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Riemann-Hurwitz formula for graphs

Recall the classical Riemann-Hurwitz formula. Given surjective holomorphic
map ¢ : S — S’ between Riemann surfaces of g and g’, respectively, one
has

2 — 2 = deg(¢)(28' — 2) + S (rp(x) - 1), (1)

x€S

where r,(x) denotes the ramification index of ¢ at x. Let G be a finite
group of conformal automorphisms actingon Sand ¢ : S — S =5/G is
the canonical map induced by the group action. Then the above formula
can be rewritten in the form

2¢ —2=16G|(2g' =2) + Y (I6*| - 1), (2)

XxES

where G* stands for the stabiliser of x in G and |G*| = r,(x) is the order
of a stabiliser.
Remark that S has only finite number of points with non-trivial stabiliser.
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Riemann-Hurwitz formula for graphs

The latter formula has a natural discrete analogue. By a graph we mean a
finite connected multigraph without loops. We define genus of graph X as
g = |E(G)| — |V(G)| + 1, that is as cyclomatic number of G. Let G be a
finite group acting on graph X without fixed and invertible edges. Denote
by g’ genus of the factor graph X’ = X/G. Then by [Baker-Norine, 2009]
we have

g-1=16l(¢ -+ 3. (6% -1), (3)

xeV(X)

where V/(X) is the set of vertices of X.

The aim of present lecture is to extend this result to group actions with
fixed and invertible edges.
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Finite group action on graphs

We say that a group G acts on X if G is a subgroup of Aut(X).

Let G be a finite group acting on the graph X. An edge {x,x} € E(X)
consisting of two semi-edges x and X is said to be invertible (or reversible)
by G if there is an element g € G such that g sends x to X and X to x.

An edge {x,x} € E(X) is said to be fixed by G if there is a non-trivial
element g € G that fixes x and X.

We say that G acts on X without edge reversing if X has no edges
invertible by G. Also, G acts on X without fixed edges if X has no edges
fixed by G.
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Groups acting on a graph without edge reversing

Our first result is the following theorem for groups acting on a graph
without edge reversing.

Theorem 1 (M., 2013)

Let X be a graph of genus g and G is a finite group acting on X without
edge reversing. Denote by g(X/G) genus of the factor graph X/G. Then

g-1=|Gl(e(X/G) -1+ > (I6"|-1)~ > (I6°|-1),

veV(X) ecE(X)

where V(X) is the set of vertices, E(X) is the set of edges of X, G*
stands for the stabiliser of x € V(X)U E(X) in G and |G*| is the order of
a stabiliser.

v
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Proof. Prescribe to every X € V(X/G)U E(X/G) a group G isomorphic
to G*, where x is one of the preimages X under the canonical map

¢ : X = X/G. Since G acts transitively of fibres of ¢ the group Gy is well
defined. One can consider the graph X /G with prescribed groups

Gy, v e V(X/G) and G, e € V(X/G) as a graph of groups in sense of
the Bass-Serre theory. We note that the fibre ¢ ~1(X) of X consists of %
elements. Hence,

|G
|Gy

vxl= Y 1= > (4)

veV(X) vEV(X/G)

and

o= ¥ 1= Y ek )

ecE(X) EcV(X/G)
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By definition of genus from (4) and (5) we obtain

6l G

| Gz

g1 = [EI-V(X0l=

2eV(X/G)

=6l > 1- > 1

BEE(X/G) veEV(X/G)

> Faeh- ¥ Baien

veV(X/G) |Gyl

8€E(X/G) 7eV(X/G)

= |GI(e(X/G)~1)+ Y (-6~ > (1-16"])
ecE(X) veV(X)

= [Gl(g(X/6) -1+ > (I6[-1)~ > (I6°-1).
vev(X) ecE(X)
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Groups acting on a graph with edge reversing

Let now G be a finite group acting on a graph X, possibly with invertible
edges. An edge e € V/(X) with endpoints {u, v} is invertible by G if there
is an element g € G that sends e to e, u to v and v to u. We say the
group G acts on a graph X with inversions (or with edge reversing), if X
has an invertible edge.

In this case, there are three different ways to define the factor graph X/G.

1°. The factor graph with loops (X /G)ioop-
2°. The factor graph with semi-edges (X/G)saii
3°. The factor graph without semi-edges (X/G)free-
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Groups acting on a graph with edge reversing

We have the following result.

Theorem 2 (M., 2013)

Let X be a graph of genus g and G is a finite group acting on X, possibly
with edge reversing. Denote by v = g(X/G)aii genus of the factor graph
(X/G)ta,'/. Then

g-1=[Gly-1)+ Y (16" /-1)- > (6-H+ > 6,

veV(X) ecE(X) e€Env(X)

where V/(X) is the set of vertices, E(X) is the set of edges of X, G* is the
stabiliser of x € V(X)U E(X) in G, and E"(X) is the set of invertibile
edges of X.
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Harmonic group action on graphs

Let finite group G acts harmonically on a graph X, that is it acts free on
the set of drecyed edges of X. Then |G¢| =1 for each e € E(X). We have
the following corollary from the previous theorem (See also Baker-Norine,
2009 and Corry, 2011).

Corollary

Let X be a graph of genus g and G is a finite group acting on X
harmonically, possibly with edge reversing. Denote by g(X/G)fee genus of
the factor graph (X/G)free. Then

g - 1=1Gl(g(X/G)ree — 1)+ Y (1G] = 1)+ |E™(X)],
veV(X)

where V/(X) is the set of vertices, E(X) is the set of edges of X, G is the
stabiliser of v € V(X) in G, and E™(X) is the set of invertible edges of X.
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Harmonic group action on graphs

Recall some classical results for Riemann surface theory. For each g > 2
define

N(g) := max{|Aut(Sg)| : Sgis a compact Riemann surface of genus g}.

Then
8(g +1) < N(g) < 84(g — 1),

and these bounds are sharp in the sense that both the upper and lower
bound are attained for infinitely many values of g. The upper bound was
found by Hurwitz (1893). The lower bound was independently obtained by
R. Accola (1968) and C. Maclachlan (1969).
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Harmonic group action on graphs

Denote by N(g) maximum size of a finite group acting harmonically on a
graph of genus g > 2.

Theorem (Scott Corry, 2011)

For g > 2 we have

4(g—1) < N(g) <6(g — 1)

The upper and lower bound are attained for infinitely many values of g.

Recent paper by Scott Corry (2013) states that maximal graph groups G
with |G| = 6(g — 1) are exactly the finite quotients of the modular group
[ =< x,y|x? = y3 =1 > of size at least 6.
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Oikawa theorem

In 1956 Kotaro Oikawa proved the following theorem.

Theorem (Oikawa, 1956)

Let S; be a closed Riemann surface of genus g and A is a finite subset of
Sg consisting of |A| > 1 elements. Suppose that 2g —2 + |A] > 0 and G is
a group of conformal automorphisms of Sg leaving the set A invariant.
Then

6] < 12(g — 1) + 6/Al.

In the next section we find a discrete version of the Oikawa's. Again, the
key point of the proof is the Riemann-Hurwitz relation.

A. D. Mednykh (Sobolev Inst. Math.) Branched coverings of graphs 20 - 24 January 2014 13 /20



Oikawa's theorem for graphs

Our result for graphs is the following theorem.

Theorem 3 (R. Nedela, A. Mednykh, 2013)

Let X be a graph of genus g and A is a subset of vertices of X consisting
of |A| > 1 elements. Suppose that g — 1+ |A| > 0 and G is a finite group
acting on X harmonically and leaving the set A invariant. Then

1G] <2(g —1) +2|A].

v

The upper bound is sharp and is attained for arbitrary large values of g and
|A|. So, at least infinitely many often.
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Two Arakawa's theorems

Now our aim is to find discrete versions of two Arakawa's theorems (2000).

The first one states that if G be a finite group of automorphisms of a
compact Riemann surface X of genus g > 2 and A and B are two disjoint
G-invariant subsets of X of the orders |A| > |B| > 1 then

|G| <8(g —1)+|A| +4|B|.

The second theorem asserts that if A, B and C are three disjoint the
G-invariant subsets of X with |A| > |B| > |C| > 1 then
G| <2(g — 1) +|A[ +|B[ +[C].
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Two Arakawa's theorems

We present a discrete version of the first Arakawa’s theorem by the
following theorem.

Theorem 4 (R. Nedela, A. Mednykh and |. Mednykh 2013)

Let X be a graph of genus g > 2 and A and B are two disjoint subsets of
vertices of X of the orders |A| > |B| > 1. Suppose that G is a finite group
acting harmonically on X and leaving the sets A and B invariant. Then

3(g —1) +|Al + 3B

<
6] < 5

v

Again, the upper bound is sharp and is attained for arbitrary large values of
g and s.

A. D. Mednykh (Sobolev Inst. Math.) Branched coverings of graphs 20 - 24 January 2014 16 / 20



Two Arakawa's theorems

A discrete version of the second Arakawa's theorem is given by the
following theorem.

Theorem 5 (R. Nedela, A. Mednykh and |. Mednykh, 2013)

Let X be a graph of genus g > 2 and A, B and C are three disjoint subsets
of vertices of X of the orders |A| > |B| > |C| > 1. Suppose that G is a
finite group acting harmonically on X and leaving the sets A, B and C
invariant. Then

g-1+[A+|B[+[C]
> :

1G] <

As in the two previous theorems, the upper bound is sharp and is attained
for arbitrary large values of g and s.
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Wiman's theorem

Klein's quartic curve, x3y + y3z + z3x = 0, admits the group PSL,(7) as
its full group of conformal automorphisms. It is characterised as the curve
of smallest genus realising the upper bound 84(g — 1) on the order of a
group of conformal automorphisms of a curve of genus g > 1, given by

A. Hurwitz in 1893. Around the same time, A. Wiman (1895) characterised
the curves w? = z%6%1 — 1 and w? = 2z(z%6 — 1), g > 1, as the unique
curves of genus g admitting cyclic automorphism groups of the largest and
the second largest possible order (4g + 2 and 4g, respectively). The
modern proof of these and similar results is contained in the paper by K.
Nakagawa (1984).
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Wiman's theorem

The aim of the present section is to find a discrete version of the Wiman
theorem.

Theorem 6 (A. Mednykh and I. Mednykh, 2013)

Let X be a graph of genus g > 2 and Zy is a cyclic group acting
harmonically on X. Then N < 2g + 2. The upper bound N =2g + 2 is
attained for any even g. In this case, the signature of orbifold X /Zy is
(0;2,g + 1), that is, X/Zy is a tree with two branch points of order 2 and
g + 1, respectively.

v
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Wiman's theorem

Theorem 7 (A. Mednykh and I. Mednykh, 2013)

Let X be a graph of genus g > 2 and Zy is a cyclic group acting
harmonically on X. Let N < 2g + 2 then N < 2g. The upper bound
N = 2g is attained only in the following cases:

(i) N=2g and X/Zy is an orbifold of the signature (0;2,2g),g > 2;
(i) N =12 and X/Zy is an orbifold of the signature (0;3,4), g = 6.

Also, if N < 2g then N < 2g — 1. The upper bound N =2g — 1 is
attained only in two cases:

(i) N =3 and X/Zy is an orbifold of the signature (0;3,3), g = 2;
(iv) N =15 and X/Zy is an orbifold of the signature (0; 3,5), g = 8.
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