - a graph, D - dart set. A voltage assignment
is any mapping a: D — G s. t. a(e”) = a(e)™! for every dart e € D.

The lift [ has vertex set V¢ = V x G and dart set D* = D x G. For
e: u—vinl, g€ G wehave adart (e,g): (u,g) — (v,ga(e)) in .

The lift is undirected: (e,g)~ = (e, ga(e)). Semiedges e: a(e)? = 1.
Left multiplication by any fixed f € G induces an automorphism of the lift.

Fact. A graph N\ is a lift iff it admits a free action of a group G on vertices;
then N = T% where [ = A\/G and « is some voltage assignment on I in G.

The projection A — A/G is equivalent to the projection 7w : [* — I onto
the first coordinate: (v, g) — v, (e,g) — e.

In particular, Cayley graphs are precisely lifts of one-vertex graphs.
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Lifts of walks
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Lifts of walks

Let W = e1e5...e, beawalkinT.

Jozef Sirali  ATCAGC 2014 Covering constructions of extremal graphs of



Lifts of walks

Let W =e1er...em be awalk in . If a is a voltage assignment on I in
G, define a(W) = a(e1)a(e2) ... a(em) - the voltage of a walk.
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Lifts of walks

Let W =e1er...em be awalk in . If a is a voltage assignment on I in
G, define a(W) = a(e1)a(e2) ... a(em) - the voltage of a walk.

A u— vwalk WinT lifts to a (u,g) — (v, ga(W)) walk Wg' in T
for every g € G; in total |G| lifts.
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Lifts of walks

Let W =e1er...e, beawalkinT. If «is a voltage assignment on [ in
G, define a(W) = a(e1)a(e2) . .. a(em) - the voltage of a walk.

A u— vwalk WinT lifts to a (u,g) — (v, ga(W)) walk W' in I
for every g € G; in total |G| lifts.
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Lifts of walks

Let W =e1er...e, beawalkinT. If «is a voltage assignment on [ in
G, define a(W) = a(e1)a(e2) . .. a(em) - the voltage of a walk.

A u— vwalk WinT lifts to a (u,g) — (v, ga(W)) walk W' in I
for every g € G; in total |G| lifts.

Controlling the diameter and the girth in lifts:
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Lifts of walks

Let W =e1er...e, beawalkinT. If «is a voltage assignment on [ in
G, define a(W) = a(e1)a(e2) . .. a(em) - the voltage of a walk.

A u— vwalk WinT lifts to a (u,g) — (v, ga(W)) walk W' in I
for every g € G; in total |G| lifts.

Controlling the diameter and the girth in lifts:

Fact. Let « be a voltage assignment on T in G.
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Lifts of walks

Let W =e1er...e, beawalkinT. If «is a voltage assignment on [ in
G, define a(W) = a(e1)a(e2) . .. a(em) - the voltage of a walk.

A u— vwalk WinT lifts to a (u,g) — (v, ga(W)) walk W' in I
for every g € G; in total |G| lifts.

Controlling the diameter and the girth in lifts:

Fact. Let « be a voltage assignment on T in G.

o [“ has diameter < k iff for every pair u, v of vertices of [ and each
g € G there is a u — v walk in T of length at most k with voltage g.
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Lifts of walks

Let W =e1er...e, beawalkinT. If «is a voltage assignment on [ in
G, define a(W) = a(e1)a(e2) . .. a(em) - the voltage of a walk.

A u— vwalk WinT lifts to a (u,g) — (v, ga(W)) walk W' in I
for every g € G; in total |G| lifts.

Controlling the diameter and the girth in lifts:

Fact. Let « be a voltage assignment on T in G.

o [“ has diameter < k iff for every pair u, v of vertices of [ and each
g € G there is a u — v walk in T of length at most k with voltage g.

o [“ has girth > { iff every noncontractible closed walk of length < ¢
has nonidentity voltage.
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Girth 6: A - dipole with V = {u,v} and m u—v darts e;, i € I,

Il =m.

Jozef Sirai

ATCAGC 2014

o

(=)
Covering constructions of extremal graphs of



Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.

o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).
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Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.

o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).

Incidence graphs of finite projective planes.
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Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.

o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).

Incidence graphs of finite projective planes. «: Folklore 1977
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Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.

o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).
Incidence graphs of finite projective planes. «: Folklore 1977

o Let | = F = GF(q) and let 3(e;) = (i,i?) € F™ x FT for i € I. Then
AP is a ‘near-cage’ of girth 6; degree g, order 2¢°.
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Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.
o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).
Incidence graphs of finite projective planes. «: Folklore 1977

o Let | = F = GF(q) and let 3(e;) = (i,i?) € F™ x FT for i € I. Then
AP is a ‘near-cage’ of girth 6; degree g, order 2¢°.

Biaffine planes; Brown 1967.
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Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.
o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).
Incidence graphs of finite projective planes. «: Folklore 1977

e Let | = F = GF(q) and let 3(e;) = (i,i?) € F* x F* for i € I. Then
AP is a ‘near-cage’ of girth 6; degree g, order 2¢°.

Biaffine planes; Brown 1967. 3: giagiové 2001; Dembowski, Ostrom 1968.
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Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.
o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).
Incidence graphs of finite projective planes. «: Folklore 1977

o Let | = F = GF(q) and let 3(e;) = (i,i?) € F™ x FT for i € I. Then
AP is a ‘near-cage’ of girth 6; degree g, order 2¢°.

Biaffine planes; Brown 1967. 3: giagiové 2001; Dembowski, Ostrom 1968.
o Let / =F* andlet vy(e) = (i,i) € F* x F* for i€ l. Then A" is a
‘near-cage’ of girth 6; degree g — 1, order 2q(q — 1).
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Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.
o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).
Incidence graphs of finite projective planes. «: Folklore 1977

e Let | = F = GF(q) and let 3(e;) = (i,i?) € F* x F* for i € I. Then
AP is a ‘near-cage’ of girth 6; degree g, order 2¢°.

Biaffine planes; Brown 1967. 3: giagiové 2001; Dembowski, Ostrom 1968.
o Let / =F* andlet vy(e) = (i,i) € F* x F* for i€ l. Then A" is a
‘near-cage’ of girth 6; degree g — 1, order 2q(q — 1).

Abreu, Funk, Labbate, Napolitano 2006
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Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.
o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).
Incidence graphs of finite projective planes. «: Folklore 1977

o Let | = F = GF(q) and let 3(e;) = (i,i?) € F™ x FT for i € I. Then
AP is a ‘near-cage’ of girth 6; degree g, order 2¢°.

Biaffine planes; Brown 1967. 3: giagiové 2001; Dembowski, Ostrom 1968.
o Let / =F* andlet vy(e) = (i,i) € F* x F* for i€ l. Then A" is a
‘near-cage’ of girth 6; degree g — 1, order 2q(q — 1).

Abreu, Funk, Labbate, Napolitano 2006 ~: Macbeth, éiagiové, S 2012.
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Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.
o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).
Incidence graphs of finite projective planes. «: Folklore 1977

e Let | = F = GF(q) and let 3(e;) = (i,i?) € F* x F* for i € I. Then
AP is a ‘near-cage’ of girth 6; degree g, order 2¢°.

Biaffine planes; Brown 1967. 3: giagiové 2001; Dembowski, Ostrom 1968.
o Let / =F* andlet vy(e) = (i,i) € F* x F* for i€ l. Then A" is a
‘near-cage’ of girth 6; degree g — 1, order 2q(q — 1).

Abreu, Funk, Labbate, Napolitano 2006 ~: Macbeth, éiagiové, S 2012.
o Let / = F*\{1} and let 6(e;) = (i,i —1) € F* x F* for i € I. Then
A’ is a ‘near-cage’ of girth 6; degree g — 2, order 2(q — 1)
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Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.
o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).
Incidence graphs of finite projective planes. «: Folklore 1977

o Let | = F = GF(q) and let 3(e;) = (i,i?) € F™ x FT for i € I. Then
AP is a ‘near-cage’ of girth 6; degree g, order 2¢°.

Biaffine planes; Brown 1967. 3: giagiové 2001; Dembowski, Ostrom 1968.
o Let / =F* andlet vy(e) = (i,i) € F* x F* for i€ l. Then A" is a
‘near-cage’ of girth 6; degree g — 1, order 2q(q — 1).

Abreu, Funk, Labbate, Napolitano 2006 ~: Macbeth, éiagiové, S 2012.
o Let / = F*\{1} and let 6(e;) = (i,i —1) € F* x F* for i € I. Then
A’ is a ‘near-cage’ of girth 6; degree g — 2, order 2(q — 1)

Abreu, Funk, Labbate, Napolitano 2006
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Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.
o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).
Incidence graphs of finite projective planes. «: Folklore 1977

o Let | = F = GF(q) and let 3(e;) = (i,i?) € F™ x FT for i € I. Then
AP is a ‘near-cage’ of girth 6; degree g, order 2¢°.

Biaffine planes; Brown 1967. 3: giagiové 2001; Dembowski, Ostrom 1968.
o Let / =F* andlet vy(e) = (i,i) € F* x F* for i€ l. Then A" is a
‘near-cage’ of girth 6; degree g — 1, order 2q(q — 1).

Abreu, Funk, Labbate, Napolitano 2006 ~: Macbeth, éiagiové, S 2012.
o Let / = F*\{1} and let 6(e;) = (i,i —1) € F* x F* for i € I. Then
A’ is a ‘near-cage’ of girth 6; degree g — 2, order 2(q — 1)

Abreu, Funk, Labbate, Napolitano 2006 §: implied by LMMSST 2012.
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Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.
o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).
Incidence graphs of finite projective planes. «: Folklore 1977

o Let | = F = GF(q) and let 3(e;) = (i,i?) € F™ x FT for i € I. Then
AP is a ‘near-cage’ of girth 6; degree g, order 2¢°.

Biaffine planes; Brown 1967. 3: giagiové 2001; Dembowski, Ostrom 1968.
o Let / =F* andlet vy(e) = (i,i) € F* x F* for i€ l. Then A" is a
‘near-cage’ of girth 6; degree g — 1, order 2q(q — 1).

Abreu, Funk, Labbate, Napolitano 2006 ~: Macbeth, éiagiové, S 2012.
o Let / = F*\{1} and let 6(e;) = (i,i —1) € F* x F* for i € I. Then
A’ is a ‘near-cage’ of girth 6; degree g — 2, order 2(q — 1)

Abreu, Funk, Labbate, Napolitano 2006 §: implied by LMMSST 2012.
o | =F < GF(q?), n € GF(q*)\F, n?> € F; let w(e;) = i +n € GF(q?)*.
A is a ‘near-cage’, { = 6; d = q, order 2(q> — 1).
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Girth 6: A - dipole with V = {u,v} and m u—v darts ¢;, i € I, |I| = m.
o Let {z1,...,2411} be a perfect difference set in Z2. . ;. If a(e;) = z,
the lift A“ is a cage of girth 6; degree g + 1, order 2(g 4+ g + 1).
Incidence graphs of finite projective planes. «: Folklore 1977

o Let | = F = GF(q) and let 3(e;) = (i,i?) € F™ x FT for i € I. Then
AP is a ‘near-cage’ of girth 6; degree g, order 2¢°.

Biaffine planes; Brown 1967. 3: giagiové 2001; Dembowski, Ostrom 1968.
o Let / =F* andlet vy(e) = (i,i) € F* x F* for i€ l. Then A" is a
‘near-cage’ of girth 6; degree g — 1, order 2q(q — 1).

Abreu, Funk, Labbate, Napolitano 2006 ~: Macbeth, éiagiové, S 2012.
o Let / = F*\{1} and let 6(e;) = (i,i —1) € F* x F* for i € I. Then
A’ is a ‘near-cage’ of girth 6; degree g — 2, order 2(q — 1)

Abreu, Funk, Labbate, Napolitano 2006 §: implied by LMMSST 2012.
o | =F < GF(q?), n € GF(q*)\F, n?> € F; let w(e;) = i +n € GF(q?)*.
A is a ‘near-cage’, £ = 6; d = q, order 2(q*> — 1). Girth 5: Jorgensen 05
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Large vt and Cayley graphs of given degree and diameter

vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph
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Large vt and Cayley graphs of given degree and diameter
vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph

Construction: H - a group of odd order m; G = H* - voltage group.
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Large vt and Cayley graphs of given degree and diameter
vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph
Construction: H - a group of odd order m; G = H* - voltage group.

Our base graph: ' = (7, V = {w,...,vk_1}, m edges vi—vj 1
labelled ef, h € H; (m —1)/2 loops at each v;
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Large vt and Cayley graphs of given degree and diameter
vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph
Construction: H - a group of odd order m; G = H* - voltage group.

Our base graph: ' = (7, V = {w,...,vk_1}, m edges vi—vj 1
labelled ef, h € H; (m —1)/2 loops at each v;

A voltage assignment « on [ in the group G:
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Large vt and Cayley graphs of given degree and diameter
vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph
Construction: H - a group of odd order m; G = H* - voltage group.

Our base graph: ' = (7, V = {w,...,vk_1}, m edges vi—vj 1
labelled ef, h € H; (m —1)/2 loops at each v;

A voltage assignment « on [ in the group G:

For i mod k and h € H we set a(ef) = (...,1,h,1,...) with h in the i-th
coordinate.
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Large vt and Cayley graphs of given degree and diameter
vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph

Construction: H - a group of odd order m; G = H* - voltage group.

Our base graph: ' = (7, V = {w,...,vk_1}, m edges vi—vj 1
labelled ef, h € H; (m —1)/2 loops at each v;

A voltage assignment « on [ in the group G:

For i mod k and h € H we set a(ef) = (...,1,h,1,...) with h in the i-th
coordinate. « on loops at v;: (...,1,h,1,...) with h ranging over all
non-identity elements of H and appearing in the (i + | k/2])-th position.
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Large vt and Cayley graphs of given degree and diameter
vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph
Construction: H - a group of odd order m; G = H* - voltage group.

Our base graph: ' = (7, V = {w,...,vk_1}, m edges vi—vj 1
labelled ef, h € H; (m —1)/2 loops at each v;

A voltage assignment « on [ in the group G:

For i mod k and h € H we set a(ef) = (...,1,h,1,...) with h in the i-th
coordinate. « on loops at v;: (...,1,h,1,...) with h ranging over all
non-identity elements of H and appearing in the (i + | k/2])-th position.

The lift has d = 3m — 1, diameter k and order km¥,
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Large vt and Cayley graphs of given degree and diameter
vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph
Construction: H - a group of odd order m; G = H* - voltage group.

Our base graph: ' = (7, V = {w,...,vk_1}, m edges vi—vj 1
labelled ef, h € H; (m —1)/2 loops at each v;

A voltage assignment « on [ in the group G:

For i mod k and h € H we set a(ef) = (...,1,h,1,...) with h in the i-th
coordinate. « on loops at v;: (...,1,h,1,...) with h ranging over all
non-identity elements of H and appearing in the (i + | k/2])-th position.

The lift has d = 3m — 1, diameter k and order km*, Cayley graph.
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Large vt and Cayley graphs of given degree and diameter
vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph
Construction: H - a group of odd order m; G = H* - voltage group.

Our base graph: ' = (7, V = {w,...,vk_1}, m edges vi—vj 1
labelled ef, h € H; (m —1)/2 loops at each v;

A voltage assignment « on [ in the group G:

For i mod k and h € H we set a(ef) = (...,1,h,1,...) with h in the i-th
coordinate. « on loops at v;: (...,1,h,1,...) with h ranging over all
non-identity elements of H and appearing in the (i + | k/2])-th position.

The lift has d = 3m — 1, diameter k and order km*, Cayley graph.
Cay(d, k) > k((d +1)/3)* for k >3 and d > 5 such that d = —1 mod 3.
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Large vt and Cayley graphs of given degree and diameter
vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph
Construction: H - a group of odd order m; G = H* - voltage group.

Our base graph: ' = (7, V = {w,...,vk_1}, m edges vi—vj 1
labelled ef, h € H; (m —1)/2 loops at each v;

A voltage assignment « on [ in the group G:

For i mod k and h € H we set a(ef) = (...,1,h,1,...) with h in the i-th
coordinate. « on loops at v;: (...,1,h,1,...) with h ranging over all
non-identity elements of H and appearing in the (i + | k/2])-th position.

The lift has d = 3m — 1, diameter k and order km*, Cayley graph.
Cay(d, k) > k((d +1)/3)* for k >3 and d > 5 such that d = —1 mod 3.
Best bound on Cay(d, k);
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Large vt and Cayley graphs of given degree and diameter
vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph

Construction: H - a group of odd order m; G = H* - voltage group.

Our base graph: ' = (7, V = {w,...,vk_1}, m edges vi—vj 1
labelled ef, h € H; (m —1)/2 loops at each v;

A voltage assignment « on [ in the group G:

For i mod k and h € H we set a(ef) = (...,1,h,1,...) with h in the i-th
coordinate. « on loops at v;: (...,1,h,1,...) with h ranging over all
non-identity elements of H and appearing in the (i + | k/2])-th position.

The lift has d = 3m — 1, diameter k and order km*, Cayley graph.

Cay(d, k) > k((d +1)/3)* for k >3 and d > 5 such that d = —1 mod 3.
Best bound on Cay(d, k); also on vt(d, k) for c(d +3)/2 < k< (d+1)/2
for c € (0,1) s.t. (2¢/3)(1 — )¢ =1; c~0.61834.... MSSV 2010
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Large vt and Cayley graphs of diameter two
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Large vt and Cayley graphs of diameter two

Ay - dipole with g u—v edges es; x € F = GF(q), g =1 mod 4,
with (g — 1)/4 loops at both u, v
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Large vt and Cayley graphs of diameter two

Ay - dipole with g u—v edges es; x € F = GF(q), g =1 mod 4,
with (g — 1)/4 loops at both u, v

ain Ft x F*, a(e) = (x, x?); loops at u, v receive (0,£%) and (0, £27+1)
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Large vt and Cayley graphs of diameter two

Ay - dipole with g u—v edges es; x € F = GF(q), g =1 mod 4,
with (g — 1)/4 loops at both u, v

ain Ft x F*, a(e) = (x, x?); loops at u, v receive (0,£%) and (0, £27+1)

The lift (A})* gives vt(d,2) > §(d + 3)? for d = (3g — 1)/2.

Jozef Sirali  ATCAGC 2014 Covering constructions of extremal graphs of 13 /17



Large vt and Cayley graphs of diameter two

Ay - dipole with g u—v edges es; x € F = GF(q), g =1 mod 4,
with (g — 1)/4 loops at both u, v

ain Ft x F*, a(e) = (x, x?); loops at u, v receive (0,£%) and (0, £27+1)

The lift (A})* gives vt(d,2) > §(d + 3)? for d = (3g — 1)/2.
Siagiova 2001; McKay, Miller, S 1998
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Large vt and Cayley graphs of diameter two

Ay - dipole with g edges e, from u to v, x € F = GF(q), g =1 mod 4,
and with (g — 1)/4 loops at both u, v

ain FH x F*, a(e) = (x, x?); loops at u, v receive (0,£%) and (0, £27+1)

The lift (A})* gives vt(d,2) > §(d + 3)? for d = (3q — 1)/2.
Siagiova 2001; McKay, Miller, S 1998

Jozef Sirali  ATCAGC 2014 Covering constructions of extremal graphs of 16 / 17



Large vt and Cayley graphs of diameter two

Ay - dipole with g edges e, from u to v, x € F = GF(q), g =1 mod 4,
and with (g — 1)/4 loops at both u, v

ain FH x F*, a(e) = (x, x?); loops at u, v receive (0,£%) and (0, £27+1)
The lift (A})* gives vt(d,2) > §(d + 3)? for d = (3q — 1)/2.

Siagiova 2001; McKay, Miller, S 1998

I - a complete graph, V = F* for even g, a semiedge o, at every r € V
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Large vt and Cayley graphs of diameter two

Ay - dipole with g edges e, from u to v, x € F = GF(q), g =1 mod 4,
and with (g — 1)/4 loops at both u, v

ain FH x F*, a(e) = (x, x?); loops at u, v receive (0,£%) and (0, £27+1)
The lift (A})* gives vt(d,2) > §(d + 3)? for d = (3q — 1)/2.

Siagiova 2001; McKay, Miller, S 1998

I - a complete graph, V = F* for even g, a semiedge o, at every r € V

« - voltage assignment in F™: «(o,) = rand a(r,s) = rsforall r,s € F*
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Large vt and Cayley graphs of diameter two

Ay - dipole with g edges e, from u to v, x € F = GF(q), g =1 mod 4,
and with (g — 1)/4 loops at both u, v

ain FH x F*, a(e) = (x, x?); loops at u, v receive (0,£%) and (0, £27+1)
The lift (A})* gives vt(d,2) > §(d + 3)? for d = (3q — 1)/2.

Siagiova 2001; McKay, Miller, S 1998

I - a complete graph, V = F* for even g, a semiedge o, at every r € V
« - voltage assignment in F™: «(o,) = rand a(r,s) = rsforall r,s € F*

The lift I of degree g and order g(q — 1) ~ d? just ‘narrowly fails’ to
have diameter two...
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Large vt and Cayley graphs of diameter two

Ay - dipole with g edges e, from u to v, x € F = GF(q), g =1 mod 4,
and with (g — 1)/4 loops at both u, v

ain FH x F*, a(e) = (x, x?); loops at u, v receive (0,£%) and (0, £27+1)
The lift (A})* gives vt(d,2) > §(d + 3)? for d = (3q — 1)/2.

Siagiova 2001; McKay, Miller, S 1998

I - a complete graph, V = F* for even g, a semiedge o, at every r € V
« - voltage assignment in F™: «(o,) = rand a(r,s) = rsforall r,s € F*

The lift I of degree g and order g(q — 1) ~ d? just ‘narrowly fails’ to
have diameter two... can be fixed by increasing the degree by O(,/q)
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Large vt and Cayley graphs of diameter two

Ay - dipole with g edges e, from uto v, x € F = GF(qg), g =1 mod 4,
and with (g — 1)/4 loops at both u, v

ain FH x F*, a(e) = (x, x?); loops at u, v receive (0,£%) and (0, £27+1)
The lift (A})* gives vt(d,2) > §(d + 3)? for d = (3q — 1)/2.

Siagiova 2001; McKay, Miller, S 1998

I - a complete graph, V = F* for even g, a semiedge o, at every r € V
« - voltage assignment in F™: «(o,) = r and a(r,s) = rsforall r,s € F*

The lift I of degree g and order g(q — 1) ~ d? just ‘narrowly fails’ to
have diameter two... can be fixed by increasing the degree by O(,/q)

If done carefully, this results in Cayley graphs of order d?> — o(d?) for
d =g+ O(/q), q even.
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Large vt and Cayley graphs of diameter two

Ay - dipole with g edges e, from uto v, x € F = GF(qg), g =1 mod 4,
and with (g — 1)/4 loops at both u, v

ain FH x F*, a(e) = (x, x?); loops at u, v receive (0,£%) and (0, £27+1)
The lift (A})* gives vt(d,2) > §(d + 3)? for d = (3q — 1)/2.

Siagiova 2001; McKay, Miller, S 1998

I - a complete graph, V = F* for even g, a semiedge o, at every r € V
« - voltage assignment in F™: «(o,) = rand a(r,s) = rsforall r,s € F*

The lift I of degree g and order g(q — 1) ~ d? just ‘narrowly fails’ to
have diameter two... can be fixed by increasing the degree by O(,/q)

If done carefully, this results in Cayley graphs of order d?> — o(d?) for
d =g+ 0(,/q), q even. Since M(d,2) = d* + 1, the Moore bound for
diameter two can be ‘approached’ by Cayley graphs. 5SS 2012
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Computational results on lifts
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Computational results on lifts

E. Loz, S 2008: Computer search over ‘small’ base graphs with voltages in
Zm X Zp to generate large (Cayley) graphs of given degree and diameter.
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Computational results on lifts

E. Loz, S 2008: Computer search over ‘small’ base graphs with voltages in
Zm X Zp to generate large (Cayley) graphs of given degree and diameter.

Filling about 1/4 of the table of the largest known Cayley (d, k)-graphs.
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Computational results on lifts

E. Loz, S 2008: Computer search over ‘small’ base graphs with voltages in
Zm X Zp to generate large (Cayley) graphs of given degree and diameter.

Filling about 1/4 of the table of the largest known Cayley (d, k)-graphs.

Fact. Let a be a voltage assignment in a group G on a bouquet B; such
that the lift By* has diameter k. Further, let the set of voltages in o be
preserved by b automorphisms of G. The probability that a randomly
chosen voltage assignment on By gives a lift of diameter k is at least
[Aut(G) (|G|—|l(c)|—1)—1
t
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Computational results on lifts

E. Loz, S 2008: Computer search over ‘small’ base graphs with voltages in
Zm X Zp to generate large (Cayley) graphs of given degree and diameter.

Filling about 1/4 of the table of the largest known Cayley (d, k)-graphs.

Fact. Let a be a voltage assignment in a group G on a bouquet B; such
that the lift By* has diameter k. Further, let the set of voltages in o be
preserved by b automorphisms of G. The probability that a randomly
chosen voltage assignment on By gives a lift of diameter k is at least

Aut(G)| /|G|—|1(G)|—1y L
\ t;)()l(lllg)l 1)

If G = Z,, X Z, has trivial centre, then |Aut(G)| = m¢(m) ... manageable.
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Computational results on lifts

E. Loz, S 2008: Computer search over ‘small’ base graphs with voltages in
Zm X Zp to generate large (Cayley) graphs of given degree and diameter.

Filling about 1/4 of the table of the largest known Cayley (d, k)-graphs.

Fact. Let a be a voltage assignment in a group G on a bouquet B; such
that the lift By* has diameter k. Further, let the set of voltages in o be
preserved by b automorphisms of G. The probability that a randomly
chosen voltage assignment on By gives a lift of diameter k is at least

[Aut(G)] (16]-11(G)]-1) !
b t
If G = Z,, X Z, has trivial centre, then |Aut(G)| = m¢(m) ... manageable.

A number of sporadic results for cages - see survey by Exoo, Jajcay.
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Computational results on lifts

E. Loz, S 2008: Computer search over ‘small’ base graphs with voltages in
Zm X Zp to generate large (Cayley) graphs of given degree and diameter.

Filling about 1/4 of the table of the largest known Cayley (d, k)-graphs.

Fact. Let a be a voltage assignment in a group G on a bouquet B; such
that the lift By* has diameter k. Further, let the set of voltages in o be
preserved by b automorphisms of G. The probability that a randomly
chosen voltage assignment on By gives a lift of diameter k is at least

[Aut(G)] (16]-11(G)]-1) !
b t
If G = Z,, X Z, has trivial centre, then |Aut(G)| = m¢(m) ... manageable.
A number of sporadic results for cages - see survey by Exoo, Jajcay.

THANK YOU.
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