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Combinatorial design theory traces its origins to statistical theory of ex-

perimental design but also to recreational mathematics of the 19th century

and to geometry. In the past forty years combinatorial design theory has

developed into a vibrant branch of combinatorics with its own aims, meth-

ods and problems. It has found substantial applications in other branches of

combinatorics, in graph theory, coding theory, theoetical computer science,

statistics, and algebra, among others. The main problems in design theory

are, generally speaking, those of the existence, enumeration and classifica-

tion, structural properties, and applications.

It is not the objective of these notes to give a comprehensive abbreviated

overview of combinatorial design theory but rather to provide an introduc-

tion to developing a solid basic knowledge of problems and methods of com-

binatorial design theory, with an indication of its flavour and breadth, up to

a level that will enable one to approach open research problems. Towards

this objective, most of the needed definitions are provided.

I. BASICS

1. BALANCED INCOMPLETE BLOCK DESIGNS

One of the key notions in design theory, the notion of pairwise balance

(or, more generally, t-wise balance), has its origin in the theory of statistical

designs of experiments. Coupled with the requirement of a certain type

of regularity, it leads to the notion of one of the most common types of

combinatorial designs.
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A balanced incomplete block design (BIBD) with parameters (v, b, r, k, λ)

is an ordered pair (V,B) where V is a finite v-element set of elements or

points, B is a family of k-element subsets of V , called blocks such that every

point is contained in exactly r blocks, and every 2-subset of V is contained

in exactly λ blocks.

In terms of graphs, a BIBD is an edge-disjoint decomposition of the

complete multigraph λKv into k-cliques.

The five parameters v, b, r, k, λ are not independent: simple counting

yields two relations (1) vr = bk, and (2) λ(v − 1) = r(k − 1). BIBDs

are usually written as BIBD(v, k, λ) or (v, k, λ)-BIBD as the remaining two

parameters can be deduced from (1),(2). Since both, r = λ(v−1)
k−1 and b =

λv(v−1)
k(k−1) must be integers, the necessary conditions for the existence of a

BIBD(v, k, λ) are often written as

λ(v − 1) ≡ 0 (mod k − 1), λv(v − 1) ≡ 0 (mod k(k − 1)).

If (V,B) is a (v, k, λ)-BIBD where V = {xi : 1 ≤ i ≤ v} and B = {Bj :

1 ≤ j ≤ b} then the incidence matrix of the BIBD is the v × b matrix

A = (aij) where aij = 1 if xi ∈ Bj and =0 otherwise. The incidence matrix

satisfies AAT = (r−λ)I+λJ where T indicates the transpose, I is the v×v
identity matrix, and J is the v × v matrix of 1’s. In the matrix X = AAT ,

each diagonal element equals r, and each off-diagonal element equals λ.

A BIBD is symmetric if v = b (and r = k).

Example 1. A (7, 3, 1)-BIBD (the ”Fano plane”, i.e. the projective plane

of order 2).

123 145 167 246 257 347 356.

Example 2. A (9, 12, 4, 3, 1)-BIBD (the affine plane of order 3).

123 456 789 147 158 169 248 259 267 349 357 368 .

Example 3. A (15, 7, 3)-BIBD: elements are V = {0, 1, . . . , 14}, blocks are

B0 : 0 1 2 3 4 5 6 B8 : 1 3 7 10 12 14

B1 : 0 1 2 7 8 9 10 B9 : 1 4 5 8 10 11 14

B2 : 0 1 2 11 12 13 14 B10 : 1 4 6 8 9 12 14

B3 : 0 3 4 7 8 11 12 B11 : 2 3 5 8 10 12 13

B4 : 0 3 4 9 10 13 14 B12 : 2 3 6 8 9 11 14

B5 : 0 5 6 7 8 13 14 B13 : 2 4 5 7 9 12 14

B6 : 0 5 6 9 10 11 12 B14 : 2 4 6 7 10 11 13

B7 : 1 3 5 7 9 11 13
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The BIBDs from Examples 1 and 3 are symmetric, the one from Example

2 is not. In a symmetric design, any two blocks have exactly λ elements in

common.

Given a symmetric (v, k, λ)-BIBD with blocks B = {Bi}, fix one of its

blocks, say B0, and obtain the blocks Bi
∗ of its derived design by taking

Bi
∗ = B0∩Bi. The parameters of the derived design in terms of the original

BIBD are

v∗ = k, b∗ = b− 1, r∗ = r − 1, k∗ = λ, λ∗ = λ− 1.

The symmetric design from Example 3 yields a derived design which is

a BIBD(7, 14, 6, 3, 2).

Fixing again a block B0 in a symmetric BIBD, deleting this block and its

elements from all other blocks of the BIBD gives the residual design whose

parameters are v” = v − k, v” = v − 1, r” = r, k” = k − λ, λ” = λ.

The residual design of the symmetric design in Example 3 has parame-

ters v” = 8, b” = 14, r” = 7, k” = 4, λ” = 3.

A further necessary condition for the existence of a BIBD(v, b, r, k, λ) is

given by Fisher’s inequality: b ≥ v. One way to prove this is to evaluate the

determinant of X: detX = (r−λ)v−1(vλ−λ+ r). To see this, subtract the

first column from all others and then add rows 2, 3, . . . , v to the first row;

then all elements above the main diagonal equal 0; on the main diagonal,

the first entry is r+ (v− 1)λ, the rest are r− λ. We must have r > λ since

r = λ would mean that each element is paired with each other whenever it

is contained in a block, thus each block would contain all v elements. Thus

X is nonisngular, A is of rank at most b, X is of rank v but the rank of

the product cannot exceed the rank of its factors, therefore b ≥ v (it follows

thar r ≥ k).

Thus, for example, there cannot exist a (21, 6, 1)-BIBD, since b = 14 <

21 = v even though the arithmetic necessary conditions (1), (2) are satisfied.

Another necessary condition for the existence of symmetric designs is

given by the following.

In a symmetric BIBD, if v is even then k − λ is a square.

Indeed, in a symmetric design b = v, so A is a square matrix, and

(det A)2 = det X = (k − λ)v−1(vλ− λ+ k). Since k(k − 1) = λ(v − 1), we

have vλ − λ + k = k(k − 1) + k = k2. But then the other factor of det X,

namely (k − λ)v−1 must also be a square and since v is even, this means

that k − λ must be a square as well.
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Thus, for example, there cannot exist a symmetric (22, 7, 2)-BIBD (since

k−λ = 5 is not a square) although necessary conditions (1), (2) are satisfied.

But the necessary conditions above taken together are still not suf-

ficient for the existence of BIBDs. The parameter sets (v, b, r, k, λ) =

(22, 33, 12, 8, 4) or (46, 69, 9, 6, 1) or (111, 111, 11, 11, 1) all satisfy the arith-

metic necessary conditions and are not covered by the additional necessary

conditions given above. Nevertheless, in each of these cases it has been

proved by means of a detailed structural analysis combined with a consid-

erable computational power that the corresponding BIBD does not exist.

The quest to obtain (necessary and sufficient) conditions for the existence

of BIBDs is continuing. Currently, the ”smallest” parameter sets for which

the existence of a BIBD is undecided are (51, 85, 10, 6, 1), (61, 122, 12, 6, 1),

(40, 52, 13, 10, 3) and (85, 170, 14, 7, 1). There exist extensive tables of pa-

rameters of ”small” BIBDs (for example, with up to r ≤ 41) that record for

each parameter set whether the design exists, does not exist or its existence

is an open question (together with some additional information including

enumeration results).

A BIBD is resolvable if its blocks can be partitioned into subsets R1, . . . ,

Rr called parallel classes where each Ri consists of pairwise disjoint blocks

whose union equals the set of all elements V . The BIBD(9, 12, 4, 3, 1) in

Example 2 is resolvable.

The BIBD is usually assumed to have k ≥ 3 since a BIBD with k = 2

has a structure of a complete graph (or of a multicomplete graph). However,

a resolvable BIBD with k = 2 and λ = 1 is equivalent to a 1-factorization

of the complete graph, and is well known to exist if and only if the number

of elements (i.e. vertices of the complete graph) is even.

Given two BIBDs (V,B) and (W, C), a mapping α : V → W such that

αV = W and αB = C is an isomorphism; the two BIBDs are isomorphic.

An isomorphism from a design to itself is an automorphism. The set of all

automorphisms of (V,B) forms a group called the full automorphism group

of (V,B). Any of its subgroups is an automorphism group of (V,B).

Exercise 1. Show that any two BIBD(7, 3, 1) are isomorphic.

Exercise 2. Determine the order of the full automorphism group of a

BIBD(7, 3, 1).

Groups and the existence of designs are closely related since often in

showing the existence of a design a method is utilized by which one assumes
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the existence of a design with a specified automorphism group. This allows
one to select a small basic set of blocks (the base) containing representatives
of all orbits of blocks under the group in question. The collection B of all
blocks is then obtained by letting the group act on these base blocks.

For example, a (v, k, λ)-design is cyclic if it admits a cyclic group of
order v as its automorphism group. Alternatively, it is cyclic if it admits
an automorphism permuting the elements in a single cycle of length v.
The elements of a cyclic design are usually taken as elements of Zv, with
α : i→ i+ 1 as its cyclic automorphism.

Given a design (V,B), the element-block incidence graph of (V,B) or
Levi graph of (V,B) is a bipartite graph G(V,B) which has as its vertex set
V ∪ B, and edges joining x ∈ V with B ∈ B exactly when x ∈ B. Two
designs (V,B) and (W, C) are isomorphic if and only if the graphs G(V,B)
and G(W, C) are isomorphic. The automorphism group of a simple design
(V,B) is isomorphic to the automorphism group of the graph G(V,B) (a
design is simple if it contains no repeated blocks).

Exercise 3. Determine the Levi graph of the (7, 3, 1)-BIBD.

Another graph associated with a (v, k, λ)-BIBD is its block intersection
graph (BIG). Its vertices are the blocks of the BIBD, and two blocks B and
B′ are adjacent if B ∩ B′ 6= ∅. More specifically, in the i-block intersection
graph B and B′ are adjacent if |B ∩B′| = i. When λ = 1, BIG is a strongly
regular graph with parameters (v′, k′, λ, µ).

Exercise 4. Given a BIBD(v, b, r, k, 1), determine the parameters
(v′, k′, λ, µ) of its block intersection graph.

An isomorphism invariant is a function I such that I(V,B) = I(W, C)
if (V,B) and (W, C) are isomorphic. An invariant I is complete provided
I(V,B) = I(W, C) if and only if (V,B) and (W, C) are isomorphic. No easily
computable complete isomorphism invariant is known for BIBDs and none
is likely to exist since the isomorphism problem for BIBDs was shown to be
graph-isomorphism complete.

A more general type of balanced designs are t-designs. For an integer
t ≥ 2, a t − (v, k, λ) design is an ordered pair (V,B)) where V is a v-set
of elements, and B is a collection of k-subsets of V called blocks such that
every t-subset of V is contained in exactly λ blocks. A t − (v, k, λ) design
with λ = 1 is a Steiner system S(t, k, v). A Steiner system S(2, 3, v) is a
Steiner triple system, and an S(3, 4, v) is a Steiner quadruple system. Thus
BIBDs are 2-designs, and BIBDs with λ = 1 are Steiner 2-designs. Only
a finite number of Steiner systems S(t, k, v) with t ≥ 4 are known, and
none is known for t ≥ 6. From among the known Steiner systems with
larger t, the most ”famous” are those associated with the five Mathieu
groups M11,M12,M22,M23,M24, namely S(4, 5, 11), S(5, 6, 12), S(3, 6, 22),
S(4, 7, 23), S(5, 8, 24).
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2. Quasigroups and latin squares.

MOLS and orthogonal arrays

A quasigroup is a pair (Q, o) where Q is set and ”o” is a binary operation

on Q such that whenever a, b ∈ Q, there is a unique solution to the equation

a o x = b and to the equation y o a = b. For our purposes, all quasigroups

will be finite, and if |Q| = n, the quasigroup is of order n. A latin square

of order n is an n × n array each cell of which contains exactly one of the

symbols from an n-set (which is usually taken to be {1, 2, . . . , n}) such that

each row and each column of the array contains each of the symbols exactly

once. Thus a quasigroup of order n can be viewed as a latin square of order

n with a headline and a sideline.

A latin square [quasigroup] is idempotent if the cell (i, i) contains the

symbol i for all i [if i o i = i for all i]. A latin square [quasigroup] is

commmutative if cells (i, j) and (j, i) contain the same symbol for all i, j [if

i o j = j o i for all i, j]. An idempotent commutative quasigroup exists for

all odd orders.

A latin square [quasigroup] of even order 2n is half-idempotent if the

cells (i, i) and (n + i, n + i) contain the symbol i for all i, 1 ≤ i ≤ n [if

i o i = i and (n + i) o (n + i) = i for all i, 1 ≤ i ≤ n]. A half-idempotent

commutative latin square exists for all even orders.

Two latin squares A = (aij) and B = (bij) are orthogonal if the n2

ordered pairs (aij , bij) are all distinct. A set of latin squares A1, A2, . . . , Ar
are mutually orthogonal if any two are orthogonal. Such a set is termed

MOLS, or MOLS(n).

Let N(n) be the largest number t such that there exists a set of t

MOLS(n). A first observation is thatN(n) ≤ n−1. Indeed, ifA1, A2, . . . , Ar
is a set of MOLS(n), relabel each of the r squares so that the cell (1, 1) is

occupied by 1; this does not affect the orthogonality. More generally, let

the first row be 1, 2, . . . , n. The entries in the cell (2, 1) in the r squares

must be mututally different, and also distinct from 1.

Theorem 1. Let n be a prime power, i.e. n = pk. Then N(n) = n − 1,

i.e. there exists a set of n− 1 MOLS(n).

Proof. Let n = pk, and let the elements of GF(n) be b1, b2, . . . , bn, with b1
the multiplicative identity, and bn the additive identity. For t = 1, 2, . . . , n−
1, define the n× n array A(t) = (a

(t)
ij ) by a

(t)
ij = (bt × bi) + bj .

Exercise 5. 1. Show that for t = 1, . . . , n− 1, the array A(t) defined above

is a latin square.

2. Show that for t 6= u, the latin squares A(t) and A(u) are orthogonal.
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MacNeish’s Theorem. If there exists a set of r MOLS(m) and a set of

r MOLS(n) then there exists a set of r MOLS(m.n).

Proof. Take the Kronecker product of A(i), B(i) for i = 1, 2, . . . , r where

A(1), . . . , A(r) and B(1), . . . , B(r) are MOLS(m) and MOLS(n), respectively.

Corollary. If n = pα1
1 .pα2

2 , . . . , pαs
s is the prime power decomposition of n

then N(n) ≥ mini(pαi − 1).

To determine the value of N(n) is one of the foremost problems in

combinatorial theory. It is known that N(n) ≥ 2 for all n 6= 2, 6, N(n) ≥ 3

for all n 6= 2, 3, 6 and possibly 10. It is not known at present whether there

exist or not three mutually orthogonal latin squares of order 10. Many other

lower bounds on the number of MOLS(n) are known when n is not a prime

power.

Two ordered n2-tuples (a1, a2, . . . , an2) and (b1, b2, . . . , bn2) of elements

from an n-set are orthogonal if the ordered pairs (ai, bi), i = 1, 2 . . . , n2,

contain every possible ordered pair exactly once.

An orthogonal array OA(s, n) of order n and depth s is an s× n2 array

with entries from an n-set N (more often than not N = {1, 2, . . . , n}) with

the property that any two rows are orthogonal.

Given a set of k MOLS(n), L1, . . . , Lk , form, for any ordered pair (i, j),

i, j ∈ {1, 2, . . . , k}, the column (i, j, L1(ij), . . . , Lk(ij))T . The result is an

OA(k + 2, n). Conversely, given an OA(k + 2, n), one can obtain a set of k

MOLS(n).

Exercise 6. Construct a set of 3 MOLS(4) and use it to obtain an OA(5, 4).

3. Affine and projective planes

Some of the origins of modern combinatorial design theory can be traced

to examples from finite geometry. With points and lines taken as undefined

elements, a finite geometry is one with a finite number of points. It is a

projective plane if it satisfies the following axioms:

P1. Two distinct points are contained in exactly one line.

P2. Any two distinct lines intersect in a unique point.

P3. There exist four points no three of which are collinear (i.e. lie on

the same line).

Given a finite projective plane, there exists a number n called its order

such that any line contains n + 1 points, each point is contained in n + 1
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lines, and the total number of points and also the total number of lines

equals n2 + n+ 1.

Example 1 above is, in effect, a projective plane of order 2 (just call

the elements points, and the blocks lines). This is the smallest possible

projective plane. Another example is provided by a BIBD(13, 4, 1) whose

elements are the elements of Z13 and the blocks are given by

Bi = {{i, i+ 1, i+ 3, i+ 9}}, i ∈ Z13. More generally, the following holds.

For each prime power q, there exists a projective plane of order q.

If we take the points as elements and the lines as blocks, a finite pro-

jective plane is a symmetric BIBD with parameters v = b = n2 + n + 1,

r = k = n + 1, λ = 1. But also conversely, given a BIBD with parameters

(v, k, λ) = (n2 +n+ 1, n+ 1, 1), it is a projective plane since the axioms are

clearly satisfied.

Many further examples of designs are provided by projective spaces. Any

finite projective space of dimension 3 or higher is obtained as follows: In

a vector space V of dimension d + 1 over the finite field Fq, take as points

the 1-dimensional subspaces and as lines the 2-dimensional subspaces of V .

This projective space is usually denoted by PG(d, q) and has v = qd+1−1
q−1 =

qd + qd−1 + · · · + q + 1 elements, k = q + 1 points on a line, and λ = 1.

However, not all BIBDs with these parameters are projective spaces.

The smallest example of a ”proper” (i.e. 3-dimensional) projective space

is given by PG(3, 2). It has 15 points and 35 lines, each containing three

points, and as a design is a (15, 3, 1)-BIBD. It is also a Steiner triple system

(see below) of order 15.

A finite affine plane satisfies the following axioms:

A1. Two distinct points are contained in exactly one line.

A2. For any point P not on a line l there is exactly one line containing

P that has no common point with l.

A3. There exist three noncollinear points.

Axiom A2 is the euclidean parallel axiom. This naturally defines the

relation of parallelism on the set of lines; equivalence classes of parallelism

are parallel classes each of which partitions the set of points.

The number of points on a line is the order n of the affine plane. The

number of points in an affine plane of order n is n2, the number of lines

is n2 + n, and the number of parallel classes is n + 1 which is also the

number of lines containing a given point. As a design, an affine plane is an

(n2, n, 1)-BIBD, and conversely, any BIBD with the above parameters is an

affine plane. The BIBD(9, 12, 4, 3, 1) from Example 2 is, in effect, an affine

plane of order 3.

If we recast affine and projective planes in terms of BIBDs, then an

affine plane of order n is the residual design of a projective plane. Also the

converse, and more, holds as the following theorem shows.
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Theorem 2. The following are equivalent:

(i) There exists an affine plane of order n.

(ii) There exists a projective plane of order n.

(iii) There exists a set of n− 1 MOLS(n).

(iv) There exists an OA(n+ 1, n).

Proof. (i) → (iii). Let an affine plane of order n be given, with its n2 + n

lines partitioned into n + 1 parallel classes having n lines each. Designate

arbitrarily two parallel classes as Fr, Fc and the remaining parallel classes

as F1, F2, . . . , Fn−1. Number the lines in each parallel class arbitrarily from

1 to n; the numbering in Fr is that of the rows of the square, in Fc of the

columns of the square. A point of the affine plane is on one line of Fr and

on one line of Fc, so is associated with a particular cell of the square. Write

(i, j) for the point in ith row and jth column. For each of the parallel classes

F1, . . . , Fn−1, we construct a latin square as follows. Let Fu be one of these

parallel classes containing lines Lu1 , . . . , L
u
n. From Fu construct a square Au

by inserting the number x in the (i, j) cell if the point associated with this

cell (being on the ith line of Fr and jth line of Fc) lies on the xth line Lux of

the parallel class Fu. Since every point lies on exactly one line of Fu, there

is exactly one number in each cell of Au. A line of Fr (of Fc, respectively)

intersects each line of Fu exactly once, and so any row (or column) of Au

contains each of 1, . . . , n exactly once. Thus Au is a latin square of order n.

Let Au = (aij), Aw = (bij). If we had ai1,j1 = ai2,j2 and also bi1,j1 =

bi2,j2 (in violation of the ”two fingers” rule) this would mean that the points

(i1, j1) and (i2, j2) both lie on the line Lua of Fu and on the line LUb of Fw,

contrary to axiom A1. So the ordered pairs (aij , bij), i, j = 1, 2, . . . , n must

be all distinct, i.e. Au and Aw are orthogonal.

(iii) → (i). Consider each cell (i, j) as a point and form families of lines

Fr, Fc, F1, . . . , Fn−1 where the point (i, j) is on the ith line of Fr, on the

jth line of Fc, and on the xth line of Fu, u = 1, 2, . . . , n− 1, if the (i, j)-cell

of the latin square Au contains x. This yields n+ 1 parallel classes of lines,

each with n lines.

The equivalence of (iii) and (iv) has been noted above.
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4. Symmetric designs

In the negative direction, we have the Bruck-Ryser-Chowla theorem

which states that if a symmetric (v, k, λ)-BIBD exists then if v is odd, the

equation z2 = (k − λ)x2 + (−1)
v−1
2 λy2 has a solution in integers x, y, z not

all zero.

For example, BIBD(43, 7, 1) (a projective plane of order 6) cannot exist

since the condition of the Bruck-Ryser-Chowla Theorem reduces here to

z2 + y2 = 6x2 which has no solution in integers x, y, z not all zero.

In fact, for λ = 1 the Bruck-Ryser-Chowla Theorem reduces to the

following necessary condition for the existence of a symmetric (v, k, 1)-BIBD

i.e. a projective plane of order n = k − 1:

A necesary condition for the existence of a finite projective plane of

order n is that when n ≡ 1, 2 (mod 4), there exist integers x, y such that

n = x2 + y2.

This implies that for infinitely many numbers n a projective plane of

order n cannot exist, such as n = 6, 14, 21, 22, . . . . The smallest order

which is not covered by this theorem nor is a prime power is 10, however,

it has been proved that there exists no projective plane of order 10, i.e.

a symmetric (111, 11, 1)-BIBD. Currently, the smallest order for which the

existence of a projective plane is undecided is 12.

Symmetric designs with λ = 2 are called biplanes. In a biplane, v =(
k
2

)
+ 1. Biplanes are known to exist for only 6 values of v. Similarly,

symmetric designs with λ = 3 are known to exist only for 6 values of v. A

longstanding conjecture that for any λ > 1 there exists only a finite number

of symmetric designs remains open.

5. Difference sets and difference families

A set of k residues D = {a1, . . . , ak} modulo v is a cyclic (v, k, λ)-

difference set if for every d 6≡ 0 (mod v) there are exactly λ ordered pairs

(ai, aj), ai, aj ∈ D such that ai − aj ≡ d (mod v). A more general type of

a difference set in an abelian group is defined similarly.

For example, {0, 1, 3} is a (7, 3, 1)-difference set, {0, 1, 3, 9} is a (13, 4, 1)-

difference set, {0, 1, 4, 14, 16} is a (21, 5, 1)- difference set, {0, 1, 3, 8, 12, 18} is

a (31, 6, 1)-difference set, {0, 2, 3, 4, 8} is a (11, 5, 2)-difference set, {0, 1, 2, 4,

5, 8, 10} is a (15, 7, 3)-difference set. All these difference sets are cyclic.
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Theorem 3. A set of k residues D = {a1, . . . , ak} modulo v is a (v, k, λ)-

difference set if and only if the sets Bi = {a1 + i, . . . , ak + i} modulo v,

i = 0, 1, . . . , v − 1 form a cyclic (v, k, λ)-BIBD.

A family D = {D1, . . . , , Ds} where Di = {ai1, ai2, . . . , aik} is a (v, k, λ; s)

difference family if for every d 6≡ 0 (mod v) there are exactly λ ordered

pairs (arp, a
r
q) such that arp− arq ≡ d (mod v), r ∈ {1, 2, . . . , s}. For example,

{{0, 1, 4}, {0, 2, 7}} is a (13, 3, 1; 2)-difference family.

Any (v, k, λ; s)-difference family gives rise to a cyclic (v, k, λ)-BIBD.

This BIBD will have s block orbits under the action of the cyclic group,

each consisting of v blocks. So, for example, the (13, 3, 1; 2)-differencce

family given above yields a cyclic (13, 3, 1)-BIBD whose 26 blocks fall into

two orbits, each with 13 blocks.

Theorem 4. Let v be a prime power, v = 6t+ 1 = pn, p a prime. Let x be

a primitive element of GF(pn). Then {{xi, x2t+i, x4t+i} : i = 0, 1, . . . , t−1}
is a (6t+ 1, 3, 1; t)-difference family.

Proof. Since x is a primitive element of GF(pn), we have x6t = 1, thus

(x3t − 1)(x3t + 1) = 0, and since x3t 6= 1, we have x3t + 1 = 0. Also

x2t − 1 6= 0 so let s be determined by x2t − 1 = xs. Moreover, −(x2t − 1) =

xs+3t (since x3t = −1), and xs+4t = x4t(x2t − 1) = 1 − x4t = −(x4t − 1).

The 6 differences arising from the set {x0, x2t, x4t} are ±(x2t − 1),±(x4t −
1),±(x4t − x2t) which is the same as xs, xs+t, xs+2t, xs+3t, xs+4t, xs+5t. It

follows that the differences yielded by all sets of the difference family are

xs+i, xs+i+t, xs+i+2t, xs+i+3t, xs+i+4t, xs+i+5t, i = 0, 1, . . . , t− 1, that is, all

xj , j = 0, 1, . . . , t− 1, meaning that every nonzero difference in the additive

group of GF(pn) occurs exactly once. �

The idea of (v, k, λ; s)-difference family has been extended by R.C. Bose

[B] to form a basis of a method that he called the method of pure and mixed

differences.

Let G be an additive abelian group, let T be a t-set, and consider the

set V = G× T . For two elements (x, i) 6= (y, j) of V , the differences arising

from this pair may be of two kinds: (i) when i = j, we have pure differences

±(x− y) of class i , and (ii) when i 6= j, we have mixed differences ±(x− y)

of class ij. A pure difference of any class may equal any nonzero element of

G while a mixed difference may equal any element of G, including zero.
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Suppose now that there exists a system of k-sets D1, . . . , Ds such that

every nonzero element of G occurs exactly λ times as a pure difference of

class i among the elements of the D1, D2, . . . , Ds for all i ∈ T , and also

every element of G occurs exactly λ times as a mixed difference of class ij

among the elements of D1, . . . , Ds for all i, j ∈ T , i 6= j. Then the sets

D1, . . . , Ds form a basis of a (v, k, λ)-BIBD, (V,D), where D = {Dj + g :

g ∈ G, j = 1, . . . , s} (here one takes obviously xj + g = (x+ g)j).

The above construction is sometimes extended by adding one ”infinite”

point and ”infinite” difference(s).

Example 4. Let G be the cyclic group of order 7. A basis for a (21, 3, 1)-

BIBD is given by the sets {01, 11, 22}, {01, 21, 52}, {01, 31, 23}, {02, 12, 63},
{02, 22, 31}, {02, 32, 43}, {03, 13, 52}, {03, 23, 41}, {03, 33, 61}, {01, 02, 03}.

Here, as is customary, we write xi instead of (x, i). It is readily verified

that every pure difference ±1,±2,±3 of class 1, 2, 3 occurs exactly once,

and every mixed difference 0,±1,±2,±3 of classes 12, 13, 23 occurs exactly

once, so the above sets do indeed form a basis for a (21, 3, 1)-BIBD.

Example 5. Let G be the cyclic group of order 5. A basis for a (21, 3, 1)-

BIBD with the set of elements V = (Z5×{1, 2, 3, 4})∪ {∞} is given by the

14 sets {∞, 01, 02}, {∞, 03, 04}, {01, 11, 32}, {01, 21, 12}, {01, 03, 14},
{01, 13, 34}, {01, 33, 24}, {02, 12, 23}, {02, 22, 14}, {01, 23, 43}, {02, 33, 43},
{01, 04, 44}, {02, 04, 24}, {02, 03, 34}.

Similarly as above, one can verify that every pure difference ±1,±2 of

class 1, 2, 3, or 4 occurs exactly once, and every mixed difference 0,±1,±2,

±3,±4 occurs exactly once, as does every ”infinite” difference, even though

the verification is somewhat more tedious.

6. Group divisible designs and pairwise

balanced designs; transversal designs

Relaxing some of the conditions in the definition of BIBDs leads to

different types of designs which were originally thought to be only auxiliary

but have quickly attained life on their own. Relaxing the requirement that

all blocks be of the same size leads to the notion of pairwise balanced designs.

Let λ be a positive integer and let K be a set of positive integers. A

pairwise balanced design PBDλ(v,K) is a pair (V,B) where V is a v-set,

B is a collection of subsets of V called blocks, and K is the set of block
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sizes such that the cardinality of each block belongs to K and every pair of

distinct elements belongs to exactly λ blocks.

Thus in a pairwise balanced design (PBD), the requirement of pairwise

balance is preserved but the blocks are allowed to be of different sizes. The

index λ is usually omitted when λ = 1, and one writes just PBD(v,K).

Blocks of size 2 are usually permitted. PBDs with λ = 1 are sometimes

called linear spaces (or 2-partitions).

Example 6. Let V = {1, 2, 3, 4, 5, 6}, B = {{1, 2, 3, 4}, {4, 5, 6}, {1, 5},
{1, 6}, {2, 5}, {2, 6}, {3, 5}, {3, 6}}. Then (V,B) is a PBD(6, {2, 3, 4}) (with

λ = 1).

For a positive integer λ and K and G sets of positive integers, a group

divisible design of order v and index λ, GDDλ(v,K,G) is an ordered triple

(V,G,B) where V is a v-set, G is a partition of V into groups whose sizes

belong to G, and B is a collection of subsets called blocks whose cardinalities

belong to the set of block sizes K such that every pair of distinct elements

of V is contained in exactly λ blocks or in one group (but not both), and

|G| ≥ 2. Subscript λ is usually suppressed when λ = 1.

Given a GDDλ(V,K,G) with ai groups of size gi, i = 1, . . . , s (so that

Σsi=1 αigi = v), the GDD is said to be of type ga11 ga22 . . . gass . When K = {k}
and λ = 1, one speaks of a k-GDD.

Example 7. A 3-GDD of type 24 has as its groups {0, 4}, {1, 5}, {2, 6},
{3, 7} and as its blocks {0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 0},
{6, 7, 1}, {7, 0, 2}.

A special case of a GDD is a transversal design TDλ(n, r) . This is a

GDDλ(rn; r, n), that is, there are r groups, each with n elements, all blocks

have cardinality r, and thus any group and any block have exactly one

element in common. Again, when λ = 1, one writes only TD(n, r).

Some of examples of transversal designs are:

1. Take an affine plane of order n, declare one of its parallel classes to

be the groups and the remaining lines to be blocks. This gives a TD(n, n).

2. Take a projective plane of order n and remove one point, say x.

Declare all lines containing x, with x removed, to be the groups and the

remaining lines to be the blocks. This gives a TD(n, n+ 1).

3. Take a latin square L = (Aij) of order n, take as the three groups

the rows, the columns, and the entries of L, respectively. Take as blocks the

sets {ri, cj , aij} where aij it the entry in row ri and column cj of L. This

gives a TD(n, 3).
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Theorem 5. A transversal design TD(n, r) exists if and only if there exists

a set of r − 2 MOLS(n).

A TD(n, r) is resolvable if its blocks can be partitioned into parallel

classes. A resolvable TD(n, r) is denoted by RTD(n, r).

Theorem 6. A resolvable trasnversal design RTD(n, r) exists if and only

if there exists a set of r − 1 MOLS(n).

* * *

For a set of positive integers K, let α(K) = gcd{k − 1 : k ∈ K} and

β(K) = gcd{k(k − 1) : k ∈ K}. Then the necessary conditions for the

existence of a PBD(v,K) are

v − 1 ≡ 0 (mod α(K)) and v(v − 1) ≡ 0 (mod β(K)).

A setK of positive integers is PBD-closed if the existence of a PBD(v,K)

implies that v ∈ K. For K a set of positive integers, the PBD-closure of K

is the set B(K) = {v : there exists a PBD(v,K)}.

The following theorem due to Richard Wilson [W] states that the neces-

say conditions for the existence of a PBD(v,K) are asymptotically sufficient.

Theorem 7. Let K be a PBD-closed set. Then there exists a constant

v0 = v0(K) such that if v > v0 and v satisfies the above necessary conditions

then there exists a PBD(v,K).

II. STEINER TRIPLE SYSTEMS

1. Existence

Steiner triple systems are BIBDs with k = 3 and λ = 1. They are

the smallest nontrivial instance of BIBDs, as BIBDs with k = 2 are triv-

ial (except when considering resolvability or other additional properties).

The arithmetic necessary conditions reduce to v ≡ 1 (mod 2), v(v − 1) ≡
0 (mod 6) whence v ≡ 1 or 3 (mod 6), thus only one parameter v remains.

The abbreviation commonly used is STS(v). The BIBDs in Examples 1 and

2 are STS(7) and STS(9), respectively.

The first proof that the necessary condition above is also sufficient for

the existence of STSs was provided by Kirkman in 1847. The simplest

currently known direct and recursive proofs of this fact are as follows.
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The Bose construction. Let (Q, o) be any idempotent commutative

quasigroup of order 2n+ 1 where Q = {1, 2, . . . , 2n+ 1}. Let V = Q× Z3,

and let B consist of two types of triples:

(1) {x0, x1, x2}, x ∈ Q
(2) {xi, yi, (x o y)i+1}, x, y ∈ Q, x 6= y, i ∈ Z3.

Then (V,B) is an STS(6n+ 3).

To see this, first count the number of triples. There are 2n+ 1 triples in

(1), and
(
2n+1

2

)
choices for x and y, with three triples corresponding to each

such choice in (2). So |B| = 2n+1+3
(
2n+1

2

)
= (2n+1)(3n+1) which is the

correct number of triples in any STS(6n+ 3). It only remains to be shown

that each pair of distinct elements is contained in at least one triple. Let

aj , bk be such a pair. If a = b then {a1, a2, a3} is a triple in (1) containing

aj and ak. If j = k then a 6= b and thus {aj , bj , (a o b)j+1} is a triple in (2)

containing the pair (aj , bj). Finally, let a 6= b and j 6= k; assume w.l.o.g.

j = 1 and k = 2. Since (Q, o) is a quasigroup, there must exist p ∈ Q such

that a o p = b. Since (Q, o) is idempotent and a 6= b, it must be that p 6= a.

Therefore {a1, p1, (a o p)2 = b2) is a triple in (2) containing a1 and b2.

The Skolem construction. Let (Q, o) be any half-idempotent com-

mutative quaasigroup of order 2n where Q = {1, 2, . . . , 2n}. Let V =

{∞} ∪ (Q× {Z3}, and let B consist of three types of triples:

(1 ) {x0, x1, x2}, 1 ≤ x ≤ n,

(2) {∞, (n+ x)i, xi+1}, 1 ≤ x ≤ n, i ∈ Z3,

(3) {xi, yi, (x o y)i+1}, x, y ∈ Q, x 6= y, i ∈ Z3.

Then (V,B) is an STS(6n+ 1).

Bose and Skolem constructions together yield a simple direct proof of

the existence of STSs.

As for recursive constructions (constructing larger designs from smaller

designs), the first result shows that if there exists an STS(v) and an STS(w)

then there exists an STS(v.w). There is a simple combinatorial proof of this

but this is also a direct consequence of some algebraic considerations (see

below).

In what follows we need a simple auxiliary device which is however

interesting on its own. A 1-factorization of the complete graph Kn is a

partition of the edges of Kn into 1-factors (=perfect matchings). One-

factorizations of Kn are often written as pairs (X,F) where X is the vertex

set of Kn and F = {F1, F2, . . . , Fn−1} is the set of 1-factors. More about
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1-factorizations will be said later. At this point we just observe that it is

easy to find a 1-factorization of Kn by using an idempotent commutative

quassigroup of order n− 1 (n must be even, so the quasigroup order n− 1

is odd). Let (Q, o) be such an idempotent commutative quasigroup of order

n−1 whereQ = {1, 2, . . . , n−1}. For each i ∈ Q, let Fi = {{i, n}}∪{{x o y} :

x o y = y o x = i}. Then F = {F1, F2, . . . , Fn−1} is a 1-factorization of

Kn+1 on X = {1, 2, . . . , n}.

The v → 2v+ 1 construction. Let (V,B) be an STS(v) and let (X,F)

be a 1-factorization of Kv+1 on X where X ∩ V = ∅ and F = {F1, . . . , Fv}.

Let W = V ∪ X and let Ci = {{i, x, y}|{x, y} ∈ Fi}, C = ∪i∈V Ci. Then

(W,B ∪ C) is an STS(2v + 1) containing (V,B) as a subsystem.

The v → 2v + 7 construction. Let (V,B) be an STS(v) (v ≥ 7),

let X be a set, |X| = v + 7, and let F = {F1, . . . , Fv} be a set of 1-

factors in the complete graph Kv+7 on X which together with a set T of

v + 7 triples forms a partition of the edges of Kv+7. Let W = V ∪ X,

let Ci = {{i, x, y}|{x, y} ∈ Fi}, C = ∪i∈V Ci. Then (W,B ∪ C ∪ T ) is an

STS(2v + 7) containing (V,B) as a subsystem.

What is needed to validate this construction is to show that the edges

of the complete graph Kv+7 (where v+ 7 is an even number) can be indeed

partitioned into v + 7 triples and v one-factors. There are several results

from which this would follow, including the Stern-Lenz Lemma [SL], or the

Chetwynd-Hilton result on 1-factorability of regular graphs of sufficiently

high degree [CH].

Starting now with Steiner triple systems of orders 3, 9, and 13 and

applying the 2v+1 and 2v+7 constructions recursively proves the existence

of STSs of all admissible orders.

The number of nonisomorphic STSs increases rapidly with order. If

N(v) is the number of nonisomorphic STS(v) then for sufficiently large v,

we get N(v) = vv
2( 1

6+o(1)). The complexity of deciding the isomorphism of

STSs is unknown. The best known algorithm is subexponential.
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2. Cyclic STSs

An STS(v) is cyclic if it admits an automorphism consisting of a single

cycle of length v. The blocks of such an STS can be presented in a compact

form by listing one representative of each orbit of blocks under a cyclic

automorphism α. The elements of a cyclic STS(v) may be assumed to be

Zv. Thus, for example, the blocks of (a design isomorphic to) the STS(7)

from Example 1 may be written as {i, i + 1, i + 3}, i ∈ Z7, or, as is more

customary, as {0, 1, 3} mod 7, or even more simply 0 1 3 mod 7.

Exercise 7. Show that there exists no cyclic STS(9).

The existence of cyclic STSs is proved via solutions to two Heffter’s

difference problems; the latter can in turn be obtained via Skolem and

related sequences.

First Heffter’s difference problem. (I.HDP(n)) For any natu-

ral k, partition the set of 3k integers {1, 2, . . . , 3k} into k ordered triples

(ai, bi, ci), i = 1, 2, . . . , k such that for all i = 1, 2, . . . , k, either (1) ai+bi = ci

or (2) ai + bi + ci = 6k + 1.

Second Heffter’s difference problem. (II.HDP(n)) For any nat-

ural k, partition the set of 3k integers {1, 2, . . . , 2k, 2k + 2, . . . , 3k + 1} into

k ordered triples (ai, bi, ci), i = 1, 2, . . . , k such that for all i = 1, 2, . . . , k,

either (1) ai + bi = ci, or (2) ai + bi + ci = 6k + 3.

Lothar Heffter formulated these problems in 1890s. Rose Peltesohn pro-

vided the first solution to both Heffter’s difference problems in 1939 by

using a recursive method. A different, direct, proof can be obtained by

using so-called Skolem sequences and similar sequences.

Given a solution to the First Heffter’s difference problem, i.e. the or-

dered triples {(ai, bi, ci) : i ∈ {1, 2, . . . , n}, form triples {{0, ai, ai + bi} : i ∈
{1, 2, . . . , n}}. These are base triples of a cyclic STS(6n + 1). Similarly,

given a solution to II.HDP(n), the triples {{0, ai, ai+ bi} : i ∈ {1, 2, . . . , n}}
together with the triple {0, 2n + 1, 4n + 2} form a set of base blocks of a

cyclic STS(6n+ 3).

Thus the problem of proving the existence of cyclic STS(v) for v ≡ 1

or 3 (mod 6) is reduced to finding solutions to I.HDP and to II.HDP. The

latter can in turn be reduced to finiding certain integer sequences.

In 1957, Thoralf Skolem [Sk], [Sk1] defined a sequence (which today

carries his name) for the expressed purpose of constructing cyclic Steiner
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triple systems. A sequence of length 2n, say, (a1, a2, . . . , a2n), is a Skolem

sequence of order n if it satisfies

1. for every k ∈ {1, 2, . . . , n}, there are exactly two elements ai, aj of

the sequence such that ai = aj = k, and

2. if ai = aj , i < j, then j − i = k.

Skolem sequences are often given as a collection of ordered pairs {(ai, bi) :

1 ≤ i ≤ n} where ∪ni=1{ai, bi} = {1, 2, . . . , n}.
For example, 42324311 or {(7, 8), (2, 4), (3, 6), (1, 5)} is a Skolem se-

quence of order 4.

Exercise 8. Show that n ≡ 0 or 1(mod 4) is a necessary condition for

the existence of a Skolem sequence of order n.

An extended Skolem sequence of order n is a sequence of length 2n+ 1,

say, {a1, a2, . . . , a2n+1} satisfying conditions 1. and 2. above, and also

3. there is exactly one ai such that ai = 0.

For example, 5641154623203 or, equivalently, {(4, 5), (9, 11), (10, 13),

(3, 7), (1, 6), (2, 8)} is an extended Skolem sequence of order 6.

An extended Skolem sequence with a2n = 0 is a hooked Skolem sequence.

The example above is that of a hooked Skolem sequence.

Let {(ai, bi) : i = 1, . . . , n} be a Skolem sequence or a hooked Skolem

sequence of order n. Then the set of ordered triples {(i, ai + n, bi + n) :

i = 1, 2, . . . , n} is a solution of the first Heffter’s difference problem. An

extended Skolem sequence with zero in the middle (i.e. (n+ 1)st) position

can be used in a similar way to obtain a solution to the second Hefffter’s

difference problem.

3. STSs as quasigroups

Let (V, o) be an idempotent totally symmetric quasigroup, i.e. a quasi-

group satisfying

(i) x o x = x (the idempotent law)

(ii) x o y = y o x (the symmetry law), and

(iii) x o (x o y) = y (the law of total symmetry).

Define B = {{x, y, x o y} : x, y ∈ V, x 6= y}. Then (V,B) is a Steiner

triple system.
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Conversely, given an STS(v), (V,B), define on V a binary operation ”o”

by

(i) for all x ∈ V , x o x = x,

(ii) for all x, y ∈ V, x 6= y, x o y = z where {x, y, z} ∈ B is the triple

containing the pair {x, y}.
Then (V, o) is an idempotent totally symmetric quasigroup (an ITS

quasigroup). Such quasigroup is usually called a Steiner quasigroup (or

a squag). Thus Steiner quasigroups form an equational class or a variety of

algebras, and as such are closed under taking subalgebras, cartesian prod-

ucts and homomorphic images.

It is sometimes useful to consider Steiner loops.

Lert (Q, o, e) be a loop (a quasigroup with a unit element e) satisfying

the identities

(i) x o e = x,

(ii) x o y = y o x, and

(iii) x o (x o y) = y.

Define V = Q \ {e}, and B = {{x, y, x o y} : x, y ∈ V ′, x 6= y}. Then

(V ′,B) is a Steiner triple system.

Conversely, given an STS(v), (V,B), define on Q = V ∪ {e} a binary

operation ”o” by

(i) for all x ∈ V , x o x = x; e o e = e,

(ii) for all x ∈ V , x o e = e o x = x, and

(iii) (ii) for all x, y ∈ V, x 6= y, x o y = z where {x, y, z} ∈ B is the

triple containing the pair {x, y}.
Then (Q, o, e) is a totally symmetric loop, called Steiner loop. Steiner

loops also form a variety. The usefulness of this representation is readily

seen from the following example: to an STSv correspond both, the Steiner

quasigroup of order v and the Steiner loop of order v + 1. But the direct

product of two Steiner quasigroups of orders m and n corresponds to an

STS(m.n) while the direct product of two Steiner loops of orders m+ 1 and

n+ 1 corresponds to an STS(mn+m+ n).

One further important operation on quasigroups is the so-called singular

direct product. It is defined as follows.

Let (V,�) be an idempotent quasigroup, (Q, o) a quasigroup containing

a subquasigroup P , let P ′ = Q \ P , and let (P ′, ∗) be a quasigroup (∗ and

o need not be related). On the set P ∪ (P ′ × V ) define a binary operation

⊗ as follows.
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(1) x⊗ y = x o y if x, y ∈ P ,

(2) x⊗ (x′, v) = (x o x′, v) where x ∈ P, x′ ∈ P ′, v ∈ V ;

(3) (x′, v)⊗ x = (x′ o x, v) where x ∈ P, x′ ∈ P ′, v ∈ V ;

(4) (x′, v)⊗ (y′, v) = x′ o y′ if’ x′ o y′ ∈ P
= (x′ o y′, v) if x′ o y′ ∈ P ′;

(5) (x′, v)⊗ (y′, w) = (x′ ∗ y′, v�w), v 6= w.

The qroupoid V ×Q(P, P ′,×) defined above is a quasigroup called the

singular direct product of V and Q.

4. Kirkman triple systems

A Kirkman triple system (KTS) (V,B,R) is a structure where (V,B)

is an STS(v) and R = {R1, . . . , R v−1
2

) is a resolution of the triples of B
into parallel classes (or resolution classes) each of which partitions V . The

underlying STS (V,B) is resolvable. It is possible for a resolvable STS to

admit several nonisomorphic KTSs.

Example 2 contains a resolvable STS(9) whose resolution is unique. The

famous ”Problem of 15 schoolgirls” formulated by Rev. T.P. Kirkman in

the 1840s asks whether there exists a resolvable STS(15). An example of a

KTS(15) with V = Z15 is the following:

R1 : 0 1 2 3 9 13 4 7 12 5 8 14 6 10 11

R2 : 0 3 4 1 11 13 2 8 9 5 10 12 6 7 14

R3 : 0 5 6 1 7 9 2 11 14 3 8 12 4 10 13

R4 : 0 7 8 1 4 6 2 12 13 3 10 14 5 9 11

R5 : 0 9 10 1 12 14 2 4 5 3 7 11 6 8 13

R6 : 0 11 12 1 8 10 2 3 6 4 9 14 5 7 13

R7 : 0 13 14 1 3 5 2 7 10 4 8 11 6 9 12.

The underlying STS(15) of the above KTS is PG(3, 2), the projective

space of dimension 3 over GF(2). It is one of the two nonisomorphic KTS

having PG(3, 2) as its underlying STS. Altogether there are 4 resolvable

STS(15)s but 7 nonisomorphic KTS(15), i..e. 7 nonisomorphic solutions to

the Problem of 15 schoolgirls.

Clearly, for a KTS(v) to exist, the condition v ≡ 3 (mod 6) is necessary.

It took more than 120 years before Ray-Chaudhuri and Wilson proved that

this condition is also sufficient.

The following construction using PBDs is instrumental in the proof.
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Theorem 8. Let (V,B) be a PBD(v,K), K = {k1, . . . , ks}, v ≡ 1 (mod 3),

and suppose that for each ki ∈ K, there exists a KTS(2ki + 1). Then there

exists a KTS(2v + 1).

Proof. A KTS(2v + 1) will be constructed on the set W = V × {1, 2} ∪

{∞} so that (w.l.o.g) {∞, x1, x2} is a block for all x ∈ V . Let Bx =

{Bx1, . . . , Bxt} ⊂ B be the blocks of the PBD(v,K) containing x. For each

block B ∈ Bx, put on the set B×{1, 2}∪{∞} a KTS(2|B|+1), (U,BB ,RB),

making sure that {∞, x1, x2} is a block for all x ∈ B. LetRBx be the parallel

class of RB containing the triple {∞, x1, x2}, and let Rx = ∪B∈Bx
RBx (the

triple {∞, x1, x2} is taken just once). Then Rx is a parallel class on W , and

R = {Rx : x ∈ V } is a resolution of a KTS(2v + 1). �

For all v ≡ 1 or 4 (mod 12) there exists a PBD(v, {4}) ( i.e. a Steiner

system S(2, 4, v), see below), and for all v ≡ 7 or 10 (mod 12), except for

v = 10 or 19, there exists a PBD(v, {4, 7}(a result due to Brouwer). This,

together with the above theorem, and with two individual examples of KTSs

of orders 21 and 39 proves the existence of a KTS(v) for all v ≡ 3 (mod 6),.

5. Subsystems and partial triple systems

An STS(w), say, (W, C), is a subsystem of an STS(v), (V,B), if W ⊆ V

and C ⊆ B. Then (W, C) is said to be embedded in (V,B) while (V,B) is said

to contain (W, C). An embedding (or a subsystem) is proper if |W | < |V |.

For a proper subsystem, one must have |V | ≥ 2|W | + 1. One may ask,

conversely: given an STS(w), and an admissible integer v (that is, v ≡ 1 or

3 (mod 6)), v ≥ 2w + 1, can it be embedded into an STS(v)?

STSs have the so-called replacement property: Given an STS(V,B)) with

a sub-STS(w), (W, C), and if (W,D) is another STS(w) then (V, (B\C)∪D) is

an STS(v). Actually, the replacement property holds much more generally,

for any two balanced sets of triples T and T ′; here, ”balanced” means that

a 2-subset P is contained in a triple of T if and only if it is contained in a

triple of T ′.
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Doyen-Wilson Theorem. Any STS(w) can be embedded into an STS(v)

for any v ≥ 2w + 1.

Apart from the original proof by Doyen and Wilson, a completely dif-

ferent proof is provided by Stern and Lenz, and yet another one in [3].

A partial triple system PTS(v) of order v is a pair (V,B) where V is

a v-set and B is a collection of 3-subsets of V called blocks or triples such

that each 2-subset of V is contained in at most one triple of B. The leave of

a PTS (V,B) is the graph L = (V,E) where E contains as edges all those

2-subsets of elements of V that are not contained in the triples of B.

Unlike for STSs, there is no restriction on the order of partial triple

systems. A PTS (V,B) is completable if there exists a set of further triples

C such that (V,B∪C) is an STS(v). The STS (V,B∪C) is the completion of

the PTS (V,B). Clearly not every PTS(v) is completable. So, it is natural

to ask whether any PTS can be embedded into an STS, i.e. given a PTS(v)

(V,B), does there exist an STS(w) (W, C) such that V ⊆ W and B ⊆ C?
And if yes, what is the smallest w for which a PTS(v) can be embedded

into an STS(w)?

This problem has only recently been solved by Bryant and Horsley [BH]:

every PTS(v) can be embedded in an STS(w) where w is the smallest ad-

missible integer (i.e. w ≡ 1 or 3 (mod 6)) such that w ≥ 2v + 1. The proof

is quite involved. Here is a simple proof of a weaker result (which at the

time was the strongest known result) due to Lindner [L] which shows that

every PTS(v) can be embedded in an STS(6v + 3).

From a PTS(v), we first define a partial idempotent commutative quasi-

group (V, o) by

(i) x o x = x for all x ∈ V ,

(ii) if x 6= y, x o y = y o x = z if and only if {x, y, z} ∈ B.

Note that either both x o y and y o x are defined, or neither is.

Next, we use Cruse’s Theorem (”Every partial idempotent commuta-

tive quasigroup of order n can be embedded in an idempotent commutative

quasigroup of order t for all odd t ≥ 2n+ 1”) to embed (V, o) in an idempo-

tent commutative quasigroup (Q, o) of order 2v+ 1. Put W = Q×{1, 2, 3},
and use Bose’s Construction to obtain from (Q, o) an STS(6v + 3), (W, C).
For each triple T = {x, y, z} ∈ B, C contains the set T (x, y, z) of 9 triples

{x1, y1, z2}, {x1, y2, z1}, {x2, y1, z1}, {x2, y2, z3}, {x2, y3, z2}, {x3, y2, z2},
{x3, y3, z1}, {x3, y1, z3}, {x1, y3, z3} ;

replace T (x, y, z) with another set T ′(x, y, z) of 9 triples
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{x1, y1, z1}, {x2, y2, z2}, {x3, y3, z3}, {x1, y2, z3}, {x1, y3, z2}, {x2, y1, z3},
{x2, y3, z1}, {x3, y1, z2}, {x3, y2, z1} .

The sets T (x, y, z) and T ′(x, y, z) are balanced, i.e. a 2-subset P is

contained in a triple of T if and only if it is contained in a triple of T ′.

Moreover, if {x, y, z} and {x′, y′, z′} are two distinct triples in B, no 2-

subset of V can be contained in both T (x, y, z) and T (x′, y′, z′). If C′ is

obtained from C by replacing for each {x, y, z} ∈ B the set T (x, y, z) with

T ′(x, y, z) then (W, C′) is an STS(6v + 3) which contains (V,B) (in fact,

three copies of (V,B), one on each set Q× {i}).

An incomplete triple system of order v with a hole of size w is a PTS(v),

(V,B), such that for some W ⊆ V with |W | = w, each 2-subset {x, y} of

V with x ∈ V \W , y ∈ V is contained in exactly one triple of B while for

x, y ∈ W , the 2-subset {x, y} is not contained in any triple of B. Such a

partial triple system is denoted by ITS(v, w). If an ITS(v, w), (V,B), exists

with a hole on W ⊆ V and also an STS(w), (W, C) exists then (V,B ∪ C) is

an STS(v) (with (W, C) as a subsystem).

An incomplete triple system TS(v, w) clearly exists if both v, w ≡ 1 or

3 (mod 6) but may exist when neither of v, w satisfy this condition. Indeed,

an ITS(v, w) exists whenever v, w ≡ 5 (mod 6), and v ≥ 2w + 1.

6. Colouring of Steiner triple systems

A (proper weak) colouring of an STS(v) (V,B) is a mapping φ : V → C

(the set of colours) such that no triple is monochromatic. If |C| = m, we

have an m-colouring. For each c ∈ C, the set φ−1 = {x : φ(x) = c} is

a colour class. The chromatic number χ(V,B) is the smallest m such that

there exists an m-colouring of (V,B).

There exists no nontrivial 2-chromatic STS. Bose’s and Skolem’s con-

struction given above establish that fior all v ≡ 1 or 3 (mod 6) there exists

a 3-chromatic STS(v).

Exercise 9. Show that for v ≥ 7 there is no 2-chromatic STS(v).

It is much more difficult to show the following.
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Theorem 9. A 4-chromatic STS(v) exists if and only if v ≡ 1 or 3 (mod 6)

and v ≥ 21.

Already in the 1960s, Erdös, Hajnal and Lovász showed that there exist

partial triple systems with arbitrarily high chromatic number. If um is the

smallest order of an m-chromatic partial triple system then

c1m
2log m < um < c2m

2log m

where c1, c2 are absolute constants. It follows that for any (partial) STS(v),

χ ≤ c
√
v/log v

where c is an absolute constant.

Theorem 10. For all m ≥ 3 there exists vm such that for every v ≥ vm,

v ≡ 1 or 3 (mod 6), there exists an m-chromatic STS(v). Moreover, for

smallest such vm,

C1m
2log m < vm < C2m

2log m

.

However, the exact value of vm is not known already for m = 5.

The spectrum C(v) of chromatic numbers of STS(v) is the set C(v) =

{m: there exists an m-chromatic STS(v)}. It was conjectured, but remains

unproved, that C(v) is always an interval.

An m-chromatic STS(v) is uniquely colourable if any m-colouring of the

STS produces the same partition of the element set into colour classes. A

colouring of an STS is equitable if the cardinalities of the colour classes differ

by at most one. A colouring is a bicolouring if there are no triples coloured

with three distinct colours.

Consider now colouring the triples of an STS. A block-colouring of an

STS(v), (V,B), is a mapping ψ : B → C (the set of (colours) such that if

ψ(B) = ψ(B′) for B,B′ ∈ B, B 6= B′ then B ∩ B′ = ∅. If |C| = q then

ψ is a q-colouring. For each c ∈ C, ψ−1(c) is a block-colour class. The

chromatic index χ′(V,B) of (V,B) is the smallest q for which (V,B) has a

q-block-colouring. Every block-colour class is a partial parallel class, thus

χ′(V,B) ≥ |B|/b v3c so χ′ ≥ v−1
2 when v ≡ 3 (mod 6) and χ′ ≥ v+1

2 when

v ≡ 1 (mod 6). The existence result for KTSs can be restated as:
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For every v ≡ 3 (mod 6) there exists an STS(v) with (minimum possible)

chromatic index v−1
2 .

For v ≡ 1 (mod 6), a Hanani triple system is an STS(v) whose blocks can

be partitioned into v−1
2 almost parallel clases, and a single partial parallel

class with v−1
6 blocks. A Hanani triple system of order v exists if and only if

v ≡ 1 (mod 6), v /∈ {7, 13}. It follows that for every v ≡ 1 (mod 6), v ≥ 19,

there exists an STS(v) with (minimum possible) chromatic index v+1
2 .

The chromatic index for the unique STS(7) is 7, the chromatic index

of the two nonisomorphic STS(13) is 8. For v > 7, not a single STS(v) is

known for which the chromatic index would exceed the minimum possible

by more than 2. The following is an open problem.

Conjecture. For v > 7 and any STS(v), the chromatic index

χ′ ∈ {minv,minv + 1,minv + 2} where minv = v−1
2 for v ≡ 3 (mod 6), and

minv = v+1
2 for v ≡ 1 (mod 6).

Infinite classes of STSs for which χ′ = minv+2 are known. One of these

is the class of projective triple systems of even dimension, i.e. PG(2m, 2)

which are STS(22m+1 − 1),m ≥ 2. An argument by R. Wilson shows that

such projective triple systems cannot contain an almost parallel class, there-

fore for them χ′ ≥ minv + 2. A recent result by M. Meszka establishes

equality.

* * *

Further topics on Steiner triple systems include (not exhaustively) enumer-

ation, automorphisms, independent sets, leaves, coverings, neighbourhoods,

configurations, intersections, large sets, orthogonal resolutions etc. etc. (cf.

[1], [2], [3], [4]).

III. STEINER SYSTEMS S(2, 4, v)

A Steiner system S(2, 4, v) is a pair (V,B) where V is a v-set and B is

a collection of 4-subsets of V called blocks (or sometimes quadruples) such

that each 2-subset of V is contained in exactly one block. Hanani [H] proved

that a Steiner system S(2, 4, v) exists if and only if v ≡ 1 or 4 (mod 12).

The smallest nontrivial system is S(2, 4, 13), the projective plane of order

3, PG(2, 3), where V = Z13, and B = {{i, i + 1, i + 3, i + 9} : i ∈ Z13}.
It is unique up to an isomorphism, and its full automorphism group is 2-

transitive of order 5616. The Steiner system S(2, 4, 16) is also unique; it is

the affine plane of order 4, Its full automorphism group is also 2-transitive

and has order 16.15.12.2. The number of nonisomorphic S(2, 4, 25) is 18
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but the exact number of nonisomorphic S(2, 4, 28) (the next order) is not

known, only that there are 4466 nonisomorphic S(2, 4, 28) with nontrivail

automorphism group.

The complexity of the isomorphism problem for S(2, 4, v)s is not known.

Just as for STSs, the isomorphism of S(2, 4, v)s can be tested in subxepo-

nential time.

Hanani’s existence proof is recursive. Starting with a direct construction

of S(2, 4, v) for orders 13, 16, 25, 28, 37, one then uses a PBD(u,K) where

K = {4, 5, 8, 9, 12}; such a PBD exists for all u ≡ 0, 1 (mod 4) [2]. If (X,B)

is such a PBD, define V = X × {1, 2, 3} ∪ {∞}. For each block B ∈ B,

construct an S(2, 4, |B|+ 1) on the set B × {1, 2, 3} ∪ {∞} so that for each

x ∈ X, {∞, x1, x2, x3} is always a block. The result is an S(2, 4, 3v + 1).

Unlike for STSs, a simple direct proof of the existence of S(2, 4, v)s is so

far absent.

Concerning cyclic S(2, 4, v)s, here much less is known than for cyclic

STSs. In a cyclic S(2, 4, v) with v ≡ 1 (mod 12), there are v−1
12 full orbits of

blocks (those of length v) and no short orbit, while if v ≡ 4 (mod 12), there

are v−4
12 full orbits and one short orbit (of length v

4 ).

There exists no cyclic S(2, 4, 16) or S(2, 4, 25) but there exist systems

with automorphism group acting transitively on the set of elements. This

is clear for he unique S(2, 4, 16) which is AG(2, 4), the (unique) affine plane

of order 4. An S(2, 4, 25) with automorphism group Z5 × Z5 has as blocks

{00, 10, 01, 22}, {00, 20, 02, 44}mod(5, 5); the order of the full automorphism

of this S(2, 4, 25) is 150.

In his 1939 paper, Bose gave the following construction which for p prime

yields a cyclic S(2, 4, v).

Theorem 11. Let v = pn = 12t + 1, and let α be a primitive element of

GF(pn) such that α4t − 1 = αq for some odd q. Then the blocks

{0, α2i, α4t+2i, α8t+2i}, i = 0, 1, . . . , t−1 are the base blocks for an S(2, 4, v).

The smallest orders for which this theorem yields cyclic S(2, 4, v)s are

v = 13, 37, 61, 73, 97, . . . . It is known that cyclic S(2, 4, v)s exist for all

v ≡ 1, 4 (mod 12), v ≤ 613 except for v = 16, 25, 28 for which they do

not exist. The conjecture that for all admissible v ≥ 37 there exits cyclic

S(2, 4, v)s remains open.

Just as there is a relationship between STSs and Steiner quasigroups,

tehre exists a relationship of Steiner systems S(2, 4, v) to another class of
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algebras, namely Stein quasigroups. In the literature, there are two kinds of

Stein quasigroups. A quasigroup (V, o) satisfying the Stein’s law, sometimes

called first Stein’s law or law of semisymmetry,

x o (x o y) = y o x (1)

is a Stein’s quasigroup of the first kind, or S-quasigroup for short. S-

quasigroups are idempotent, anticommutative (i.e, x o y 6= y o x for x 6= y),

and nonassociative.

An example of an S-quasigroup of order 4 is

o 1 2 3 4

1 1 3 2 4

2 4 2 1 3

3 2 4 3 1

4 3 1 2 4.

The second kind of Stein quasigroups are those satisfying the laws

x o x = x

(x o y) o y = y o x

(y o x) o y = x.

The third of these laws is sometimes called the law of left semisymmetry..

Call quasigroups satisfying these laws S∗-quasigroups. While an S∗-

quasigroup is an S-quasigroup, the converse need not hold. However, the

S-quasigroup of order 4 given above is also an S∗-quasigroup.

Let (V, o) be an S∗-quasigroup of order v. Define

B = {x, y, x o y, y o x} : x, y ∈ V, x 6= y}.
Then (V,B) is an S(2, 4, v). Conversely, given an S(2, 4, v), (V,B), ob-

tain from it an S∗-quasigroup as follows. For every block B ∈ B, choose

arbitrarily a bijection φB : B → {1, 2, 3, 4}. On V , define a binary operation

”∗” by

x ∗ x = x o x (= x)

x ∗ y = φ−1B (φB(x) o φB(y)) for x 6= y, x, y ∈ B
where ”o” is a binary operation on {1, 2, 3, 4} as defined above. Then

(V, ∗) is an S∗-quasigroup.

Concerning embeddings of S(2, 4, v)s, a theorem analogous to the Doyen-

Wilson Theorem but having a much more complicated proof is due to Rees

and Stinson.
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Rees-Stinson Theorem. Any S(2, 4, w) can be embedded in an S(2, 4, v)

for any v ≥ 3w + 1.

A more general version of the Rees-Stinson Theorem is the following.

Theorem 12. A Steiner system S(2, 4, w) with a hole of size v, v < w,

exists if and only if w ≥ 3v + 1, and

(i) v, w ≡ 1 or 4 (mod 12), or

(ii) v, w ≡ 7 or 10 (mod 12).

Ganter proved in 1971 that every partial S(2, 4, w) ca be embedded in

some S(2, 4, v). However, the embedding provided, while finite, is at worst

exponential in the size of the partial triple system. To find a polynomial

size embedding for partial S(2, 4, v)s is an open problem.

A colouring of an S(2, 4, v), (V,B), is a mapping φ : V → C (the set of

colours) such that for all B ∈ B, |φ(B)| > 1 where φ(B) = ∪x∈Bφ(x). For

each c ∈ C, the set φ−1(c) = {x : φ(x) = c} is a colour class. If |C| = m, we

have an m-colouring. The chromatic number χ = χ(V,B) is the smallest m

for which there exists an m-colouring of (V,B). If χ(V,B) = m, the system

is m-chromatic.

Unlike STSs whose chromatic number must be at least 3 if v > 3, Steiner

systems S(2, 4, v) may be 2-chromatic. Each of the unique S(2, 4, v)s for

v = 4, 13, 16 is 2-chromatic, and of the 18 S(2, 4, 25)s, two are 2-chromatic.

The following holds.

Theorem 13. A 2-chromatic S(2, 4, v) exists for all admissible orders v ≡

1, 4 (mod 12).

The following was proved in [RWCZ].

Theorem 14. A 3-chromatic S(2, 4, v) exists if and only if

v ≡ 1 or 4 (mod 12) and v ≥ 25.

There exist S(2, 4, v)s with an arbitrarily high chromatic number. More-

over:
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Theorem 15. For every m ≥ 2, there exists vm such that for all admissible

orders v ≥ vm, there exists an m-chromatic S(2, 4, v).

The complexity of computing the chromatic number of S(2, 4, v)s is un-

known.

An S(2, 4, v) (V,B) can be extended if there exists an S(3, 5, v+ 1) (V ∪
{∞}, C) such that (V,B) is a derived design of (V ∪ {∞}, C) through the

element ∞ (i.e. the blocks of B are obtained by taking all blocks of C
containing ∞ and deleting ∞ from them). An affine space AG(n, q) can

be extended to an inversive space S(3, q + 1, qn + 1), so for each positive n,

there exists an S(2, 4, 4n) which can be extended to an S(3, 5, 4n + 1). A

necessary condition for the existence of an S(2, 4, v) extendable to S(3, 5, v)

is v ≡ 1, 4, 16, 25, 40 or 49 (mod 60).

Exercise 10. Show that the necessary conditions for the existence of an

S(3, 5, v) is v ≡ 2, 5, 17, 26, 41, 50 (mod 60).

A Steiner system S(2, 4, v) (V,B) is resolvable if B can be partitioned

into v−1
3 parallel classes.

Theorem 16. A resolvable S(2, 4, v) exists if and only if v ≡ 4 (mod 12)

A block–colouring of an S(2, 4, v), (V,B) is a mapping ψ : B → C (the

set of colours) such that if ψ(B) = ψ(B′) for B,B′ ∈ B, B 6= B′ then

B ∩ B′ = ∅. If |C| = k then ψ is a k-block-colouring. For c ∈ C, ψ−1(c) is

a block-colour class. The chromatic index χ′(V,B) of (V,B) is the smallest

k for which (V,B) has a k-block-colouring. Since χ′(V,B) ≥ |B|/ v
b4c , always

χ′ ≥ v−1
3 . The existence of resolvable S(2, 4, v)s means that for every v ≡

4 (mod 12) there exists a Steiner system S(2, 4, v) with chromatic index v−1
3

(the minimum possible).

When v ≡ 1 (mod 12), χ′ ≥ v+2
3 . For v ≤ 25, there is no S(2, 4, v) with

chromatic index equal to the minimum possible value v+2
3 ., It is an open

question whether such systems exist for v ≥ 37.

As for upper bounds, χ′ ≤ 4v−1
3 for any S(2, 4, v), and χ′ ≤ v for cyclic

S(2, 4, v)s.

The complexity of computing the chromatic index of S(2, 4, v)s is un-

known.

A recent survey of results and problems on S(2, 4, v)s is [RR] which

treats many other properties and problems on S(2, 4, v)s.
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IV. STEINER QUADRUPLE SYSTEMS

Steiner systems S(3, 4, v) are called Steiner quadruple systems (SQS).

An SQS(v) is a pair (V,B) where V is a finite set of elements, and B is a

collection of 4-subsets of V called quadruples such that every 3-subset of V

is contained in exactly one quadruple. One has |B| = v(v−1)(v−2)
24 .

If x ∈ V , let B(x) = {B′ = B \ {x} : x ∈ B}. Then (V \ {x},B(x)) is

an STS(v − 1). It follows that v ≡ 2 or 4 (mod 6) is a necessary condition

for the existence of an SQS(v). The triple system so formed is the derived

STS of the SQS. An old conjecture that every STS is a derived STS of some

SQS remains unproved.

Example 8. An SQS(8): V = Z7 ∪ {∞},
B = {∞, i, i+ 1, i+ 3}, {i, i+ 2, i+ 3, i+ 4} : i ∈ Z7}

Example 9. An SQS(10): V = Z10, B = {{i, i+ 1, i+ 3, i+ 4},
{i, i+ 1, i+ 2, i+ 6}, {i, i+ 2, i+ 4, i+ 7} : i ∈ Z10}.

A Boolean SQS has as its set of elements V = Zn2 and as its blocks

the quadruples (x, y, z, w) of distinct binary words of length n such that

x+ y + z + w = 0̄.

Hanani was first to prove that v ≡ 2 or 4 (mod 6) is also sufficient

for the existence of SQS(v). His recursive proof was quite complicated but

has since been simplified by Hartman, Lenz and others. No direct proof is

known to-date.

The simplest recursive construction is ”duplication”.

Theorem 17. If there exists an SQS(v) then there exists an SQS(2v).

Proof. Let (V,B) and (W, C) be two SQS(v), V ∩ W = ∅. Let F =

{F1, . . . , Fv−1} and G = {G1, . . . , Gv−1} be any two 1-factorizations of Kv

on V and W , respectively, let α be any permutation of degree v on W .

Let V ∪ W , form the set of quadruples E = {{x1, y1, z2, w2} : {x, y} ∈
Fi, {z, w} ∈ αGi, Fi ∈ F , Gi ∈ G}. Then (W, (B × {1}) ∪ (C × {2}) ∪ E) is

an SQS(2v).

Note that two copies of the original SQS(v) are embedded in the result-

ing SQS(2v). There need be no relationship between the two SQS(v) or

between the two 1-factorizations.

The above construction si actually a special case of a ”generalized prod-

uct onstruction”. But the simpler fact that the existence of an SQS(v) and
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an SQS(w) implies the existence of an SQS(v.w) follows easily from the

equivalence of SQSs with a certain class of ternary algebras.

Given an SQS(v), (V,B), we may define a ternary operation < , , ,>

on V by

(1) < x, x, y >= y,

(2) < x, y, z >= u whenever {x, y, z, u} ∈ B.

The resulting algebra is a ternary quasigroup called Steiner 3-quasigroup.

It satisfies the identities

(i) < x, x, y >= y (the generalized idempotent law),

(ii) < x, y, z >=< x, z, y >=< y, x, z >,

(iii) < x, y,< x, y, z >>= z.

Conversely, from every 3-quasigroup (V,<, ,>) satisfying (i), (ii), and

(iii) we can obtain an SQS: just define B = {{x, y, z,< x, y, z >} :

x, y, z ∈ V distinct}
So, Steiner 3-quasigroups form an equational class of algebras. Steiner

3-quasigroups that satisfy also the identity

(iv) << x,w, y >,w, z >=< x,w,< y,w, z >>

also form an equational class of algebras. The corresponding SQSs are

precisely the Boolean SQS.

Returning to the existence proof for SQSs, one needs several further

recursive rules in addition to the doubling rule. One of these is the following.

Theorem 18. If there exists an SQS(v) then there exists an SQS(3v − 2).

Proof. Let (V,B) be an SQS(v), and let (Va,Ba) be its derived STS(v− 1)

through the element a, and let Q = {B ∈ B : a /∈ B}. We construct an

SQS(3v − 2), (W, C), where W = (Va × Z3 ∪ {∞}. Let C be a collection of

4-subsets of W contaning the following three types of 4-subsets.

(1) the 4-subsets {∞, x0, x1, x2} for all x ∈ Va,

(2) if B = {a, x, y, z} ∈ B, all quadruples of an SQS(10), (T,BB),

where T = {∞} ∪ {x, y, z} × Z3 and BB includes the four quadruples

{∞, x1, x2, x3}, {∞, y1, y2, y3}, {∞, z1, z2, z3} and {∞, x3, y3, z3}.
(3) if {x, y, z, w} ∈ B and a /∈ B, the 4-subsets {xi, yj , zk, wl} for all

i, j, k, l such that i+ j + k + l ≡ 0 (mod 3).
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V. SOME OTHER TYPES OF COMBINATORIAL DESIGNS

1. Cycle decompositions

A k-cycle system of order v (kCS(v)) is a pair (V, C) where C is a col-

lection of edge-disjoint k-cycles of the complete graph Kv with vertex set

V . A 3CS(v) is the same as an STS(v). An obvious necessary consdition

for the existence of a kCS is that v must be odd, v ≥ k, and k|
(
v
2

)
. The

sufficiency of this condition has been proved in [AG], [Saj].

So, for example, a 4CS(v) exists if and only if v ≡ 1 (mod 8). An

example of a 4CS(9) is given by V = Z9, C = {(i, i+ 1, i+ 5, i+ 2) : i ∈ Z9}.
Let v = 8n + 1, n ≥ 2. Let X be a set, |X| = 4n, and let H =

{h1, h2, . . . , hn} be a partition of X into 4-subsets (”holes”). Let V = (X×
{1, 2})∪{∞}. For each hole hi, i = 1‘, 2, . . . , n, put on (hi×{1, 2})∪{∞} a

copy of the 4CS(9) from the example above. For two distinct elements x, y

from different holes of H, form the 4-cycle (x1, y1, x2, y2). If one collects all

these 4-cycles into C then (V, C) is a 4CS(v).

Similarly, a 5CS(v), also called a pentagon system, exists if and only if

v ≡ 1 or 5 (mod 10). To see this, consider the folllowing two constructions.

1. Let v ≡ 5 (mod 10), v = 10n+5. Let (Q, o) be an idempotent commu-

tative quasigroup of order 2n+1, and let V = Q×Z5. For each x ∈ Q, form

two pentagons (x1, x2, x3, x4, x5) and (x1, x3, x5, x2, x4) (i.e. a 5CS(5)). For

distinct x, y ∈ Q, form the pentagons (xi, yi, xi+1, (x o y)i+3, yi+1), i ∈ Z5.

The collection of all these pentagons forms a 5CS(v).

2. Let v ≡ 1 (mod 10), v = 10n+ 1. Let (Q, o), Q = {1, 2, . . . , 2n}, be a

commutative quasigroup with holes H = {{1, 2}, {3, 4}, . . . , {2n + 1, 2n}}.
It is not difficult to see that such a quasigroup exists for all even orders

≥ 6. Let V = (Q × Z5) ∪ {∞}. For each hole h ∈ H, put a copy of a

5CS(11) on (h × Z5) ∪ {∞}. An example of a 5CS(11) is given by (V, C)
where V = Z11, C = {(i, i + 2, i + 8, i + 4, i + 3) : i ∈ Z11}, or (another

example) C = {(i, i+ 2, i+ 9, i+ 4, i+ 1) : i ∈ Z11}.
For distinct x, y ∈ Q and from different holes of H, form the pentagons

(xi, yi, xi+1, (x o y)i+3, yi+1). The collection of all these pentagons is a

5CS(v).

This proves the existence of a 5CS(v) for all v ≡ 1 or 5 (mod 10) except

when v = 21. For v = 21, take a BIBD(21, 5, 1) (i.e. the projective plane

PG(2, 4)) and put a copy of a 5CS(5) on each block.
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A kCS(v), (V, C), is 2-perfect if any two distinct vertices of V are joined

by a path of length 2 in exactly one k-cycle of C. Of the two examples of a

5CS(11) above, the first is 2-perfect while the second is not.

If (V, C) is a kCS(v) k ≥ 3, one can define a binary operation ”o” on V

as follows:

(1) x o x = x for all x ∈ V ;

(2) for x 6= y, x o y = z and y o x = w if (. . . , w, x, y, x, . . . ) ∈ C.
This is sometimes called the Standard Construction. The resulting

groupoid (V, o) may or may not be a quasigroup.

Theorem 19. The groupoid (V, o) obtained by the Standard Construction

from a kCS(v) (V, C) is a quasigroup if and only if (V, C) is 2-perfect.

The class of Steiner quasigroups can be equationally defined. Similarly,

the class of quasigroups from 2-perfect pentagon systems can be equation-

ally defined. The set of identities for quasigroups coresponding to Steiner

pentagon systems is

(i) x o x = x,

(ii) (y o x) o x = y,

(iii) x o (y o x) = y o (x o y).

A 4CS is never 2-perfect so the groupoid obtained by the Standard

Construction from a 4CS is never a quasigroup.

By contrast, 2-perfect 6-cycle systems do exist. Moreover, they exist

for all orders v ≡ 1 or 9 (mod 12) (just as do 6CSc without the additional

condition of 2-perfectness) except that there exists no 2-perfect 6CS(9). But

2-perfect 6CSs cannot be equationally defined.

A 7CS(v) exists if and only if v ≡ 1 or 7 (mod 14). For each such

order, there also exists a 2-perfect 7CS. The class of of 2-perfect 7CSs can

be equationally defined. A defining set of identities for 2-perfect 7-cycle

systems is

(i) x o x = x,

(ii) (y o x) o x = y,

(iii) (x o y)(y o (x o y)) = (y o x)(x o (y o x)).

It was shown by Bryant and Lindner [BL] that 2-perfect k-cycle systems

can be equationally defined only for k = 3, 5 and 7.

Another way to define a binary operation, given a kCS (V, C) when k is

odd is as follows. In a k-cycle where k is odd, the stabilizer of any edge has
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exactly one fixed point (graphs having this property are called focal; there

are many graphs other than odd cycles which are focal, e.g. K2,3). One can

define on V a binary operation ”o” by

(i) x o x = x;

(ii) fior x 6= y, x o y = z where z is the (unique) fixed point of the

stabilizer of the edge {x, y}.
The resulting groupoid is always commutative. For odd k = 2m+1, the

groupoid (V, o) obtained in this way from a (2m+1)CS (V, C) is a quasigroup

if and only if (V, C) is m-perfect, that is, every pair of vertices x 6= y are

joined by a path of length m in exactly one k-cycle.

2. Graph decompositions

A decomposition of the complete multigraph λKv into edge-disjoint

copies of a graph G is sometimes called a G-design of order v and index

λ. Such G-designs have been considered for many classes of graphs G, such

as paths, trees, stars, cycles (see previous section), cubes, graphs with small

number of vertices etc. The main question asked is that of the existence of

G-designs. A good survey on G-designs can be found in [2].

3. One-factorizations, Room squares and Howell designs

One-factorizations of the complete graph Kn were already mentioned

briefly. For a graph G to have a 1-factorization, it clearly must be regular of

Class 1. The literature on 1-factorizations is quite extensive and includes at

least one book and several survey articles. The best known 1-factorization

of Kn often denoted as GK2n is (V,F) where V = Z2n−1 ∪ {∞}, and

F = {F1, . . . , F2n−1) , Fi = {{i + j, i − j} : j = 1, 2, . . . , n − 1} ∪ {{i,∞},
i = 0, 1, . . . , 2n − 2. The automorphism group of GK2n has order (2n −
1).φ(2n − 1). It fixes one element, and when 2n − 1 is a prime, it is 2-

transitive on the remaining elements.

Generally, 1-factorizations with automorphism group fixing one element

and transitive on the remaining elements form a large class containing many

interesting members. Because of the existence of an automorphism fixing

one element and permuting the rest in a single cycle of length 2n − 1, the

1-factorizations of this class are called 1–rotational (or sometimes starter-

generated).
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Somewhat related to the series of 1-factorizations GK2n is the series of

1-factorizations AK2n (n odd). Let V = Zn × {1, 2}, and F = {Fi : i =

1, 2, . . . , n} ∪ {Gi : i = 1, 2, . . . , n− 1} where Fi = {{i1, i2}} ∪ {{(i+ j)k,

(i−j)k} : i ∈ Zn, j = 1, 2, . . . , n−12 , k = 1, 2}, Gi = {{j1, (j+i)2} : j ∈ Zn}.

One could also require that the automorphism group act transitively on

the set of elements (i.e. vertices of the complete graph), in particular, be a

cyclic group acting on the 2n vertices. This simple requirement for cyclic

1-factorizations, so natural and efficient when considering block designs, is

less natural here, since it necessarily implies that under the action of cyclic

group the 1-factors fall in several orbits, of varying lengths. Nevertheless,

it has been shown that a cyclic 1-factorization of K2n exists if and only if

the order 2n is not a power of 2 greater than 4. When n is a prime, GA2n

is cyclic.

Given a 1-factorization of K2n, F = {F1, . . . , F2n−1}, the union of any

two distinct 1-factors Fi ∪Fj is a 2-regular graph whose all cycles are of an

even length. When for any Fi, Fj ∈ F , the union Fi ∪ Fj is a hamiltonian

cycle, the 1-factorizations is perfect. The 1-factorization GK2n is perfect

whenever 2n − 1 is a prime, and GA2n is perfect wheneveer n is a prime.

This was first shown by Kotzig in his 1963 Smolenice paper where he also

conjectured that a perfect 1-factorization of K2n exists for all n ≥ 2. This

conjecture is still open, as the existence of a perfect 1-factorization has

been proved only for a handful of other values of n. Currently the smallest

complete graph for which the existence of a perfect 1-factorization remains

in doubt is K56.

Two 1-factorizations of K2n, F = {F1, . . . , F2n−1}, G = {G1, . . . , G2n−1},
are orthogonal if |Fi ∩Gj | ≤ 1 for all i, j ∈ {1, 2, . . . , 2n− 1}.

* * *

Let N be an n-set. A Room square R of order n based on N is an

(n− 1)× (n− 1) square array with the folowing properties:

(1) Every cell of R is either empty or contains a 2-subset of N ;

(2) Every element of N is contained in exactly one cell of each row and

of each column;

(3) Every 2-subset of N is contained in exactly one cell of R.

Each row (column) of R contains n
2 − 1 empty cells and n

2 nonempty

cells. The order n must be even.

An example of a Room square of order 8 is
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01 37 56 – 24 – –

– 02 14 67 – 35 –

– – 03 25 17 - 46

57 – – 04 36 12 –

– 16 – – 05 47 23

34 – 27 – – 06 15

26 45 – 13 – – 07

The pairs of elements in the nonempty cels of each row (each column)

are 1-factors, and the collection of 1-factors from all rows (all columns)

forms a 1-factorization, and the two 1-factorizations are orthogonal. Thus a

Room square of order n exists if and only if there exists a pair of orthogonal

1-factorizations of K2n.

Two Steiner triple systems (V,B1), (V,B2) are orthogonal if

(1) B1 ∪ B2 = ∅, i.e. they are disjoint, and

(2) if {a, b, x}, {c, d, x} ∈ B1, {a, b, y}, {c, d, z} ∈ B2 then y 6= z.

Theorem 20. If there exists a pair of orthogonal STS(v) then there exists

a Room square of order v + 1.

Proof. The two 1-factorizations obtained from the two STSs are orthogo-

nal.

However, the converse does not hold.

Let G be an additive abelian group of odd order 2n− 1. A starter in G

is a partition X of G \ {0} into 2-subsets,

X = {{x1, y1}, {x2, y2}, . . . , {xn−1, yn−1} such that

(i) {x1, x2, . . . , xn−1, y1, y2, . . . , yn−1} = G \ {0},
(ii) {±(x1 − y1),±(x2 − y2), . . . ,±(xn−1 − yn−1)} = G \ {0}.

Two special types of starters are

(1) patterned starter:

xi + yi = 0 for all i = 1, 2, . . . , n− 1, i.e. yi = −xi.
(2) strong starter:

xi + yi 6= 0, xi + yi 6= xj + yj for i 6= j,

i.e. all sums xi + yi are distinct and nonzero.

An adder AX for a starter X is an ordered set of n−1 distinct elements

of G, AX = (a1, a2, . . . , an−1), such that

{x1 + a1, x2 + a2, . . . , xn−1 + an−1, y1 + a1, y2 + a2, . . . , yn−1 + an−1} =

G \ {0}.
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Theorem 21. If there exists in an abelian group G of order 2n− 1 with a

starter and an adder then there exists a Room square of order 2n = |G|+ 1.

Proof. Let the elements of G be 0 = g1, g2, . . . , g2n−1. Let the starter be

X = {{xi, yi} : i = 1, 2, . . . , n − 1}, and adder be AX = (a1, a2, . . . , an−1).

The elements of a Room square R will be {∞}∪G. Form the first row of R

as follows: place the 2-subset {∞, g1} in the cell (g1, g1). For k 6= 1, place

{xi, yi} in the cell (g1, gk) if −gk = ai; otherwise, lave the cell (g1, gk) empty.

Develop then the othwer rows cyclically, i.e. for j > 1 place {xi+gj , yi+gj}
in the cell (gj , gk) provided {xi, yi} is in the cell (g1, gk − gj). Otherwise,

i.e. when the cell (g1, gk − gj) is empty, leave (gj , gk) also empty. If one

defines ∞+ j =∞ for all g ∈ G then this works also for the diagonal cells.

One needs to verify that R is a Room square of order 2n based on {∞}∪G.

There are
(
2n
2

)
nonempty cells; these are all pairs {xi + g, yi + g} where

g ∈ G and i = 1, 2, . . . , n − 1, plus the diagonal entries {∞, gi}. If {ga, gb}
is a 2-subset of G then, by the properties of a starter, there exists a pair

(xi, yi) such that ±(xi − yi) = ga − gb. If we write g = gb − yi or ga − yi
then {xi+ g, yi+ g} = {ga, gb}. Thus every 2-subset of G belongs to the set

{{xi+g, yi+g}} so each 2-subset must occur exactly once. The latinicity of

the first row follows from the definition of a starter, and of the first column

from the definition of an adder. �

Exercise 11. Show that there exists no Room square of order 4 or 6.

Exercise 12. Construct a Room square of order 10 from the starter {{1, 2},
{3, 7}, {4, 6}, {5, 8}} and the adder (1, 7, 2, 8).

Theorem 22. If there exists a strong starter in an abelian group of order

2n− 1 then there exists a Room square of order 2n.

Proof. An adder A is given by A = (−x1−y1,−x2−y2, . . . ,−xn−1−yn−1).

Indeed, writing xi + ai = −yi, yi + ai = −xi shows that {xi + ai, yi + ai :

i = 1, . . . , n− 1} = {−x : x ∈ G \ 0} = {x : x ∈ G \ 0} which means that A

is an adder. �

A very general result is due to Mullin and Nemeth.

Theorem 23. Let p be an odd prime such that pn = 2kt+ 1 where t > 1 is

odd. Then there exists a strong starter in GF(pn).
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Theorem 24. (The Existence Theorem for Room Squares.) A Room square

of order n exists if and only if n is even, and n 6= 4 or 6.

A generalization of a Room square is Howell design. A Howell design

H(s, 2n) on a set S, |S| = 2n, is an s× s array H such that

(i) every cell of H is either empty or contains a 2-subset of S,

(ii) each element of S is contained in exactly one cell of each row and

each column of H, and

(iii) every 2-subset of S is contained in at most one cell of H.

A Howell design H(2n − 1, 2n) is the same as a Room square of order

2n. The underlying graph of H is the s-regular graph with 2n vertices

whose edges are the 2-subsets occurring in the nonempty cells of H. The

underlying graph of a H(2n − 1, 2n) is the complete graph K2n. A Howell

design H(s, 2n) whose underlying graphs is the complete bipartite graph

Ks,s is equivalent to a pair of MOLS(s). The existence theorem for Howell

designs is as follows.

Theorem 25. A Howell design H(s, 2n) exists for all s, n ≤ s ≤ 2n, except

when (s, n) ∈ {(2, 4), (3, 4), (5, 6), (5, 8)}.
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