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Isospectral surfaces and graphs

Peter Buser (1992) posed the following interesting problem: are two
isospectral Riemann surfaces of genus two isometric? Up to our knowledge
the problem is still open but, probably, can be solved positively. The aim of
this paper is to give a positive solution of this problem for graphs of genus
two. Because of the close link between Riemann surfaces and graphs we
hope that our result will be helpful to make a progress in solution of the
Buser problem.
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Laplace operator on graphs

In this report graphs are supposed to be unoriented, but they may have
loops and multiple edges. Denote by V (G ) and E (G ) the set of vertices
and edges of a graph G respectively. For each u, v ∈ V (G ), we set auv to
be equal to the number of edges between u and v .
The matrix A = A(G ) = [auv ]u,v∈V (G), is called the adjacency matrix of
the graph G . Let d(v) denote the valency of v ∈ V (G ), d(v) =

∑
u auv ,

and let D = D(G ) be the diagonal matrix indexed by V (G ) and with
dvv = d(v).
The matrix L = L(G ) = D(G )− A(G ) is called the Laplacian matrix of G .
Throughout the paper we shall denote by µ(G , x) the characteristic
polynomial of L(G ). For brevity, we will call µ(G , x) the Laplacian
polynomial of G .
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Laplace operator on graphs

The roots of µ(G , x) will be called the Laplacian eigenvalues (or sometimes
just eigenvalues) of G . They will be denoted by

λ1(G ) ≤ λ2(G ) ≤ . . . ≤ λn(G ), (n = |V (G )|),

always enumerated in increasing order and repeated according to their
multiplicity. Recall that for connected graph G we always have λ1(G ) = 0
and λ2(G ) > 0.
Two graphs G and H are called Laplacian isospectral (or just isospectral) if
their Laplacian polynomials coincide µ(G , x) = µ(H, x).
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Genus of graphs

We define genus of graph G as

g = |E (G )| − |V (G )|+ 1.

In graph theory, the term “genus” is traditionally used for a different
concept, namely, the smallest genus of any surface in which the graph can
be embedded, and the integer g = g(G ) is called the cyclomatic or the
Betti number of G . We call g the genus of G in order to highlight the
analogy with Riemann surfaces.
A bridge is an edge of a graph G whose deletion increases the number of
connected components. A graph is said to be bridgeless if it contains no
bridges.
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Laplacian polynomial

A. K. Kel’mans (1967) gave a combinatorial interpretation to all the
coefficients of µ(G , x) in terms of the numbers of certain spanning trees of
the graph. We present the result in the following form.

Theorem

If µ(G , x) = xn − c1x
n−1 + . . .+ (−1)icix

n−i + . . .+ (−1)n−1cn−1x then

ci =
∑

S⊂V (G), |S|=n−i

T (GS),

where T (H) is the number of spanning trees of H, and GS is obtained from
graph G by identifying all points of S to a single point.
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Theta graphs

Let u and v are two (not necessary distinct) vertices. Denote by Θ(k , l ,m)
the graph consisting of three internally disjoint paths joining u to v with
lengths k , l ,m ≥ 0 (see Fig. 1). We set
σ1 = σ1(k, l ,m) = k + l + m, σ2 = σ1(k, l ,m) = k l + l m + k m, and
σ3 = σ1(k, l ,m) = k l m.
It is easy to see that two graphs Θ(k, l ,m) and Θ(k ′, l ′,m′) are isomorphic
if and only if the unordered triples {k , l ,m} and {k ′, l ′,m′} coincide.
We start with the following lemma.

Lemma 1
Let G be an arbitrary bridgeless graph of genus two. Then G is isomorphic
to Θ(k , l ,m) for some k , l ,m with σ2 = k l + l m + k m > 0.
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Theta graphs

Fig.1. Theta graph Θ(k , l ,m).
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The main result

The main result of the presentaion is the following theorem.

Theorem
Two genus two bridgeless graphs are Laplacian isospectral if and only if
they are isomorphic.

The proof of the theorem is based on the following three lemmas.
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Lemma 2

Lemma 2
Let G = Θ(k, l ,m) be a theta graph and

µ(G , x) = xn − c1x
n−1 + . . .+ (−1)n−1cn−1x

is its Laplacian polynomial. Then n = k + l + m− 1, c1 = 2(k + l + m) and
cn−1 = (k l + l m + k m)(k + l + m − 1).

Proof. The number of vertices, edges and spanning trees of graph G are
given by

|V (G )| = k + l + m − 1, |E (G )| = k + l + m, T (G ) = k l + l m + k m.

Then by the Kel’mans theorem we have
n = |V (G )| = k + l + m − 1, c1 = 2|E (G )| = 2(k + l + m) and
cn−1 = |V (G )| · T (G ) = (k l + l m + k m)(k + l + m − 1).
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Lemma 3

Lemma 3
Let G = Θ(k, l ,m) be a theta graph and
µ(G , x) = xn − c1x

n−1 + . . .+ (−1)n−1cn−1x is its Laplacian polynomial.
Then

cn−2 = A(σ1, σ2) + B(σ1, σ2)σ3

where A(s, t) = (4t − 3st − 2s2t + s3t + 4t2 − st2)/12, B(s, t) =
(3− 4s + s2 − 3t)/12,
σ1 = k + l + m, σ2 = k l + l m + k m, and σ3 = k l m.

By the Kelmans theorem we have

cn−2 =
∑

S⊂V , |S |=2

T (XS),

where XS runs through all graphs obtained from G = Θ(k , l ,m) by gluing
two vertices. There are exactly four types of such graphs shown on Fig.2.
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Lemma 3

Fig. 2. The graphs obtained from Θ(k , l ,m) by gluing two vertices
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Lemma 3

Type G1. Glue two 3-valent vertices of graph G . As a result we obtain the
graph G1 shown on Fig. 2. The number of spanning trees of this graph is
T1 = T (Ck) · T (Cl) · T (Cm) = k l m.

Type G2. Glue one 3-valent and one 2-valent vertices of graph G . For
given i , 1 ≤ i ≤ k − 1 we have T (G2) = iσ2(k − i , l , m). We set

F (k , l , m) =
k−1∑
i=1

iσ2(k − i , l , m).

Then the total number of spanning trees for graphs of type G2 is

T2 = 2(F (k , l , m) + F (l , m, k) + F (m, k, l)).

In a similar way we calculate the numbers T3 and T4. Finally,

cn−2 = T1 + T2 + T3 + T4 = A(σ1, σ2) + B(σ1, σ2)σ3.
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Lemma 4

The proof of the following lemma is based on similar arguments.

Lemma 4

Let G = Θ(k, l ,m) be a theta graph and
µ(G , x) = xn − c1x

n−1 + . . .+ (−1)n−1cn−1x is its Laplacian polynomial.
Then

cn−3 = C (σ1, σ2) + D(σ1, σ2)σ3 + E (σ1, σ2)σ23,

where
C (s, t) = (−34t + 21st + 25s2t − 10s3t − 3s4t + s5t − 50t2 + 10st2

+ 12s2t2 − 2s3t2 − 16t3 + st3)/360,
D(s, t) = (−45 + 50s + 5s2 − 12s3 + 2s4 + 24st − 9s2t + 15t2)/360,
E (s, t) = −3(−8 + 3s)/360.

One can consider the six cases shown on the Fig. 3.

A. Mednykh and I. Mednykh (NSU) Isospectral genus two graphs 20 - 24 January 2014 14 / 19



Lemma 4

Fig. 3. The graphs obtained from Θ(k , l ,m) by gluing three vertices
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Proof of the Main Theorem

Let G and G ′ be two bridgeless graphs of genus two. Then by Lemma 1 for
suitable {k , l ,m} and {k ′, l ′,m′} we have

G = Θ(k, l ,m) and G ′ = Θ(k ′, l ′,m′)

Denote by µ(G , x) = xn − c1x
n−1 + . . .+ (−1)n−1cn−1x and

µ(G ′, x) = xn
′ − c1x

n′−1 + . . .+ (−1)n
′−1cn′−1x their Laplacian

polynomials.
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Proof of the Main Theorem

Suppose that the graphs G and G ′ are isospectral. Then
n′ = n, c ′1 = c1, . . . , c

′
n−1 = cn−1. By Lemma 2 we obtain

2σ1 = 2σ′1 and σ2(σ1 − 1) = σ′2(σ′1 − 1).

Since both graphs are of genus 2 we have σ1 > 1 and σ′1 > 1. Then the
obtained system of equations gives σ1 = σ′1 and σ2 = σ′2. The theorem will
be proved if we show that σ3 = σ′3. We will do this in two steps.
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Proof of the Main Theorem

By Lemma 3
cn−2 = A(σ1, σ2) + B(σ1, σ2)σ3,

where A(s, t) = (4t − 3st − 2s2t + s3t + 4t2 − st2)/12 and
B(s, t) = (3− 4s + s2 − 3t)/12.

Step 1. B(σ1, σ2) 6= 0. Since c ′n−2 = cn−2, σ1 = σ′1 and σ2 = σ′2 we obtain

B(σ1, σ2)σ′3 = B(σ1, σ2)σ3.

Hence σ3 = σ′3 and the theorem is proved.
Step 2. Case B(σ1, σ2) = 0 is covered by Lemma 4 and some elementary
number theoretical arguments.
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Final remarks

The isospectral property does not hold for graphs with bridges and for
graphs of genus g = 3.

Fig. 4. Genus 2 graphs with the same spectrum. The second has a bridge.

Fig. 5. Two nonisomorphic isospectral graphs of genus 3.
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