Spanning Trees Exercises 2.

Instructor: Mednykh I. A.

Sobolev Institute of Mathematics Novosibirsk State University

Winter School in Harmonic Functions on Graphs and Combinatorial Designs

20 - 24 January, 2014

Spanning tree

A spanning tree T of a connected, undirected graph G is a tree composed of all the vertices and some (or perhaps all) of the edges of G. In other words, a spanning tree of G is a selection of edges of G that form a tree spanning every vertex. That is, every vertex lies in the tree, but no cycles (or loops) are allowed. On the other hand, every bridge of G must belong to T. A spanning tree of a connected graph G can also be defined as a maximal set of edges of G that contains no cycle, or as a minimal set of edges that connect all vertices.

Counting spanning trees

The number t(G) of spanning trees of a connected graph is a well-studied invariant. In some cases, it is easy to calculate t(G) directly. For example, if G is itself a tree, then t(G) = 1, while if G is the cycle graph C_n with n vertices, then t(G) = n. For any graph G, the number t(G) can be calculated using Kirchhoff's matrix-tree theorem.

Here are some known results concerning counting spanning trees of graphs.

- Complete graph K_n : $t(K_n) = n^{n-2}$ (Cayley's formula),
- **2** Complete bipartite graph $K_{n,m}$: $t(K_{n,m}) = m^{n-1}n^{m-1}$,

3 *n*-dimensional cube graph
$$Q_n$$
: $t(Q_n) = 2^{2^n - n - 1} \prod_{k=2}^n k^{\binom{n}{k}}$.

Spanning Trees

Kirchhoff Matrix-Tree Theorem

The celebrated Kirchhoff Matrix-Tree Theorem is the following statement.

Theorem (Kirchhoff (1847))

All cofactors of Laplacian matrix L(G) are equal to t(G).

More convenient form of this result were obtained by A. K. Kel'mans and V. M. Chelnokov.

Theorem (Kel'mans, Chelnokov (1974))

Let $0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ denote the eigenvalues of the Laplace matrix L(X) of a n point graph X. Then

$$t(X) = \frac{1}{n} \prod_{k=2}^{n} \lambda_k.$$

Spanning Trees

A generalisation of the Matrix-Tree-Theorem was obtained by Kelmans (1967) who gave a combinatorial interpretation to all the coefficients of $\mu(X, x)$ in terms of the numbers of certain subforests of the graph. This result has been obtained even in greater generality (for weighted graphs) by Fiedler and Sedláček.

Theorem (Kel'mans (1967))

lf

$$\mu(X,x) = x^{n} - c_{1}x^{n-1} + \ldots + (-1)^{i}c_{i}x^{n-i} + \ldots + (-1)^{n-1}c_{n-1}x^{n-1}$$

then

$$c_i = \sum_{S \subset V, |S|=n-i} t(X_S),$$

where t(H) is the number of spanning trees of H, and X_S is obtained from X by identifying all vertices of S to a single one.

From the last theorem we can derive useful corollary.

Corollary

The degree of Laplacian polynomial $\mu(X, x)$ is equal to n = |V(X)|. Its coefficients c_1 and c_{n-1} are given by the formulas $c_1 = 2|E(X)|$ and $c_{n-1} = |V(X)| \cdot t(X)$.

Hence, the number of vertices |V(X)|, number of edges |E(X)| and the number of spanning trees t(X) are uniquely defined by the Laplacian polynomial.

Exercises

Exercise 2.1.

Prove that the number of spanning trees for the path graph P_n is 1.

Exercise 2.2.

Prove that the number of spanning trees for the cyclic graph C_n is n.

Exercise 2.3.

Prove the Cayley formula for the number of spanning trees for the complete graph K_n : $t(K_n) = n^{n-2}$.

Exercise 2.4.

Prove that the number of spanning trees for the complete bipartite graph $K_{n,m}$ is given by the formula $t(K_{n,m}) = m^{n-1}n^{m-1}$.

Exercise 2.5. Denote by G - e the graph obtained by removing edge e from the graph G. Let $G \setminus e$ be the graph obtained from graph G by contracting edge e. In other words, $G \setminus e$ is obtained by deleting edge e and identifying its ends. Prove the following formula

$$t(G) = t(G - e) + t(G \setminus e).$$

Exercise 2.6. Denote by $G_{s,e}$ the graph resulting from subdivision of an edge *e* of a graph *G*. Then

$$t(G_{s,e}) = t(G \setminus e) + 2t(G - e) = t(G) + t(G - e).$$

Exercise 2.7.

Find the number of spanning trees for the wheel graph $W_n = K_1 * C_n$. **Answer:** If *n* is odd then $t(W_n) = \ell_k^2$, if *n* is even then $t(W_n) = 5f_n^2$, where ℓ_j is *j*-th Lukas number and f_k is *k*-th Fibonacci number. Note:

$$\begin{split} \ell_1 &= 1, \ \ell_2 = 3, \ \ell_{k+2} = \ell_{k+1} + \ell_k, \ k \geq 1. \\ f_1 &= 1, \ f_2 = 1, \ f_{k+2} = f_{k+1} + f_k, \ k \geq 1. \\ f_{2n} &= \ell_n \cdot f_n \text{ and } \ell_n = f_{n-1} + f_{n+1}. \end{split}$$

Exercise 2.8.

Find the number of spanning trees for the fan graph $F_n = K_1 * P_n$. **Answer:** $t(F_n) = f_{2n}$.

Exercise 2.9.

Find the number of spanning trees for the lattice graph $L_{m,n} = K_m \times K_n$. **Answer:** $t(K_m \times K_n) = m^{m-2}n^{n-2}(m+n)^{(m-1)(n-1)}$.

Exercise 2.10.

Prove that the following result by Boesch and Prodinger

$$t(K_m \times C_n) = \frac{n}{m} 2^{m-1} (T_n(1+\frac{m}{2})-1)^{m-1},$$

where $T_n(x) = \cos(n \arccos x)$ is the Chebyshev polynomial of the first kind.

Exercise 2.11.

Prove that the number of spanning trees for the prism $P_2 \times C_n$ is given by the formula

$$t(P_2 \times C_n) = \frac{n}{2}((2+\sqrt{3})^n + (2-\sqrt{3})^n - 2).$$

Exercise 2.12.

Prove that the number of spanning trees for the Moebius ladder graph M_n is given by the formula

$$t(M_n) = \frac{n}{2}((2+\sqrt{3})^n + (2-\sqrt{3})^n + 2).$$

Chebyshev polynomials

The Chebyshev polynomial of the first kind is defined by the formula

 $T_n(x) = \cos(n \arccos x).$

Equivalently,

$$T_n(x) = \frac{(x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n}{2}.$$

Also, $T_n(x)$ satisfies the recursive relation

 $T_0(x) = 1, \ T_1(x) = x, \ T_n(x) = 2x \cdot T_{n-1}(x) - T_{n-2}(x), \ n \ge 2.$

Addendum

Chebyshev polynomials

The Chebyshev polynomial of the second kind is defined by the formula

$$U_n(x) = \frac{\sin((n+1)\arccos x)}{\sin(\arccos x)}$$

Equivalently,

$$U_n(x) = \frac{(x + \sqrt{x^2 - 1})^{n+1} - (x - \sqrt{x^2 - 1})^{n+1}}{2\sqrt{x^2 - 1}}.$$

Also, $U_n(x)$ satisfies the recursive relation

$$U_0(x) = 1, U_1(x) = 2x, U_n(x) = 2x \cdot U_{n-1}(x) - U_{n-2}(x), n \ge 2.$$

We have $U_n(\cos \frac{k\pi}{n+1}) = 0, k = 1, 2, \dots, n$. Hence

$$U_n(x) = 2^n \prod_{k=1}^n (x - \cos \frac{k\pi}{n+1}).$$

Chebyshev polynomials Since

$$U_n(x) = (-1)^n U_n(-x) = 2^n \prod_{k=1}^n (x + \cos \frac{k\pi}{n+1})$$

n

we obtain

$$U_n^2(x) = \prod_{k=1}^n (4x^2 - 4\cos^2\frac{k\pi}{n+1}).$$

Polynomials $T_n(x)$ and $U_{n-1}(x)$ are related by the following identity

$$T_n^2(x) + (x^2 - 1)U_{n-1}^2(x) = 1.$$

э

Chebyshev polynomials

Consider $n \times n$ matrix

$$A_n(x) = \begin{pmatrix} 2x & -1 & 0 & 0 & \dots & 0 & 0 \\ -1 & 2x & -1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 2x & -1 & \dots & 0 & 0 \\ 0 & 0 & -1 & 2x & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2x & -1 \\ 0 & 0 & 0 & 0 & \dots & -1 & 2x \end{pmatrix}$$

Then det $A_n(x) = U_n(x)$.

э

.