Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree

Steven Chaplick ¹, Jiří Fiala ¹, Pim van 't Hof ², Daniël Paulusma ³, Marek Tesař ¹

Charles University, Czech Republic
 University of Bergen, Norway
 Durham University, UK

Graph homomorphisms

A mapping $f: V_G \rightarrow V_H$ is a graph homomorphism if

$$(u,v) \in E_G \Rightarrow (f(u),f(v)) \in E_H$$

Locally bijective homomorphisms

A homomorphism $f: V_G \rightarrow V_H$ is locally bijective if

f acts bijectively between N(u) and N(f(u)) for all $u \in V_G$

Locally injective homomorphisms

A homomorphism $f: V_G \rightarrow V_H$ is locally injective if

f acts injectively between N(u) and N(f(u)) for all $u \in V_G$

Locally surjective homomorphisms

A homomorphism $f: V_G \rightarrow V_H$ is locally surjective if

f acts surjectively between N(u) and N(f(u)) for all $u \in V_G$

Summary

Decision problems

Instance: Graphs G and H.

Problem: Query: Does *G* allow:

Hom — a homomorphism to H?

LBHOM — a locally bijective homomorphism to H?

LIHOM — a locally injective homomorphism to *H*?

LSHOM — a locally surjective homomorphism to *H*?

Theorem [Hell, Nešetřil, 1990]

 ${
m HOM}$ is polynomial-time solvable if ${\it H}$ is bipartite, and it is NP-complete otherwise.

Bounding the maximum degree

```
Theorem [Kratochvíl, Křivánek, 1988] LBHOM is NP-complete on input pairs (G, K_4),
```

... G must be cubic in this case

Theorem [Kratochvíl, Proskurowski, Telle 1997, F. 2000] LBHOM is NP-complete on input pairs (G, H), where H is any k-regular graph with $k \ge 3$.

Corollary

LBHOM, LIHOM and LSHOM are NP-complete on input pairs (G, H), where G has maximum degree $k \geq 3$.

Treewidth and pathwidth

A tree decomposition of a graph G is a tree T, whose nodes are subsets of V_G satisfying:

- each edge of G is a subset of some node of T,
- each vertex has connected appearance in the nodes of T.

The width of T is the maximum size of its nodes +1. The treewidth of G is the minimum possible width of its tree decomposition (pathwidth when T is a path).

Bounding the treewidth

Theorem

- (i) LBHOM is NP-complete on input pairs (G, H), where G has pathwidth at most 5 and H has pathwidth at most 3,
- (ii) LSHOM is NP-complete on input pairs (G, H), where G has pathwidth at most 4 and H has pathwidth at most 3,
- (iii) LIHOM is NP-complete on input pairs (G, H), where G has pathwidth at most 2 and H has pathwidth at most 2.

Proof of statement (iii)

Reduce the strongly NP-complete problem 3-PARTITION:

Instance: A multiset $A = \{a_1, a_2, \dots, a_{3m}\}$ and an integer b s.t. $\sum A = mb$, and $\forall a_i : \frac{b}{4} < a_i < \frac{b}{2}$.

Query: Does A have a 3-partition, i.e. a partition into m disjoint triplets A_1, \ldots, A_m , s.t. $\sum A_i = b$ for each A_i ?

Proof of statement (iii)

Reduce the strongly NP-complete problem 3-PARTITION:

Instance: A multiset $A = \{a_1, a_2, \dots, a_{3m}\}$ and an integer b s.t. $\sum A = mb$, and $\forall a_i : \frac{b}{4} < a_i < \frac{b}{2}$.

Query: Does A have a 3-partition, i.e. a partition into m disjoint triplets A_1, \ldots, A_m , s.t. $\sum A_i = b$ for each A_i ?

- (A, b) has a 3-partition if and only if $G \stackrel{!}{\rightarrow} H$.
- G and H have pathwidth 2.

What if we bound the treewidth and the maximum degree?

Bounding the treewidth and the maximum degree

Theorem

 ${
m LBHom}$, ${
m LIHom}$ and ${
m LSHom}$ are polynomially solvable when ${\it G}$ has bounded treewidth and ${\it G}$ or ${\it H}$ has bounded maximum degree.

Proof Idea: Use dynamic programming.

Bounding the treewidth and the maximum degree

Theorem

 ${\rm LBHom}$, ${\rm LIHom}$ and ${\rm LSHom}$ are polynomially solvable when G has bounded treewidth and G or H has bounded maximum degree.

Proof Idea: Use dynamic programming.

Alternative proof for LBHom and LIHom:

Locally bijective and injective homomorphisms can be expressed as homomorphisms between relational structures.

Theorem [Dalmau, Kolaitis, Vardi, 2002]

The existence of a homomorphism between two relational structures A and B can be tested in polynomial time if the treewidth of the Gaifman graph G_A is bounded by a constant.

Here: $G_A \simeq G^2$, which is the graph arising from G by adding an edge between any two vertices at distance 2.

One can show that $tw(G^2) \leq \Delta(G)(tw(G) + 1) - 1$.

Open problems

Recall our Theorem:

- (i) LBHOM is NP-complete on input pairs (G, H), where G has pathwidth at most S and H has pathwidth at most S
- (ii) LSHOM is NP-complete on input pairs (G, H), where G has pathwidth at most A and A has pathwidth at most A
- (iii) LIHOM is NP-complete on input pairs (G, H), where G has pathwidth at most 2 and H has pathwidth at most 2.

Can we reduce the bounds on the pathwidth of G

for LBHOM and LSHOM?

Recall our Theorem:

LBHOM, LIHOM and LSHOM are polynomially solvable when G has bounded treewidth and G or H has bounded maximum degree.

The running time for LSHOM is

$$O\left(|V_G|\left(|V_H|^{\mathsf{tw}(G)+1}2^{\Delta(H)(\mathsf{tw}(G)+1)}\right)^2(\mathsf{tw}(G)+1)\Delta(H)\right).$$

Note that $G \xrightarrow{s} H$ implies that $\Delta(G) \geq \Delta(H)$.

Are LBHom, LSHom and LIHom fixed-parameter tractable when parameterized by $tw(G) + \Delta(G)$, that is, can they be solved in time

$$f(\mathsf{tw}(G), \Delta(G)) \cdot (|V_G| + |V_H|)^{O(1)}$$

for some function f that does not depend on the sizes of G and H?

Specific classes od the guest graph *G*

Guest graph	LВНом	LIHOM	LSHom
Chordal	GI-complete ³	NP-complete	NP-complete ³
Interval	Polynomial ³	NP-complete	open
Proper Interval	Polynomial	NP-complete	Polynomial ³
Complete	Polynomial	NP-complete ³	Polynomial
Tree	Polynomial ²	Polynomial ¹	Polynomial ²

¹ [Chaplick, F., van 't Hof, Paulusma, Tesař, 2013]

² [F., Paulusma, 2008]

³ [Heggernes, van 't Hof, Paulusma, 2010]