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Regular covering projection of connected graphs

A surjective mapping p : X̃ → X of connected graphs s.t.
fibers p−1(v) and p−1(a) = orbits of a semi-regular subgroup CTp

Construction/reconstruction
by a voltage Cayley assignment ζ : A(X )→ Γ ∼= CTp
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Motivation in AGT: Studying symmetries of graphs

Lifting automorphisms along regular covering projections

X̃
g̃−−−−→ X̃

p

y yp

X
g−−−−→ X .

If G ≤ AutX lifts, then we call the projection G -admissible.

Applications

Construction of infinite families, compiling lists,
and classification of graphs with interesting symmetry properties.
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Biggs, Algebraic Graph Theory, 1972

Thm.
Let p : X̃ → X be a regular covering given in terms of Cayley voltages,

ζ : A(X )→ Γ,

and let G ≤ AutX . Suppose that the action of G on arcs is compatible
with the assignment of voltages, that is, for each g ∈ G there exists an
automorphisms g# ∈ AutΓ such that

a
g−−−−→ g(a)

ζ

y yζ
ζa

g#

−−−−→ ζg(a).

where #: g 7→ g# is a homomorphism G → AutΓ. Then G lifts along p
as a split extension

G̃ ∼= Γ o# G .
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Biggs’ compatibility condition, revised

Choose a base vertex b ∈ X , and let ḡ be the unique lift of g ∈ AutX
that maps the vertex in fibb labelled by 1 to a vertex labelled by 1. Set

Ḡ = {ḡ | g ∈ G}

Biggs’ compatibility condition implies that Ḡ preserves all vertices in X̃
that are labelled by 1. So Ḡ is a group, in fact, a complement to CTp,
and

G̃ = CTp o Ḡ .

Different complements may have different actions. Biggs’ complement
may not exists even if the extension is split.

Consider p : Q3 → K4

A4 lifts as ZZ2 × A4. No complement is transitive
S4 lifts as ZZ2 × S4. There are intransitive and transitive complements

Consider p : Dodecahedron→ Petersen
A5 lifts to ZZ2 × A5. The unique copy of A5 is transitive
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Split extensions with sectional complements over Ω

Some complement Ḡ to CTp has an invariant section Ω̃
over a G -invariant subset Ω ⊂ V (X )

Special cases

Ω = V (X )
Biggs, Algebraic Graph Theory, 1972

Ω = {b}
Lifting the stabilizer Gb ≤ AutX

Always lifts as CTp o G̃b̃, where b̃ ∈ fibb
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Some complement Ḡ to CTp has an invariant section Ω̃
over a G -invariant subset Ω ⊂ V (X )

Special cases

Ω = V (X )
Biggs, Algebraic Graph Theory, 1972

Ω = {b}
Lifting the stabilizer Gb ≤ AutX

Always lifts as CTp o G̃b̃, where b̃ ∈ fibb

6 / 11



Recognition in terms of voltages

consider p : C6 → C3

ZZ3 lifts as ZZ2 × ZZ3

Thm. (M, Nedela, Škoviera, 2000)
G lifts along a regular covering projection p : X̃ → X as a split extension
with a sectional complement over a G -invariant set Ω if and only if one
of the two equivalent condition hold:

1 The covering can be reconstructed by Cayley voltages ζ : X → Γ
that are (1,G )-invariant on Ω:

ζW = 1⇒ ζgW = 1, for all W : Ω→ Ω.

2 There is an automorphism g ]Ω : Γ→ Γ

g ]Ω : ζW 7→ ζgW , W : Ω→ Ω

Note.
Finding the right voltage assignment is difficult ! However, for abelian
covers there is an efficient algorithm.
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Abelian covers: Finding a sectional complement

Adapting the algorithm for finding an orbit

Thm.

A potential complement 〈ḡ1, ḡ2, . . . ḡn〉 with an invariant section is
uniquely determined by initial parameters ḡi (b, 0) = (gib, ti ).

At the induction step Ω̄ is potentially a part of an invariant section,
and the ‘value’ of x in (v , x) ∈ Ω̄ is computed in terms of unknown
variables constructed so far.

We obtain a system of equations for the parameters ti .

Solution gives the required complement.

Note.
Computations can be carried out over ZZ.
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Finding all covers with sectional complements over Ω

Define
ConeX (Ω) = X + ∗, where ∗ adjacent to Ω

view G acting as a stabilzer of ∗

Thm. Let G lift along p : Y → ConeX (Ω). If Z = Y \ fib∗ is connected,
then G̃ along pZ : Z → X splits with an invariant section over Ω. Also,
any X̃ → X s.t. G̃ splits with an invariant section over Ω arises in this
way.

Note.
We can explicitly find all ZZp-elementary abelian regular coverings along
which G lifts in this manner. The problem is reduced to finding invariant
subspaces of matrix group linearly representing the action of G on the
first homology group H1(X ,ZZp).
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Work of Akshay Venkatesh

Thm.
Let p : X̃ → X be an abelian G -admissible regular covering projection. If
|CTp| is co-prime to the number of spanning trees in X , then G lifts as a
sectional split extension over V (X ).
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Thank you!
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