Covering constructions of extremal graphs of given degree and diameter, or girth

Jozef Širáň

ATCAGC 2014

イロト イポト イヨト イヨト

N(d, k) - largest order of a graph of maximum degree d and diameter k

- 4 週 ト - 4 三 ト - 4 三 ト -

N(d, k) - largest order of a graph of maximum degree d and diameter k $n(d, \ell)$ - smallest order of a graph of degree d and girth ℓ

- 4 週 ト - 4 三 ト - 4 三 ト - -

N(d, k) - largest order of a graph of maximum degree d and diameter k $n(d, \ell)$ - smallest order of a graph of degree d and girth ℓ

The Moore bounds and asymptotics for fixed k, ℓ and $d \to \infty$:

- 4 週 ト - 4 三 ト - 4 三 ト - -

N(d, k) - largest order of a graph of maximum degree d and diameter k $n(d, \ell)$ - smallest order of a graph of degree d and girth ℓ

The Moore bounds and asymptotics for fixed k, ℓ and $d \to \infty$:

 $N(d,k) \leq M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} ~~ \sim d^k$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

N(d, k) - largest order of a graph of maximum degree d and diameter k $n(d, \ell)$ - smallest order of a graph of degree d and girth ℓ

The Moore bounds and asymptotics for fixed k, ℓ and $d \to \infty$: $N(d, k) \le M(d, k) = 1 + d + d(d - 1) + \ldots + d(d - 1)^{k-1} \sim d^k$ ℓ odd: $n(d, \ell) \ge 1 + d + d(d - 1) + \ldots + d(d - 1)^{(\ell-3)/2} \sim d^{(\ell-1)/2}$

イロト 不得下 イヨト イヨト 二日

N(d, k) - largest order of a graph of maximum degree d and diameter k $n(d, \ell)$ - smallest order of a graph of degree d and girth ℓ

The Moore bounds and asymptotics for fixed k, ℓ and $d \to \infty$: $N(d,k) \le M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$ ℓ odd: $n(d,\ell) \ge 1 + d + d(d-1) + \ldots + d(d-1)^{(\ell-3)/2} \sim d^{(\ell-1)/2}$ ℓ even: $n(d,\ell) \ge 2[1 + (d-1) + \ldots + (d-1)^{(\ell-2)/2}] \sim 2d^{(\ell-2)/2}$

イロト 不得下 イヨト イヨト 二日

N(d, k) - largest order of a graph of maximum degree d and diameter k $n(d, \ell)$ - smallest order of a graph of degree d and girth ℓ

The Moore bounds and asymptotics for fixed k, ℓ and $d \to \infty$: $N(d,k) \le M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$ ℓ odd: $n(d,\ell) \ge 1 + d + d(d-1) + \ldots + d(d-1)^{(\ell-3)/2} \sim d^{(\ell-1)/2}$ ℓ even: $n(d,\ell) \ge 2[1 + (d-1) + \ldots + (d-1)^{(\ell-2)/2}] \sim 2d^{(\ell-2)/2}$

A sample of challenging questions:

N(d, k) - largest order of a graph of maximum degree d and diameter k $n(d, \ell)$ - smallest order of a graph of degree d and girth ℓ

The Moore bounds and asymptotics for fixed k, ℓ and $d \to \infty$: $N(d,k) \le M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$ ℓ odd: $n(d,\ell) \ge 1 + d + d(d-1) + \ldots + d(d-1)^{(\ell-3)/2} \sim d^{(\ell-1)/2}$ ℓ even: $n(d,\ell) \ge 2[1 + (d-1) + \ldots + (d-1)^{(\ell-2)/2}] \sim 2d^{(\ell-2)/2}$

A sample of challenging questions:

• Given any c > 0, do there exist d, k such that $n(d, k) \le M(d, k) - c$?

▲日▼ ▲圖▼ ▲目▼ ▲目▼ ■ ● ● ●

N(d, k) - largest order of a graph of maximum degree d and diameter k $n(d, \ell)$ - smallest order of a graph of degree d and girth ℓ

The Moore bounds and asymptotics for fixed k, ℓ and $d \to \infty$: $N(d,k) \le M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$ ℓ odd: $n(d,\ell) \ge 1 + d + d(d-1) + \ldots + d(d-1)^{(\ell-3)/2} \sim d^{(\ell-1)/2}$ ℓ even: $n(d,\ell) \ge 2[1 + (d-1) + \ldots + (d-1)^{(\ell-2)/2}] \sim 2d^{(\ell-2)/2}$

A sample of challenging questions:

- Given any c > 0, do there exist d, k such that $n(d, k) \le M(d, k) c$?
- Given any $\varepsilon > 0$, do we have $n(d, k) > (1 \varepsilon)M(d, k)$ for large d, k?

N(d, k) - largest order of a graph of maximum degree d and diameter k $n(d, \ell)$ - smallest order of a graph of degree d and girth ℓ

The Moore bounds and asymptotics for fixed k, ℓ and $d \to \infty$: $N(d,k) \le M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$ ℓ odd: $n(d,\ell) \ge 1 + d + d(d-1) + \ldots + d(d-1)^{(\ell-3)/2} \sim d^{(\ell-1)/2}$ ℓ even: $n(d,\ell) \ge 2[1 + (d-1) + \ldots + (d-1)^{(\ell-2)/2}] \sim 2d^{(\ell-2)/2}$

A sample of challenging questions:

- Given any c > 0, do there exist d, k such that $n(d, k) \le M(d, k) c$?
- Given any $\varepsilon > 0$, do we have $n(d, k) > (1 \varepsilon)M(d, k)$ for large d, k?

Similar questions can be asked for the degree-girth problem.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

N(d, k) - largest order of a graph of maximum degree d and diameter k $n(d, \ell)$ - smallest order of a graph of degree d and girth ℓ

The Moore bounds and asymptotics for fixed k, ℓ and $d \to \infty$: $N(d,k) \le M(d,k) = 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$ ℓ odd: $n(d,\ell) \ge 1 + d + d(d-1) + \ldots + d(d-1)^{(\ell-3)/2} \sim d^{(\ell-1)/2}$ ℓ even: $n(d,\ell) \ge 2[1 + (d-1) + \ldots + (d-1)^{(\ell-2)/2}] \sim 2d^{(\ell-2)/2}$

A sample of challenging questions:

- Given any c > 0, do there exist d, k such that $n(d, k) \le M(d, k) c$?
- Given any $\varepsilon > 0$, do we have $n(d, k) > (1 \varepsilon)M(d, k)$ for large d, k?

Similar questions can be asked for the degree-girth problem.

Aim: To give a brief survey of lifting constructions in both problems.

э

イロト イポト イヨト イヨト

G - a group; $\Gamma = (V, D)$ - a graph, D - dart set.

イロト イポト イヨト イヨト 三日

G - a group; $\Gamma = (V, D)$ - a graph, *D* - dart set. A voltage assignment is any mapping $\alpha : D \to G$ s. t. $\alpha(e^-) = \alpha(e)^{-1}$ for every dart $e \in D$.

G - a group; $\Gamma = (V, D)$ - a graph, *D* - dart set. A voltage assignment is any mapping $\alpha : D \to G$ s. t. $\alpha(e^-) = \alpha(e)^{-1}$ for every dart $e \in D$.

The lift Γ^{α} has vertex set $V^{\alpha} = V \times G$ and dart set $D^{\alpha} = D \times G$.

ヘロト 不得 とうき とうとう ほ

G - a group; $\Gamma = (V, D)$ - a graph, *D* - dart set. A voltage assignment is any mapping $\alpha : D \to G$ s. t. $\alpha(e^-) = \alpha(e)^{-1}$ for every dart $e \in D$.

The lift Γ^{α} has vertex set $V^{\alpha} = V \times G$ and dart set $D^{\alpha} = D \times G$. For $e: u \to v$ in $\Gamma, g \in G$ we have a dart $(e,g): (u,g) \to (v,g\alpha(e))$ in Γ^{α} .

ヘロト 不得 とうき とうとう ほ

G - a group; $\Gamma = (V, D)$ - a graph, *D* - dart set. A voltage assignment is any mapping α : $D \to G$ s. t. $\alpha(e^-) = \alpha(e)^{-1}$ for every dart $e \in D$.

The lift Γ^{α} has vertex set $V^{\alpha} = V \times G$ and dart set $D^{\alpha} = D \times G$. For $e: u \to v$ in $\Gamma, g \in G$ we have a dart $(e, g): (u, g) \to (v, g\alpha(e))$ in Γ^{α} .

The lift is undirected: $(e,g)^- = (e^-, g\alpha(e))$.

イロン イロン イヨン イヨン 三日

G - a group; $\Gamma = (V, D)$ - a graph, *D* - dart set. A voltage assignment is any mapping α : $D \to G$ s. t. $\alpha(e^-) = \alpha(e)^{-1}$ for every dart $e \in D$.

The lift Γ^{α} has vertex set $V^{\alpha} = V \times G$ and dart set $D^{\alpha} = D \times G$. For $e: u \to v$ in $\Gamma, g \in G$ we have a dart $(e, g): (u, g) \to (v, g\alpha(e))$ in Γ^{α} .

The lift is undirected: $(e,g)^- = (e^-, g\alpha(e))$. Semiedges $e: \alpha(e)^2 = 1$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

G - a group; $\Gamma = (V, D)$ - a graph, *D* - dart set. A voltage assignment is any mapping α : $D \to G$ s. t. $\alpha(e^-) = \alpha(e)^{-1}$ for every dart $e \in D$.

The lift Γ^{α} has vertex set $V^{\alpha} = V \times G$ and dart set $D^{\alpha} = D \times G$. For $e: u \to v$ in $\Gamma, g \in G$ we have a dart $(e,g): (u,g) \to (v,g\alpha(e))$ in Γ^{α} .

The lift is undirected: $(e,g)^- = (e^-, g\alpha(e))$. Semiedges $e: \alpha(e)^2 = 1$.

Left multiplication by any fixed $f \in G$ induces an automorphism of the lift.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

G - a group; $\Gamma = (V, D)$ - a graph, *D* - dart set. A voltage assignment is any mapping α : $D \to G$ s. t. $\alpha(e^-) = \alpha(e)^{-1}$ for every dart $e \in D$.

The lift Γ^{α} has vertex set $V^{\alpha} = V \times G$ and dart set $D^{\alpha} = D \times G$. For $e: u \to v$ in $\Gamma, g \in G$ we have a dart $(e,g): (u,g) \to (v,g\alpha(e))$ in Γ^{α} . The lift is undirected: $(e,g)^{-} = (e^{-},g\alpha(e))$. Semiedges $e: \alpha(e)^{2} = 1$. Left multiplication by any fixed $f \in G$ induces an automorphism of the lift.

イロト 不得下 イヨト イヨト 二日

G - a group; $\Gamma = (V, D)$ - a graph, *D* - dart set. A voltage assignment is any mapping $\alpha : D \to G$ s. t. $\alpha(e^-) = \alpha(e)^{-1}$ for every dart $e \in D$. The lift Γ^{α} has vertex set $V^{\alpha} = V \times G$ and dart set $D^{\alpha} = D \times G$. For $e : u \to v$ in Γ , $g \in G$ we have a dart $(e, g) : (u, g) \to (v, g\alpha(e))$ in Γ^{α} . The lift is undirected: $(e, g)^- = (e^-, g\alpha(e))$. Semiedges $e : \alpha(e)^2 = 1$. Left multiplication by any fixed $f \in G$ induces an automorphism of the lift. Fact. A graph Λ is a lift iff it admits a free action of a group G on vertices;

G - a group; $\Gamma = (V, D)$ - a graph, *D* - dart set. A voltage assignment is any mapping $\alpha : D \to G$ s. t. $\alpha(e^-) = \alpha(e)^{-1}$ for every dart $e \in D$. The lift Γ^{α} has vertex set $V^{\alpha} = V \times G$ and dart set $D^{\alpha} = D \times G$. For $e : u \to v$ in Γ , $g \in G$ we have a dart $(e, g) : (u, g) \to (v, g\alpha(e))$ in Γ^{α} . The lift is undirected: $(e, g)^- = (e^-, g\alpha(e))$. Semiedges $e : \alpha(e)^2 = 1$. Left multiplication by any fixed $f \in G$ induces an automorphism of the lift.

Fact. A graph Λ is a lift iff it admits a free action of a group G on vertices; then $\Lambda \cong \Gamma^{\alpha}$ where $\Gamma \cong \Lambda/G$ and α is some voltage assignment on Γ in G.

イロト 不得 トイヨト イヨト 二日

G - a group; $\Gamma = (V, D)$ - a graph, *D* - dart set. A voltage assignment is any mapping α : $D \to G$ s. t. $\alpha(e^-) = \alpha(e)^{-1}$ for every dart $e \in D$.

The lift Γ^{α} has vertex set $V^{\alpha} = V \times G$ and dart set $D^{\alpha} = D \times G$. For $e: u \to v$ in $\Gamma, g \in G$ we have a dart $(e,g): (u,g) \to (v,g\alpha(e))$ in Γ^{α} . The lift is undirected: $(e,g)^{-} = (e^{-},g\alpha(e))$. Semiedges $e: \alpha(e)^{2} = 1$. Left multiplication by any fixed $f \in G$ induces an automorphism of the lift.

Fact. A graph Λ is a lift iff it admits a free action of a group G on vertices; then $\Lambda \cong \Gamma^{\alpha}$ where $\Gamma \cong \Lambda/G$ and α is some voltage assignment on Γ in G.

The projection $\Lambda \to \Lambda/G$ is equivalent to the projection $\pi : \Gamma^{\alpha} \to \Gamma$ onto the first coordinate: $(v, g) \mapsto v$, $(e, g) \mapsto e$.

G - a group; $\Gamma = (V, D)$ - a graph, *D* - dart set. A voltage assignment is any mapping $\alpha : D \to G$ s. t. $\alpha(e^-) = \alpha(e)^{-1}$ for every dart $e \in D$.

The lift Γ^{α} has vertex set $V^{\alpha} = V \times G$ and dart set $D^{\alpha} = D \times G$. For $e: u \to v$ in $\Gamma, g \in G$ we have a dart $(e,g): (u,g) \to (v,g\alpha(e))$ in Γ^{α} . The lift is undirected: $(e,g)^{-} = (e^{-},g\alpha(e))$. Semiedges $e: \alpha(e)^{2} = 1$. Left multiplication by any fixed $f \in G$ induces an automorphism of the lift.

Fact. A graph Λ is a lift iff it admits a free action of a group G on vertices; then $\Lambda \cong \Gamma^{\alpha}$ where $\Gamma \cong \Lambda/G$ and α is some voltage assignment on Γ in G.

The projection $\Lambda \to \Lambda/G$ is equivalent to the projection $\pi : \Gamma^{\alpha} \to \Gamma$ onto the first coordinate: $(v, g) \mapsto v$, $(e, g) \mapsto e$.

In particular, Cayley graphs are precisely lifts of one-vertex graphs.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ Q Q ?

Jozef Širáň ATCAGC 2014 Covering constructions of extremal graphs of

E

・ロト ・聞ト ・ヨト ・ヨト

Let $W = e_1 e_2 \dots e_m$ be a walk in Γ .

э

Let $W = e_1 e_2 \dots e_m$ be a walk in Γ . If α is a voltage assignment on Γ in G, define $\alpha(W) = \alpha(e_1)\alpha(e_2)\dots\alpha(e_m)$ - the voltage of a walk.

ヘロト 人間ト 人注ト 人注ト

Let $W = e_1 e_2 \dots e_m$ be a walk in Γ . If α is a voltage assignment on Γ in G, define $\alpha(W) = \alpha(e_1)\alpha(e_2)\dots\alpha(e_m)$ - the voltage of a walk.

A $u \to v$ walk W in Γ lifts to a $(u, g) \to (v, g\alpha(W))$ walk W_g^{α} in Γ^{α} for every $g \in G$; in total |G| lifts.

・ロト ・四ト ・ヨト ・ ヨト

Let $W = e_1 e_2 \dots e_m$ be a walk in Γ . If α is a voltage assignment on Γ in G, define $\alpha(W) = \alpha(e_1)\alpha(e_2)\dots\alpha(e_m)$ - the voltage of a walk.

A $u \to v$ walk W in Γ lifts to a $(u,g) \to (v,g\alpha(W))$ walk W_g^{α} in Γ^{α} for every $g \in G$; in total |G| lifts.

・ロト ・四ト ・ヨト ・ ヨト

Let $W = e_1 e_2 \dots e_m$ be a walk in Γ . If α is a voltage assignment on Γ in G, define $\alpha(W) = \alpha(e_1)\alpha(e_2)\dots\alpha(e_m)$ - the voltage of a walk.

A $u \to v$ walk W in Γ lifts to a $(u,g) \to (v,g\alpha(W))$ walk W_g^{α} in Γ^{α} for every $g \in G$; in total |G| lifts.

Controlling the diameter and the girth in lifts:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・
Lifts of walks

Let $W = e_1 e_2 \dots e_m$ be a walk in Γ . If α is a voltage assignment on Γ in G, define $\alpha(W) = \alpha(e_1)\alpha(e_2)\dots\alpha(e_m)$ - the voltage of a walk.

A $u \to v$ walk W in Γ lifts to a $(u,g) \to (v,g\alpha(W))$ walk W_g^{α} in Γ^{α} for every $g \in G$; in total |G| lifts.

Controlling the diameter and the girth in lifts:

Fact. Let α be a voltage assignment on Γ in G.

イロト イポト イヨト イヨト

Lifts of walks

Let $W = e_1 e_2 \dots e_m$ be a walk in Γ . If α is a voltage assignment on Γ in G, define $\alpha(W) = \alpha(e_1)\alpha(e_2)\dots\alpha(e_m)$ - the voltage of a walk.

A $u \to v$ walk W in Γ lifts to a $(u,g) \to (v,g\alpha(W))$ walk W_g^{α} in Γ^{α} for every $g \in G$; in total |G| lifts.

Controlling the diameter and the girth in lifts:

Fact. Let α be a voltage assignment on Γ in G.

• Γ^{α} has diameter $\leq k$ iff for every pair u, v of vertices of Γ and each $g \in G$ there is a $u \to v$ walk in Γ of length at most k with voltage g.

イロン イロン イヨン イヨン 三日

Lifts of walks

Let $W = e_1 e_2 \dots e_m$ be a walk in Γ . If α is a voltage assignment on Γ in G, define $\alpha(W) = \alpha(e_1)\alpha(e_2)\dots\alpha(e_m)$ - the voltage of a walk.

A $u \to v$ walk W in Γ lifts to a $(u,g) \to (v,g\alpha(W))$ walk W_g^{α} in Γ^{α} for every $g \in G$; in total |G| lifts.

Controlling the diameter and the girth in lifts:

Fact. Let α be a voltage assignment on Γ in G.

• Γ^{α} has diameter $\leq k$ iff for every pair u, v of vertices of Γ and each $g \in G$ there is a $u \to v$ walk in Γ of length at most k with voltage g.

• Γ^{α} has girth $\geq \ell$ iff every noncontractible closed walk of length $< \ell$ has nonidentity voltage.

Girth 6:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

3

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$.

イロト イポト イヨト イヨト

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$. Incidence graphs of finite projective planes.

・ロト ・四ト ・ヨト ・ ヨト

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$. Incidence graphs of finite projective planes. α : Folklore 19??

・ロト ・聞 ト ・ ヨ ト ・

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$. Incidence graphs of finite projective planes. α : Folklore 19??

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$.

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$. Incidence graphs of finite projective planes. α : Folklore 19??

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$.

Biaffine planes; Brown 1967.

イロン イロン イヨン イヨン 三日

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$. Incidence graphs of finite projective planes. α : Folklore 19??

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$.

Biaffine planes; Brown 1967. β : Šiagiová 2001; Dembowski, Ostrom 1968.

(ロ) (四) (日) (日) (日)

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$. Incidence graphs of finite projective planes. α : Folklore 19??

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$.

Biaffine planes; Brown 1967. β : Šiagiová 2001; Dembowski, Ostrom 1968.

• Let $I = F^{\times}$ and let $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$. Then Δ^{γ} is a 'near-cage' of girth 6; degree q - 1, order 2q(q - 1).

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$. Incidence graphs of finite projective planes. α : Folklore 19??

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$.

Biaffine planes; Brown 1967. β : Šiagiová 2001; Dembowski, Ostrom 1968.

• Let $I = F^{\times}$ and let $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$. Then Δ^{γ} is a 'near-cage' of girth 6; degree q - 1, order 2q(q - 1).

Abreu, Funk, Labbate, Napolitano 2006

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$. Incidence graphs of finite projective planes. α : Folklore 19??

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$.

Biaffine planes; Brown 1967. β : Šiagiová 2001; Dembowski, Ostrom 1968.

• Let $I = F^{\times}$ and let $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$. Then Δ^{γ} is a 'near-cage' of girth 6; degree q - 1, order 2q(q - 1).

Abreu, Funk, Labbate, Napolitano 2006 γ : Macbeth, Šiagiová, Š 2012.

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$. Incidence graphs of finite projective planes. α : Folklore 19??

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$.

Biaffine planes; Brown 1967. β : Šiagiová 2001; Dembowski, Ostrom 1968.

• Let $I = F^{\times}$ and let $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$. Then Δ^{γ} is a 'near-cage' of girth 6; degree q - 1, order 2q(q - 1).

Abreu, Funk, Labbate, Napolitano 2006 γ : Macbeth, Šiagiová, Š 2012.

• Let $I = F^{\times} \setminus \{1\}$ and let $\delta(e_i) = (i, i-1) \in F^{\times} \times F^{\times}$ for $i \in I$. Then Δ^{δ} is a 'near-cage' of girth 6; degree q - 2, order $2(q - 1)^2$.

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$. Incidence graphs of finite projective planes. α : Folklore 19??

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$.

Biaffine planes; Brown 1967. β : Šiagiová 2001; Dembowski, Ostrom 1968.

• Let $I = F^{\times}$ and let $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$. Then Δ^{γ} is a 'near-cage' of girth 6; degree q - 1, order 2q(q - 1).

Abreu, Funk, Labbate, Napolitano 2006 γ : Macbeth, Šiagiová, Š 2012.

• Let $I = F^{\times} \setminus \{1\}$ and let $\delta(e_i) = (i, i - 1) \in F^{\times} \times F^{\times}$ for $i \in I$. Then Δ^{δ} is a 'near-cage' of girth 6; degree q - 2, order $2(q - 1)^2$. Abreu, Funk, Labbate, Napolitano 2006

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - ○ ○ ○

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$. Incidence graphs of finite projective planes. α : Folklore 19??

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$.

Biaffine planes; Brown 1967. β : Šiagiová 2001; Dembowski, Ostrom 1968.

• Let $I = F^{\times}$ and let $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$. Then Δ^{γ} is a 'near-cage' of girth 6; degree q - 1, order 2q(q - 1).

Abreu, Funk, Labbate, Napolitano 2006 γ : Macbeth, Šiagiová, Š 2012.

• Let $I = F^{\times} \setminus \{1\}$ and let $\delta(e_i) = (i, i - 1) \in F^{\times} \times F^{\times}$ for $i \in I$. Then Δ^{δ} is a 'near-cage' of girth 6; degree q - 2, order $2(q - 1)^2$.

Abreu, Funk, Labbate, Napolitano 2006 δ : implied by LMMŠŠT 2012.

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$. Incidence graphs of finite projective planes. α : Folklore 19??

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$.

Biaffine planes; Brown 1967. β : Šiagiová 2001; Dembowski, Ostrom 1968.

• Let $I = F^{\times}$ and let $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$. Then Δ^{γ} is a 'near-cage' of girth 6; degree q - 1, order 2q(q - 1).

Abreu, Funk, Labbate, Napolitano 2006 γ : Macbeth, Šiagiová, Š 2012.

• Let $I = F^{\times} \setminus \{1\}$ and let $\delta(e_i) = (i, i - 1) \in F^{\times} \times F^{\times}$ for $i \in I$. Then Δ^{δ} is a 'near-cage' of girth 6; degree q - 2, order $2(q - 1)^2$.

Abreu, Funk, Labbate, Napolitano 2006 δ : implied by LMMŠŠT 2012.

• $I = F < GF(q^2)$, $\eta \in GF(q^2) \setminus F$, $\eta^2 \in F$; let $\omega(e_i) = i + \eta \in GF(q^2)^{\times}$. Δ^{ω} is a 'near-cage', $\ell = 6$; d = q, order $2(q^2 - 1)$.

(ロト (聞) (ヨト (ヨト 三日

• Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$. Incidence graphs of finite projective planes. α : Folklore 19??

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$.

Biaffine planes; Brown 1967. β : Šiagiová 2001; Dembowski, Ostrom 1968.

• Let $I = F^{\times}$ and let $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$. Then Δ^{γ} is a 'near-cage' of girth 6; degree q - 1, order 2q(q - 1).

Abreu, Funk, Labbate, Napolitano 2006 γ : Macbeth, Šiagiová, Š 2012.

• Let $I = F^{\times} \setminus \{1\}$ and let $\delta(e_i) = (i, i-1) \in F^{\times} \times F^{\times}$ for $i \in I$. Then Δ^{δ} is a 'near-cage' of girth 6; degree q - 2, order $2(q - 1)^2$.

Abreu, Funk, Labbate, Napolitano 2006 δ : implied by LMMŠŠT 2012.

• $I = F < GF(q^2), \eta \in GF(q^2) \setminus F, \eta^2 \in F$; let $\omega(e_i) = i + \eta \in GF(q^2)^{\times}$. Δ^{ω} is a 'near-cage', $\ell = 6$; d = q, order $2(q^2 - 1)$. Girth 5: Jorgensen 05

ロトメロトメヨトメヨトニヨ

Large vt and Cayley graphs of given degree and diameter

Jozef Širáň ATCAGC 2014 Covering constructions of extremal graphs o

イロト イポト イヨト イヨト

Large vt and Cayley graphs of given degree and diameter vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph

3

Large vt and Cayley graphs of given degree and diameter vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph Construction: H - a group of odd order m; $G = H^k$ - voltage group.

A voltage assignment α on Γ in the group G:

A voltage assignment α on Γ in the group G:

For $i \mod k$ and $h \in H$ we set $\alpha(e_i^h) = (\dots, 1, h, 1, \dots)$ with h in the *i*-th coordinate.

A voltage assignment α on Γ in the group G:

For *i* mod *k* and $h \in H$ we set $\alpha(e_i^h) = (\dots, 1, h, 1, \dots)$ with *h* in the *i*-th coordinate. α on loops at v_i : $(\dots, 1, h, 1, \dots)$ with *h* ranging over all non-identity elements of *H* and appearing in the $(i + \lfloor k/2 \rfloor)$ -th position.

A voltage assignment α on Γ in the group G:

For *i* mod *k* and $h \in H$ we set $\alpha(e_i^h) = (\dots, 1, h, 1, \dots)$ with *h* in the *i*-th coordinate. α on loops at v_i : $(\dots, 1, h, 1, \dots)$ with *h* ranging over all non-identity elements of *H* and appearing in the $(i + \lfloor k/2 \rfloor)$ -th position.

The lift has d = 3m - 1, diameter k and order km^k ,

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ● ● ● ● ●

A voltage assignment α on Γ in the group G:

For *i* mod *k* and $h \in H$ we set $\alpha(e_i^h) = (\dots, 1, h, 1, \dots)$ with *h* in the *i*-th coordinate. α on loops at v_i : $(\dots, 1, h, 1, \dots)$ with *h* ranging over all non-identity elements of *H* and appearing in the $(i + \lfloor k/2 \rfloor)$ -th position.

The lift has d = 3m - 1, diameter k and order km^k , Cayley graph.

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - ○ ○ ○

A voltage assignment α on Γ in the group G:

For *i* mod *k* and $h \in H$ we set $\alpha(e_i^h) = (\dots, 1, h, 1, \dots)$ with *h* in the *i*-th coordinate. α on loops at v_i : $(\dots, 1, h, 1, \dots)$ with *h* ranging over all non-identity elements of *H* and appearing in the $(i + \lfloor k/2 \rfloor)$ -th position.

The lift has d = 3m - 1, diameter k and order km^k , Cayley graph.

 $Cay(d,k) \ge k((d+1)/3)^k$ for $k \ge 3$ and $d \ge 5$ such that $d \equiv -1 \mod 3$.

For *i* mod *k* and $h \in H$ we set $\alpha(e_i^h) = (\dots, 1, h, 1, \dots)$ with *h* in the *i*-th coordinate. α on loops at v_i : $(\dots, 1, h, 1, \dots)$ with *h* ranging over all non-identity elements of *H* and appearing in the $(i + \lfloor k/2 \rfloor)$ -th position.

The lift has d = 3m - 1, diameter k and order km^k , Cayley graph.

 $Cay(d, k) \ge k((d+1)/3)^k$ for $k \ge 3$ and $d \ge 5$ such that $d \equiv -1 \mod 3$. Best bound on Cay(d, k);

Large vt and Cayley graphs of given degree and diameter vt(d, k), Cay(d, k) - largest order of a v-t, Cayley (d, k)-graph Construction: *H* - a group of odd order *m*; $G = H^k$ - voltage group. Our base graph: $\Gamma = C_k^m$, $V = \{v_0, \ldots, v_{k-1}\}$, *m* edges $v_i \rightarrow v_{i+1}$ labelled e_i^h , $h \in H$; (m-1)/2 loops at each v_i A voltage assignment α on Γ in the group G: For i mod k and $h \in H$ we set $\alpha(e_i^h) = (\dots, 1, h, 1, \dots)$ with h in the i-th coordinate. α on loops at v_i : $(\dots, 1, h, 1, \dots)$ with h ranging over all non-identity elements of H and appearing in the (i + |k/2|)-th position.

The lift has d = 3m - 1, diameter k and order km^k , Cayley graph.

 $Cay(d,k) \ge k((d+1)/3)^k$ for $k \ge 3$ and $d \ge 5$ such that $d \equiv -1 \mod 3$.

Best bound on Cay(d, k); also on vt(d, k) for $c(d+3)/2 \le k \le (d+1)/2$ for $c \in (0, 1)$ s.t. $(2e/3)^c(1-c)^{1-c} = 1$; $c \approx 0.61834...$ MŠŠV 2010

3

イロト イポト イヨト イヨト

 Δ_q^* - dipole with $q \ u \rightarrow v$ edges e_x ; $x \in F = GF(q)$, $q \equiv 1 \mod 4$, with (q-1)/4 loops at both u, v

 Δ_q^* - dipole with $q \ u \rightarrow v$ edges e_x ; $x \in F = GF(q)$, $q \equiv 1 \mod 4$, with (q-1)/4 loops at both u, v

 α in $F^+ \times F^+$, $\alpha(e_x) = (x, x^2)$; loops at u, v receive $(0, \xi^{2i})$ and $(0, \xi^{2i+1})$

イロト イポト イヨト イヨト 三日

 Δ_q^* - dipole with $q \ u \rightarrow v$ edges e_x ; $x \in F = GF(q)$, $q \equiv 1 \mod 4$, with (q-1)/4 loops at both u, v

 α in $F^+ \times F^+$, $\alpha(e_x) = (x, x^2)$; loops at u, v receive $(0, \xi^{2i})$ and $(0, \xi^{2i+1})$

The lift $(\Delta_q^*)^{\alpha}$ gives $vt(d,2) \ge \frac{8}{9}(d+\frac{1}{2})^2$ for d = (3q-1)/2.

イロン イロン イヨン イヨン 三日
Δ_q^* - dipole with $q \ u \rightarrow v$ edges e_x ; $x \in F = GF(q)$, $q \equiv 1 \mod 4$, with (q-1)/4 loops at both u, v

 α in $F^+ \times F^+$, $\alpha(e_x) = (x, x^2)$; loops at u, v receive $(0, \xi^{2i})$ and $(0, \xi^{2i+1})$

The lift $(\Delta_q^*)^{\alpha}$ gives $vt(d, 2) \ge \frac{8}{9}(d + \frac{1}{2})^2$ for d = (3q - 1)/2. Šiagiová 2001; McKay, Miller, Š 1998

イロト 不得下 イヨト イヨト 二日

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Ē ∽へで 15 / 17

 Δ_q^* - dipole with q edges e_x from u to $v, x \in F = GF(q), q \equiv 1 \mod 4$, and with (q-1)/4 loops at both u, v

 α in $F^+ \times F^+$, $\alpha(e_x) = (x, x^2)$; loops at u, v receive $(0, \xi^{2i})$ and $(0, \xi^{2i+1})$

The lift $(\Delta_q^*)^{\alpha}$ gives $vt(d,2) \geq \frac{8}{9}(d+\frac{1}{2})^2$ for d = (3q-1)/2.

Šiagiová 2001; McKay, Miller, Š 1998

イロン イロン イヨン イヨン 三日

 Δ_q^* - dipole with q edges e_x from u to $v, x \in F = GF(q), q \equiv 1 \mod 4$, and with (q-1)/4 loops at both u, v

 α in $F^+ \times F^+$, $\alpha(e_x) = (x, x^2)$; loops at u, v receive $(0, \xi^{2i})$ and $(0, \xi^{2i+1})$

The lift $(\Delta_q^*)^{\alpha}$ gives $vt(d,2) \ge \frac{8}{9}(d+\frac{1}{2})^2$ for d = (3q-1)/2. Šiagiová 2001; McKay, Miller, Š 1998

 Γ - a complete graph, $V = F^{\times}$ for even q, a semiedge σ_r at every $r \in V$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

 Δ_q^* - dipole with q edges e_x from u to $v, x \in F = GF(q), q \equiv 1 \mod 4$, and with (q-1)/4 loops at both u, v

 α in $F^+ \times F^+$, $\alpha(e_x) = (x, x^2)$; loops at u, v receive $(0, \xi^{2i})$ and $(0, \xi^{2i+1})$ The lift $(\Delta_a^*)^{\alpha}$ gives $vt(d, 2) \ge \frac{8}{6}(d + \frac{1}{2})^2$ for d = (3q - 1)/2.

Šiagiová 2001; McKay, Miller, Š 1998

 Γ - a complete graph, $V = F^{\times}$ for even q, a semiedge σ_r at every $r \in V$ α - voltage assignment in F^+ : $\alpha(\sigma_r) = r$ and $\alpha(r, s) = rs$ for all $r, s \in F^{\times}$

 Δ_q^* - dipole with q edges e_x from u to $v, x \in F = GF(q), q \equiv 1 \mod 4$, and with (q-1)/4 loops at both u, v

 α in $F^+ \times F^+$, $\alpha(e_x) = (x, x^2)$; loops at u, v receive $(0, \xi^{2i})$ and $(0, \xi^{2i+1})$ The lift $(\Delta_q^*)^{\alpha}$ gives $vt(d, 2) \ge \frac{8}{9}(d + \frac{1}{2})^2$ for d = (3q - 1)/2. Šiagiová 2001; McKay, Miller, Š 1998

 Γ - a complete graph, $V = F^{\times}$ for even q, a semiedge σ_r at every $r \in V$ α - voltage assignment in F^+ : $\alpha(\sigma_r) = r$ and $\alpha(r, s) = rs$ for all $r, s \in F^{\times}$ The lift Γ^{α} of degree q and order $q(q-1) \approx d^2$ just 'narrowly fails' to have diameter two...

 Δ_q^* - dipole with q edges e_x from u to $v, x \in F = GF(q), q \equiv 1 \mod 4$, and with (q-1)/4 loops at both u, v

 α in $F^+ \times F^+$, $\alpha(e_x) = (x, x^2)$; loops at u, v receive $(0, \xi^{2i})$ and $(0, \xi^{2i+1})$ The lift $(\Delta_q^*)^{\alpha}$ gives $vt(d, 2) \ge \frac{8}{9}(d + \frac{1}{2})^2$ for d = (3q - 1)/2. Šiagiová 2001; McKay, Miller, Š 1998

 Γ - a complete graph, $V = F^{\times}$ for even q, a semiedge σ_r at every $r \in V$ α - voltage assignment in F^+ : $\alpha(\sigma_r) = r$ and $\alpha(r, s) = rs$ for all $r, s \in F^{\times}$ The lift Γ^{α} of degree q and order $q(q-1) \approx d^2$ just 'narrowly fails' to have diameter two... can be fixed by increasing the degree by $O(\sqrt{q})$

 Δ_q^* - dipole with q edges e_x from u to $v, x \in F = GF(q), q \equiv 1 \mod 4$, and with (q-1)/4 loops at both u, v

 α in $F^+ \times F^+$, $\alpha(e_x) = (x, x^2)$; loops at u, v receive $(0, \xi^{2i})$ and $(0, \xi^{2i+1})$ The lift $(\Delta_q^*)^{\alpha}$ gives $vt(d, 2) \ge \frac{8}{9}(d + \frac{1}{2})^2$ for d = (3q - 1)/2. Šiagiová 2001; McKay, Miller, Š 1998

 Γ - a complete graph, $V = F^{\times}$ for even q, a semiedge σ_r at every $r \in V$ α - voltage assignment in F^+ : $\alpha(\sigma_r) = r$ and $\alpha(r, s) = rs$ for all $r, s \in F^{\times}$ The lift Γ^{α} of degree q and order $q(q-1) \approx d^2$ just 'narrowly fails' to have diameter two... can be fixed by increasing the degree by $O(\sqrt{q})$ If done carefully, this results in Cayley graphs of order $d^2 - o(d^2)$ for $d = q + O(\sqrt{q})$, q even.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 Δ_q^* - dipole with q edges e_x from u to $v, x \in F = GF(q), q \equiv 1 \mod 4$, and with (q-1)/4 loops at both u, v

 α in $F^+ \times F^+$, $\alpha(e_x) = (x, x^2)$; loops at u, v receive $(0, \xi^{2i})$ and $(0, \xi^{2i+1})$ The lift $(\Delta_q^*)^{\alpha}$ gives $vt(d, 2) \ge \frac{8}{9}(d + \frac{1}{2})^2$ for d = (3q - 1)/2. Šiagiová 2001; McKay, Miller, Š 1998

 Γ - a complete graph, $V = F^{\times}$ for even q, a semiedge σ_r at every $r \in V$ α - voltage assignment in F^+ : $\alpha(\sigma_r) = r$ and $\alpha(r, s) = rs$ for all $r, s \in F^{\times}$ The lift Γ^{α} of degree q and order $q(q-1) \approx d^2$ just 'narrowly fails' to have diameter two... can be fixed by increasing the degree by $O(\sqrt{q})$ If done carefully, this results in Cayley graphs of order $d^2 - o(d^2)$ for $d = q + O(\sqrt{q})$, q even. Since $M(d, 2) = d^2 + 1$, the Moore bound for diameter two can be 'approached' by Cayley graphs. ŠŠ 2012

Jozef Širáň ATCAGC 2014 Covering constructions of extremal graphs of

э

イロン イヨン イヨン イヨン

E. Loz, Š 2008: Computer search over 'small' base graphs with voltages in $Z_m \rtimes Z_n$ to generate large (Cayley) graphs of given degree and diameter.

くぼう くほう くほう

E. Loz, Š 2008: Computer search over 'small' base graphs with voltages in $Z_m \rtimes Z_n$ to generate large (Cayley) graphs of given degree and diameter. Filling about 1/4 of the table of the largest known Cayley (d, k)-graphs.

・ 同 ト ・ ヨ ト ・ ヨ ト

E. Loz, Š 2008: Computer search over 'small' base graphs with voltages in $Z_m \rtimes Z_n$ to generate large (Cayley) graphs of given degree and diameter. Filling about 1/4 of the table of the largest known Cayley (d, k)-graphs. Fact. Let α be a voltage assignment in a group G on a bouquet B_t such that the lift B_t^{α} has diameter k. Further, let the set of voltages in α be preserved by b automorphisms of G. The probability that a randomly chosen voltage assignment on B_t gives a lift of diameter k is at least $\frac{|Aut(G)|}{b} (|G| - |I(G)| - 1)^{-1}$

イロト 不得下 イヨト イヨト 二日

E. Loz, Š 2008: Computer search over 'small' base graphs with voltages in $Z_m \rtimes Z_n$ to generate large (Cayley) graphs of given degree and diameter. Filling about 1/4 of the table of the largest known Cayley (d, k)-graphs. Fact. Let α be a voltage assignment in a group G on a bouquet B_t such that the lift B_t^{α} has diameter k. Further, let the set of voltages in α be preserved by b automorphisms of G. The probability that a randomly chosen voltage assignment on B_t gives a lift of diameter k is at least $\frac{|Aut(G)|}{b} (|G| - |I(G)| - 1)^{-1}$

If $G = Z_m \rtimes Z_n$ has trivial centre, then $|Aut(G)| = m\phi(m) \dots$ manageable.

イロン イロン イヨン イヨン 三日

E. Loz, Š 2008: Computer search over 'small' base graphs with voltages in $Z_m \rtimes Z_n$ to generate large (Cayley) graphs of given degree and diameter. Filling about 1/4 of the table of the largest known Cayley (d, k)-graphs. Fact. Let α be a voltage assignment in a group G on a bouquet B_t such that the lift B_t^{α} has diameter k. Further, let the set of voltages in α be preserved by b automorphisms of G. The probability that a randomly chosen voltage assignment on B_t gives a lift of diameter k is at least $\frac{|Aut(G)|}{b} (|G| - |I(G)| - 1)^{-1}$

If $G = Z_m \rtimes Z_n$ has trivial centre, then $|Aut(G)| = m\phi(m) \dots$ manageable.

A number of sporadic results for cages - see survey by Exoo, Jajcay.

イロト 不得下 イヨト イヨト 二日

E. Loz, Š 2008: Computer search over 'small' base graphs with voltages in $Z_m \rtimes Z_n$ to generate large (Cayley) graphs of given degree and diameter. Filling about 1/4 of the table of the largest known Cayley (d, k)-graphs. Fact. Let α be a voltage assignment in a group G on a bouquet B_t such that the lift B_t^{α} has diameter k. Further, let the set of voltages in α be preserved by b automorphisms of G. The probability that a randomly chosen voltage assignment on B_t gives a lift of diameter k is at least $\frac{|Aut(G)|}{b} (|G|-|I(G)|-1)^{-1}$

If $G = Z_m \rtimes Z_n$ has trivial centre, then $|Aut(G)| = m\phi(m) \dots$ manageable.

A number of sporadic results for cages - see survey by Exoo, Jajcay.

THANK YOU.

イロト 不得 トイヨト イヨト 二日