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Laplacian matrix

The Laplacian matrix of a graph and its eigenvalues can be used in several
areas of mathematical research and have a physical interpretation in
various physical and chemical theories. The related matrix - the adjacency
matrix of a graph and its eigenvalues were much more investigated in the
past than the Laplacian matrix. In the same time, the Laplacian spectrum
is much more natural and more important than the adjacency matrix
spectrum because of it numerous application in mathematical physics,
chemistry and financial mathematics.

Since the classical paper by Mark Kac “Can one hear the shape of a
drum?” (1966), the question of what geometric properties of a manifold
are determined by its Laplace operator has inspired many intriguing
results. See papers by S. Wolpert (1979), P. Buser (1986), R. Brooks
(1987), R. Isangulov (2000) for Riemann surfaces and survey by by
E.R.van Dam and W.H.Haemers (2003) for graphs.
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Laplacian of Graphs.

Laplacian matrix. Laplacian spectrum

The graphs under consideration are supposed to be unoriented and finite.
They may have loops, multiple edges and to be disconnected.
Let auv be the number of edges between two given vertices u and v of G .
The matrix A = A(G ) = [auv ]u,v∈V (G), is called the adjacency matrix of
the graph G .
Let d(v) denote the degree of v ∈ V (G ), d(v) =

∑
u auv , and let

D = D(G ) be the diagonal matrix indexed by V (G ) and with dvv = d(v).
The matrix L = L(G ) = D(G )− A(G ) is called the Laplacian matrix of G .
It should be noted that loops have no influence on L(G ). The matrix L(G )
is sometimes called the Kirchhoff matrix of G .
It should be mentioned here that the rows and columns of graph matrices
are indexed by the vertices of the graph, their order being unimportant.
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Laplacian for Graphs

Let G be a given graph. Orient its edges arbitrarily, i.e. for each e ∈ E (G )
choose one of its ends as the initial vertex, and name the other end the
terminal vertex. The oriented incidence matrix of G with respect to the
given orientation is the |V | × |E | matrix C = {cve} with entries

cve =


+1, if v is the terminal vertex of e,

−1, if v is the initial vertex of e,

0, if v and e are not incident.

It is well known that L(G ) = C C t independently of the orientation given
to the edges of G . Since

(L(G )x , x) = (C C tx , x) = (C tx , C tx)

we have
(L(G )x , x) =

∑
v u∈E(G)

avu(xv − xu)2.
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Laplacian for Graphs.

Laplacian polynomial and Laplacian spectrum

We denote by µ(G , x) the characteristic polynomial of L(G ). We will call
it the Laplacian polynomial. Its roots will be called the Laplacian
eigenvalues (or sometimes just eigenvalues) of G . They will be denoted by
λ1(G ) ≤ λ2(G ) ≤ . . . ≤ λn(G ), (n = |V (G )|), always enumerated in
increasing order and repeated according to their multiplicity.

We note that λ1 is always equal to 0.
Graph G is connected if and only if λ2 > 0.

If G consists of k components then

λ1(G ) = λ2(G ) = . . . = λk(G ) = 0 and λk+1(G ) > 0.
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Laplacian for Graphs.

We summarise the above results in the following theorem.

Theorem

Let G be a graph. Then:

(a) L(G ) has only real eigenvalues,

(b) L(G ) is positive semidefinite,

(c) its smallest eigenvalue is λ1 = 0 and a corresponding eigenvector is
(1, 1, . . . , 1)t . The multiplicity of 0 as an eigenvalue of L(G ) is equal
to the number of components of G .
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Laplacian for Graphs.

Many published works relate the Laplacian eigenvalues of graphs with the
eigenvalues of graphs obtained by means of some operations on the graphs
we start with. The first result is obvious but very useful.

Theorem

Let G be the disjoint union of graphs G1,G2, . . . ,Gk . Then

µ(G , x) =
k∏

i=1

µ(Gi , x).
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Laplacian for Graphs.

The complement of a graph G is a graph G on the same vertices such
that two distinct vertices of G are adjacent if and only if they are not
adjacent in G .
The next two results were first observed by A. K. Kelmans.

Theorem (Kelmans, 1966)

If G denotes the complement of the graph G then

µ(G , x) = (−1)n−1
x

n − x
µ(G , n − x)

and so the eigenvalues of G are λ1(G ) = 0, and

λi+1(G ) = n − λn−i+1(G ), i = 1, 2, . . . , n − 1.

Mednykh A. D. (Sobolev Institute of Math) Laplacian for Graphs 20 - 24 January 2014 8 / 18



Laplacian for Graphs.

As a corollary from the previous result one can get the following beautiful
theorem.

Theorem (Kel’mans, 1965)

Let X1 ∗X2 denote the join of X1 and X2, i.e. the graph obtained from the
disjoint union of X1 and X2 by adding all possible edges
uv , u ∈ V (X1), v ∈ V (X2). Then

µ(X1 ∗ X2, x) =
x(x − n1 − n2)

(x − n1)(x − n2)
µ(X1, x − n2)µ(X2, x − n1).

where n1 and n2 are orders of X1 and X2, respectively and µ(X , x) is the
characteristic polynomial of the Laplacian matrix of X .

Mednykh A. D. (Sobolev Institute of Math) Laplacian for Graphs 20 - 24 January 2014 9 / 18



Laplacian for Graphs.

Let G be a simple graph (without multiple edges). The line graph L(G ) of
G is the graph whose vertices correspond to the edges of G with two
vertices of L(G ) being adjacent if and only if the corresponding edges in G
have a vertex in common. The subdivision graph S(G ) of G is obtained
from G by inserting, into each edge of G , a new vertex of degree 2. The
total graph T (G ) of G has its vertex set equal to the union of vertices and
edges of G , and two of them being adjacent if and only if they are incident
or adjacent in G .
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Laplacian for Graphs.

Theorem (Kel’mams, 1967)

Let G be a d-regular simple graph with m edges and n vertices. Then

(a) µ(L(G ), x) = (x − 2d)m−nµ(G , x),

(b) µ(S(G ), x) = (−1)m(2− x)m−nµ(G , x(d + 2− x)),

(c) µ(T (G ), x) = (−1)m(d + 1− x)n(2d + 2− x)m−nµ(G , x(d+2−x)
d+1−x ).
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Laplacian for Graphs.

The Cartesian product G × H (simetimes G�H) of graphs G and H is a
graph such that the vertex set of G × H is the Cartesian product
V (G )× V (H); and any two vertices (u, u′) and (v , v ′) are adjacent in
G × H if and only if either u = v and u′ is adjacent with v ′ in H, or
u′ = v ′ and u is adjacent with v in G .

Examples :

(a) The Cartesian product of two edges is a cycle on four vertices:
K2 × K2 = C4.

(b) The Cartesian product of K2 and a path graph is a ladder graph.

(c) The Cartesian product of two path graphs is a grid graph.

(d) The Cartesian product of two hypercube graphs is another hypercube:
Qi × Qj = Qi+j .

(e) The graph of vertices and edges of an n-prism is the Cartesian
product graph K2 × Cn.
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Laplacian for Graphs.

Theorem (M. Fiedler (1973))

The Laplacian eigenvalues of the Cartesian product X1 × X2 of graphs X1

and X2 are equal to all the possible sums of eigenvalues of the two factors:

λi (X1) + λj(X2), i = 1, . . . , |V (X1)|, j = 1, . . . , |V (X2)|.

Using this theorem we can easily determine the spectrum of “lattice”
graphs. The m × n lattice graph is just the Cartesian product of paths,
Pm × Pn. Below we will show that the spectrum of path-graph Pk is

`
(k)
i = 4 sin2 πi

2k
, i = 0, 1, . . . , k − 1.

So Pm × Pn has eigenvalues

λi , j = `
(m)
i + `

(n)
j = 4 sin2 πi

2m
+4 sin2 πj

2n
, i = 0, 1, . . . ,m−1, j = 0, 1, . . . , n−1.
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Laplacian for Graphs.

Circulant matrices
Fix a positive integer n ≥ 2 and let v = (v0, v1, . . . , vn−1) be a row vector
in Cn. Define the shift operator T : Cn → Cn by

T (v0, v1, . . . , vn−1) = (vn−1, v0, . . . , vn−2).

The circulant matrix associated to v is the n × n matrix whose rows are
given by iteration of the shift operator acting on v , that is to say the k-th
row is given by T k−1v , k = 1, . . . , n. Such a matrix will be denoted by

V = circ{v} = circ{v0, v1, . . . , vn−1}.

The following theorem shows how one can calculate eigenvalues and
eigenvectors of V .
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Laplacian for Graphs.

Theorem (Eigenvalues of circulant matrix)

Let v = (v0, v1, . . . , vn−1) be a row vector in Cn, and V = circ{v}. If ε is
primitive n−th root of unity, then

det V = det


v0 v1 . . . vn−2 vn−1

vn−1 v0 . . . vn−3 vn−2
...

...
. . .

...
...

v2 v3 . . . v0 v1
v1 v2 . . . vn−1 v0

 =
n−1∏
l=0

(
n−1∑
j=0

εj`vj).

Corollary

Eigenvalues of circulant matrix V is given by the formulae

λ` =
n−1∑
j=0

εj`vj , ` = 0, . . . , n − 1.
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Laplacian for Graphs.

Proof. We view the matrix V as a a self map (linear operator) of Cn. For
each integer `, 0 ≤ ` ≤ n− 1, let x` ∈ Cn be a transpose of the row vector
(1, ε`, ε2`, . . . , ε(n−1)`) and

λ` = v0 + ε`v1 + . . .+ ε(n−1)`vn−1.

A quite simple calculation shows that


v0 v1 . . . vn−2 vn−1

vn−1 v0 . . . vn−3 vn−2
...

...
. . .

...
...

v2 v3 . . . v0 v1
v1 v2 . . . vn−1 v0




1
ε`

...

ε(n−2)`

ε(n−1)`

 = λ`


1
ε`

...

ε(n−2)`

ε(n−1)`

 .

Thus λ` is an eigenvalue of V with eigenvector x`. Since
{x0, x1, . . . , xn−1} is linearly independent set, we conclude that

det V =
n−1∏
`=0

λ`.
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Laplacian for Graphs.

Circulant graphs

Circulant graphs can be described in several equivalent ways:

(a) The graph has an adjacency matrix that is a circulant matrix.

(b) The automorphism group of the graph includes a cyclic subgroup that
acts transitively on the graph’s vertices.

(c) The n vertices of the graph can be numbered from 0 to n − 1 in such
a way that, if some two vertices numbered x and y are adjacent, then
every two vertices numbered z and (z − x + y) mod n are adjacent.

(d) The graph can be drawn (possibly with crossings) so that its vertices
lie on the corners of a regular polygon, and every rotational symmetry
of the polygon is also a symmetry of the drawing.

(e) The graph is a Cayley graph of a cyclic group.
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Laplacian for Graphs.

Examples

(a) The circulant graph Cn(s1, . . . , sk) with jumps s1, . . . , sk is defined as
the graph with n vertices labeled 0, 1, . . . , n− 1 where each vertex i is
adjacent to 2k vertices i ± s1, . . . , i ± sk mod n.

(b) n-cycle graph Cn = Cn(1).

(c) n-antiprism graph C2n(1, 2).

(d) n-prism graph Yn = C2n(2, n), n odd.

(e) The Moebius ladder graph Mn = C2n(1, n).

(f) The complete graph Kn = Cn(1, 2, · · · , [n2 ]).

(g) The complete bipartite graph Kn,n = Cn(1, 3, · · · , 2[n2 ] + 1).
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