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Abstract

We give a new method of generating strongly polynomial sequences
of graphs, i.e., sequences (Hk) indexed by a tuple k = (k1, . . . , kh) of
positive integers, with the property that, for each fixed graph G, there is
a multivariate polynomial p(G;x1, . . . , xh) such that the number of ho-
momorphisms from G to Hk is given by the evaluation p(G; k1, . . . , kh).
A classical example is the sequence of complete graphs (Kk), for which
p(G;x) is the chromatic polynomial of G. Our construction is based on
tree model representations of graphs. It produces a large family of graph
polynomials which includes the Tutte polynomial, the Averbouch-Godlin-
Makowsky polynomial, and the Tittmann-Averbouch-Makowsky polyno-
mial. We also introduce a new graph parameter, the branching core size
of a simple graph, derived from its representation under a particular tree
model, and related to how many involutive automorphisms it has. We
prove that a countable family of graphs of bounded branching core size is
always contained in the union of a finite number of strongly polynomial
sequences.
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1 Introduction

Let Nh denote the set of h-tuples of positive integers (h ≥ 1), and let H be
a countably infinite set of graphs possibly with loops and/or weights on edges.
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Suppose H is presented as a sequence (Hk) indexed by tuples k = (k1, . . . , kh) ∈
Nh. (We extend the usual meaning of “sequence”, corresponding to the case h =
1, to double sequences (h = 2) and more generally to countable sets equipped
with a bijection to Nh for some finite h ∈ N. Of course, we may present such
a set as a conventional sequence by using a bijection from Nh to N, but the
particular indexing of the set by tuples is important in what follows.) Countable
families of graphs are often given in the form of such a sequence, for example,
the complete graphs (Kk), or the complete bipartite graphs (Kk1,k2

). In these
and other concrete examples, the indices k1, . . . , kh correspond to some natural
graph parameter (such as number of vertices) or indicate how to construct the
graph in that position of the sequence (such as substituting every vertex of a
base graph H by k twin copies to obtain Hk).

In this paper, we are interested in the number of homomorphisms of a graph
G to Hk, denoted by hom(G,Hk), as a function of k and G. More specifically,
when is this function a multivariate polynomial in k for every graph G? If this
is the case for all k, we follow [9] and say that the sequence (Hk) is strongly
polynomial. A well-known example, and one which motivated the “chromatic
invariants” of [9], is the sequence of complete graphs (Kk), where hom(G,Kk)
is the value of the chromatic polynomial of G at k for each k ∈ N.

De la Harpe and Jaeger [9] considered the case h = 1 in our setting, i.e. se-
quences indexed by a single positive integer k. (An exception is their Example
B.6, which concerns the bivariate dichromatic polynomial and an anticipation of
the two-variable generalization of the chromatic polynomial by Dohmen, Pönitz
and Tittmann [5].) They obtained necessary and sufficient criteria that enabled
them to verify, for several graph sequences (Hk) with k ∈ N, that hom(G,Hk)
is strongly polynomial. Further, they provided a general method of generating
strongly polynomial sequences of graphs (although by no means all such se-
quences). On the other hand, in our paper [7] we established precisely for which
edge-weighted graphs H homomorphism functions from multigraphs G to H
are specializations of the Tutte polynomial T (G;x, y), the Averbouch-Godlin-
Makowsky polynomial ξG(x, y, z) [1], and the Tittmann-Averbouch-Makowsky
polynomial QG(x, y) [14]. The edge-weighted graphs H obtained for the three
polynomials take the form of a sequence of graphs (Hk) indexed by a tuple k
(shown by cotree representations in Figure 5 below).

Here, our main contribution is to introduce a new method to generate
strongly polynomial sequences of graphs (Hk), each of which determines a
multivariate graph polynomial. These include the chromatic polynomial, the
Tutte polynomial, recent generalizations of the chromatic polynomial such as the
Dohmen–Pönitz–Tittmann polynomial [5] and the Averbouch–Godlin–Makowsky
polynomial [1], and the Tittmann–Averbouch–Makowsky polynomial [14] (a
generalization of the independence polynomial). We formulate our results in
the general framework of tree models for graphs, but in fact all the above-
mentioned polynomials can be generated by just using the cotree representation
of cographs.
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1.1 Outline

In Section 2 we define homomorphism numbers and strongly polynomial se-
quences of graphs formally, including in Section 2.1 a useful lemma restating
the property of being strongly polynomial in terms of induced subgraph counts
rather than homomorphism numbers. In Section 2.2 we define coloured rooted
trees and an operation on them (“branching”) that will produce all our strongly
polynomial sequences of graphs. In Section 2.3 we abstract a definition of tree
models for graphs (representation by coloured rooted trees) from the cases of
cotrees, clique-width expression trees, embeddings of graphs in closures of rooted
trees (used for defining tree-depth) and shrub-depth expression trees. We also
isolate the relevant properties of these tree models required for the proof of our
main theorem in Section 3.1 to go through.

Section 3 contains in Section 3.1 the statement of our three main results,
and Section 3.2 contains their proofs. Theorem 3.1 is the fundamental result for
producing strongly polynomial sequences, and Theorem 3.2 is a useful adjunct.
Theorem 3.3 gives a sufficient condition to decompose a countable set of graphs
into finitely many strongly polynomial (sub)sequences, and introduces a new
graph parameter – the branching core size– which according to the tree model
used, is related to clique-width, tree-depth and shrub-depth. (In rough terms,
the size of the most compact representation of the graph by the given tree
model.)

In Section 4 we apply the first two main results of Section 3.1 to obtain
strongly polynomial sequences of graphs from each of the tree models related
to clique-width, tree-depth and shrub-depth. Even one of the simplest spe-
cializations of these two main theorems – to cotree representations of cographs
– produces strongly polynomial sequences that determine the chromatic poly-
nomial, the Tutte polynomial, the Averbouch–Godlin–Makowsky polynomial
(includes the matching polynomial), and the Tittemann–Averbouch–Makowsky
polynomial (includes the independence polynomial). For each tree model we
illustrate how it produces sequences in different ways by using the running ex-
ample of strongly polynomial sequences that start with the cycle C4 as their
initial term.

We conclude this introduction with two remarks. On the one hand, the “gen-
eralized colourings” of [10] include only colourings invariant under all permu-
tations of colours, which holds for Kk-colourings (that is, proper k-colourings),
but not in general for Hk-colourings for other sequences of graphs (Hk). On
the other hand, Makowsky [11] attempts a classification of polynomial graph
invariants. With the generalized interpretation model [8] our approach prob-
ably yields the most general class of polynomial graph invariants that include
the chromatic polynomial. Establishing the exact connection between the finite
model-theoretic approach of [8] and the countably infinite models used to define
graph invariants in [10] is a topic of future research.
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2 Definitions

2.1 Homomorphism numbers, strongly polynomial
sequences of graphs

Let hom(G,H) denote the number of homomorphisms from a graph G to a
simple graph H, i.e., adjacency-preserving maps from V (G) to V (H). This
parameter can be extended to weighted graphs as follows.

Let H be a weighted graph given by its adjacency matrix (ai,j), where ai,j
is the weight of the edge ij. Then, for a multigraph G, the homomorphism
function hom(G,H) is defined by

hom(G,H) =
∑

f :V (G)→V (H)

∏
uv∈E(G)

af(u),f(v),

where the sum is over all functions from V (G) to V (H) and edges of G are
taken with multiplicity in the product. When ai,j ∈ {0, 1} this coincides with
the number of homomorphisms from G to H as previously defined. When
ai,j ∈ N, the graph H is a multigraph and hom(G,H) counts the number of
homomorphisms from G to H again, where now a homomorphism needs to be
defined rather in terms of a pair of maps f0 : V (G)→ V (H), f1 : E(G)→ E(H),
the defining property being that f1(uv) has endpoints f0(u) and f0(v) for every
edge uv ∈ E(G).

We now introduce the principal object of study in this paper.

Definition 2.1. A sequence (Hk) of graphs indexed by k = (k1, . . . , kh) ∈ Nh

is a strongly polynomial sequence in k if for every graph G there exists a mul-
tivariate polynomial p(G;x1, . . . , xh) such that hom(G,Hk) = p(G; k1, . . . , kh)
for every k = (k1, . . . , kh) ∈ Nh.

To simplify notation, henceforth we shall write p(G; k1, . . . , kh) = p(G; k).
Also, when no confusion can arise, we shall simply say that (Hk) is a strongly
polynomial sequence, it being understood that it is strongly polynomial in the
given parameter k.

Although a given choice of parametrization of a family H of graphs may fail
to give a strongly polynomial sequence (Hk), we are looking from the positive
side: we seek instances H where there exists a parametrization of H by k ∈ Nh

for some h ≥ 1 which does yield a strongly polynomial sequence. Further, we
will be satisfied with such parametrizations over some proper subset I ⊂ Nh

rather than all tuples in Nh:

Definition 2.2. A sequence (Fk) of graphs indexed by tuples k ∈ I ⊆ Nh

is a strongly polynomial subsequence in k if it is a subsequence of a strongly
polynomial sequence in k, i.e., there is a strongly polynomial sequence (Hk)
with k ∈ Nh, such that Hk = Fk when k ∈ I.

Clearly, the property of being a strongly polynomial subsequence is unaf-
fected by removing any number of its terms.
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For simple graphs G and H, let ind(G,H) denote the number of induced
subgraphs of H isomorphic to G. A useful equivalent formulation of the property
of being strongly polynomial is given by the following:

Lemma 2.3. A sequence (Hk) of simple graphs indexed by a tuple k = (k1, . . . , kh) ∈
Nh is a strongly polynomial sequence in k if and only if for every graph G there
exists a polynomial q(G;x1, . . . , xh) such that ind(G,Hk) = q(G; k1, . . . , kh) for
every k = (k1, . . . , kh) ∈ Nh.

Proof. We first move from counting homomorphisms to injective homomor-
phisms by the identity (for this and the following identities see for example [2])

hom(G,Hk) =
∑
Θ

inj(G/Θ, Hk),

where the sum is over partitions Θ of V (G), and G/Θ is the graph obtained
from G by identifying vertices that lie in the same block of Θ. We then have

inj(G,Hk) =
∑
Θ

µ(Θ)hom(G/Θ, Hk),

where
µ(Θ) =

∏
I∈Θ

(−1)|I|−1(|I|−1)!

is the Möbius function of the lattice of partitions of V (G). Thus, it follows that
hom(G,Hk) is a polynomial in k if and only if inj(G,Hk) is a polynomial in k.

Now, to move between counting induced substructures and counting injective
homomorphisms, we use the identity

inj(G,Hk) =
∑
G′⊇G

ind(G′, Hk),

in which inj(G,H) denotes the number of injective homomorphisms from G into
H. From this identity, by inclusion-exclusion we obtain

ind(G,Hk) =
∑
G′⊆G

(−1)|E(G)|−|E(G′)|inj(G′, Hk).

Hence, inj(G,Hk) is a polynomial in k if and only if ind(G,Hk) is a polyno-
mial in k.

Finally, putting these two conclusions together, hom(G,Hk) is a polynomial
in k if and only if ind(G,Hk) is a polynomial in k.

The property of being a strongly polynomial sequence is preserved under
operations such as complementation, disjoint union, and join (as shown by De
la Harpe and Jaeger [9]), taking line graphs and lexicographic and Cartesian
products, although we do not prove this here as these facts are not needed in
this paper. A wide-ranging description of operations that preserve the property
of being strongly polynomial is given in [8], in which the model-theoretic notion
of an interpretation scheme is applied to sequences of relational structures (not
just graphs) in order to produce a large class of strongly polynomial sequences
of graphs.
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2.2 Coloured rooted trees and branching

Let T be a rooted tree with vertex set V (T ), edge set E(T ), root r, and set of
leaves L(T ). For s ∈ V (T )− r, let P (s) denote the unique path from root r to
vertex s. A vertex t 6= s is an ancestor of s if t ∈ P (s), and a descendant of s
if s ∈ P (t). Let D(T ) = {(s, t) : st ∈ E(T ), s ∈ P (t)} be the set of edges of T
directed away from the root. The predecessor of s 6= r is the vertex adjacent to
s in P (s), and is denoted by p(s); we have (p(s), s) ∈ D(T ).

The level of s ∈ V (T ) is the number of its ancestors, i.e., |P (s)|−1. The
root of T is the unique vertex at level 0, and its height is the maximum level,
i.e., height(T ) = max{|P (s)| − 1 : s ∈ V (T )}. The set {t ∈ V (T ) : s ∈ P (t)}
is the vertex set of the subtree Ts of T that is rooted at vertex s (tree Ts is a
maximal subtree of T , containing all descendants of its root s).

Definition 2.4. Let A be a set. An A-coloured rooted tree (T, αA) is a rooted
tree T together with a partial function αA : V (T )→ A assigning an element of
A to some vertices of T .

A marked A-coloured rooted tree (T, αA, β) is an A-coloured rooted tree
(T, αA) together with a partial function β : D(T )→ N assigning positive integers
to some edges of T .

A vertex not in the domain of αA is called an uncoloured vertex, and an
edge not in the domain of β is called unmarked. These domains are denoted by
dom(αA) and dom(β), respectively. If all the edges in (T, αA, β) are unmarked
then (T, αA, β) can be regarded simply as the A-coloured rooted tree (T, αA).
Given a rooted subtree T ′ of T , we shall write (T ′, αA, β) to refer to T ′ as an
A-coloured rooted subtree of (T, αA, β), where αA and β are restricted to V (T ′)
and D(T ′) respectively.

Isomorphism between (marked) A-coloured rooted trees includes preserva-
tion of colours on vertices (and integers on edges) as well as isomorphism of the
rooted tree structure.

In Section 4 of applications, A-coloured rooted trees are used for representing
graphs (for example, clique-width expression trees). Marked A-coloured rooted
trees will be used in this paper together with the branching operation defined
below to produce sequences of A-coloured rooted trees that represent strongly
polynomial sequences of graphs (see Section 4 for some concrete examples).

Definition 2.5. Let (T, αA, β) be a marked A-coloured rooted tree with edge
(s, t) ∈ D(T ) such that β((s, t)) = k. The branching of (T, αA, β) on (s, t) is
the marked A-coloured rooted tree which

(i) coincides with (T, αA, β) on T \ Tt,
(ii) the edge (s, t) that was marked with k is replaced by k unmarked edges

(s, t1), . . . , (s, tk),

(iii) the subtree (Tt, αA, β) that was pendant from edge (s, t) is replaced by k
isomorphic copies (Tti , αA, β), 1 ≤ i ≤ k, each pendant from the corre-
sponding edge (s, ti).
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The value β((s, t)) = k is the branching multiplicity of edge (s, t).

See Figure 1 for an illustration of Definition 2.5.

bc
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subtree Tt

b b b

bc

k

b

bc t1

s

k copies of Tt

t2 tk

b b b

b b b

bc

bc

bc bc

bc bc bcbc

bc bc

Figure 1: Branching on edge (s, t) with multiplicity given by its edge-mark k.
(See Definition 2.5.)

Branching consecutively on a pair of edges is independent of the order in
which those edges are taken. Indeed, if (s, t), (s′, t′) ∈ D(T ) are such that
Ts′ ∩ Tt = ∅ (i.e., t is not a descendant of s′, and vice versa) then, clearly, it
makes no difference to the resulting marked A-coloured rooted tree if we first
branch on (s, t) and then branch on (s′, t′), or if we branch in the reverse order.
When s′ ∈ P (t) or t ∈ P (s′), we require the following lemma.

Lemma 2.6. Let (T, αA, β) be a marked A-coloured rooted tree, and (s, t), (s′, t′) ∈
D(T ) such that β((s, t)) = k, β((s′, t′)) = k′, and Ts′ ⊆ Tt. Then the two marked
A-coloured rooted trees obtained from (T, αA, β) by, respectively,

(i) first branching on (s, t) and then branching on each of the k copies of
(s′, t′),

(ii) first branching on (s′, t′) and then branching on (s, t),

are isomorphic.

Proof. Suppose that we first branch on (s, t), producing k isomorphic copies
of (Tt, αA, β) each pendant from s. In particular, as Tt′ ⊆ Tt, this produces
k copies of (Tt′ , αA, β), each rooted by a copy of vertex t′, and each pendant
from its own copy of s′. Branching on each copy of edge (s′, t′) then produces
k′ isomorphic copies of (Tt′ , αA, β) pendant from each corresponding copy of s′.

On the other hand, starting by branching on (s′, t′) first produces k′ copies
of (Tt′ , αA, β), each of which are pendant from s′. As Ts′ ⊆ Tt, this gives a
marked A-coloured rooted tree which contains the k′ copies of (Tt′ , αA, β) and
is rooted at t; branching on (s, t) produces k copies of this tree.
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Either way, we obtain kk′ isomorphic copies of (Tt′ , αA, β), with k′ copies of
(Tt′ , αA, β) pendant from s′ in each of the k copies of (Tt, αA, β) pendant from
s. The remainder of the marked A-coloured rooted tree, (T, αA, β) \ (Tt, αA, β),
remains unchanged.

Definition 2.7. The full branching of a markedA-coloured rooted tree (T, αA, β)
is the A-coloured rooted tree obtained by branching on (s, t) for each (s, t) ∈
dom(β).

By Lemma 2.6, the full branching of (T, αA, β) is a well-defined A-coloured
rooted tree.

Definition 2.8. Let (T, αA) be an A-coloured rooted tree, and let k = (ks,t :
(s, t) ∈M ⊆ D(T )) be a tuple of positive integers. The k-branching of (T, αA) is
the full branching of (T, αA, β) where β : D(T )→ N is defined by β((s, t)) = ks,t
for (s, t) ∈M . We denote this A-coloured rooted tree by (Tk, αA).

In Definition 2.8 we abuse notation slightly, in that we use the same symbol
αA for the A-colouring of vertices of Tk as for the A-colouring of vertices of T :
the former is determined by the latter by definition of branching, copies of a
vertex v ∈ V (T ) in V (Tk) receiving the same colour as v.

Further, we shall (when possible) omit altogether indicating the functions αA

and β in the notation for (marked) A-coloured rooted trees. Thus, for example,
we shall simply say (marked) coloured rooted tree T , branching of T , and write
Tk for the k-branching of (T, αA) when the colouring αA does not need to be
specified.

2.3 Tree models for graphs

We shall use the k-branching of coloured rooted trees of Definition 2.8 in order
to produce strongly polynomial sequences of graphs (Hk). To do this we take
a coloured rooted tree T that represents a graph H (such as a cotree if H is a
cograph) and form the k-branching of T , thereby producing a coloured rooted
tree that represents the graph Hk. Here, we introduce the relevant properties
required by such a representation of graphs (by coloured rooted trees) for this
construction to work.

Definition 2.9 (cf. [6], Def. 3.1). Let H be a class of graphs and A a finite set.
A rooted tree model for graphs in H by a class of A-coloured rooted trees T is
given by a surjective function γ : T → H with the property that

(i) γ is an isomorphism invariant, i.e., γ(T ) = γ(T ′) when T and T ′ are
isomorphic as coloured rooted trees,

(ii) the vertices of γ(T ) are in bijective correspondence with a subset of vertices
of T containing L(T ) (the leaves of T ),

(iii) for each H ∈ H there are only finitely many coloured rooted trees T ∈ T
such that γ(T ) ∼= H,
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(iv) if H ∈ H, and T ∈ T are such that γ(T ) ∼= H, then for each connected
induced subgraph G of H there is an induced subtree S of T such that
S ∈ T and γ(S) ∼= G,

Examples of rooted tree models for graphs include:

(a) cotrees for cographs, and more generally clique-width expression trees for
graphs [3, 4] (where we bound the clique-width so as to restrict to a finite
colour set A),

(b) m-partite cotrees, used to define the shrub-depth of a graph [6],

(c) the rooted trees used to define tree-depth [12, 13] (where the tree-depth
must be bounded so as to have a finite colour set A).

In Section 4 we shall see examples of strongly polynomial sequences of graphs
built using the models (a), (b) and (c).

Remark 2.1. Under condition (i) of Definition 2.9 we follow the usual con-
vention, as for graphs, of identifying an isomorphism class of A-coloured rooted
trees with a representative of the class.

Condition (ii) allows us to identify V (γ(T )) with a subset of V (T ). Thus,
for models (a) and (b) we have V (γ(T )) = L(T ), and V (γ(T )) = V (T ) for
model (c). The condition that L(T ) ⊆ V (γ(T )) has as a consequence that to
each automorphism of T , which can be described by its action on L(T ), there is
a unique automorphism of γ(T ) defined by the corresponding action on vertices:
this fact will be used in the proof of the key result Theorem 3.1.

Condition (iii) is required for our main Theorems 3.1 and 3.3 in order to
have, for given graph H, a bound on the size of A-coloured rooted tree T in T
such that γ(T ) ∼= H. This condition is satisfied by the three models (a), (b) and
(c) above.

In condition (iv) by subtree is meant not necessarily a maximal rooted sub-
tree, just an induced subgraph of T that is a tree and whose root is the vertex
at the minimum level. Making the identification of V (H) with a subset of V (T )
allowed by (ii), the tree S representing G is the minimal connected subtree of T
that spans V (G).

3 Strongly polynomial sequences by branching

3.1 Main results

For the meaning of the notation Tk (the k-branching of T ) see Definition 2.8
above.

Theorem 3.1. Let γ : T → H be a rooted tree model, T ∈ T , γ(T ) = H, and
M ⊆ D(T ). Let k = (ks,t : (s, t) ∈ M) be a tuple of positive integers with the
property that branching T on any edge (s, t) yields another tree in T .

Then the sequence (γ(Tk)) is a strongly polynomial sequence of graphs in k
with initial term H.
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Let S be the set of all graph sequences (indexed by finite tuples n ∈ Nh,
for some h ∈ N). For two graph sequences (Gm) and (Hn) the disjoint union
is the graph sequence (Gm tHn), indexed by the tuple (m,n), and the join is
the graph sequence (Gm +Hn), also indexed by the tuple (m,n). (If m and n
share coordinates, for example if m = n, then the tuple (m,n) can be reduced
to correspondingly fewer coordinates.)

For a graph H, let φ : V (H) → S assign a graph sequence to each vertex
of H. The ornamented graph (H,φ) is the graph H together with the sequence
φ(v) associated with each vertex v ∈ V (H). The composition of the ornamented
graph (H,φ) is the graph sequence obtained by taking the disjoint union of the
sequences {φ(v) : v ∈ V (H)} and then joining sequences φ(u) and φ(v) whenever
uv ∈ E(H), and otherwise leaving the disjoint union of the sequences. When
H = K2 composition is simply the join of the two sequences ornamenting the
two vertices, and when H = K2 composition is the disjoint union. See Figure 2
for how graph ornamentation will be depicted later (Figures 7– 11 in Section 4).

Gk Hl

(graph join)

b b Gk +Hl

compositionornamentedK2

Gk Hl

(disjoint union)

b b Gk ⊔Hl

compositionornamentedK2
with sequences
(Gk) and (Hl)

with sequences
(Gk) and (Hl)

Figure 2: Ornamentation of K2 and K2 by graph sequences and the resulting
compositions. In the diagram we write Gk instead of, more properly, (Gk), so
as to make the diagram more readable.

We now augment a tree model γ : T → H for graphs by A-coloured rooted
trees to a tree model for ornamented graphs by A×S-coloured rooted trees. We
make the identification allowed by Definition 2.9 (ii) and assume that L(T ) ⊆
V (γ(T )) ⊆ V (T ) for each T ∈ T .

Let (αA, φ) denote the A× S-colouring that assigns (αA(v), φ(v)) to vertex
v ∈ V (T ). Then γ interprets the A × S-coloured rooted tree (T, (αA, φ)) as
the ornamented graph (γ(T ), φ). The tree model is defined for marked A ×
S-coloured rooted trees (T, (αA, φ), β) by taking the full branching and then
interpreting the resulting A × S-coloured rooted tree as an ornamented graph
as before.
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Theorem 3.2. Let γ : T → H be a rooted tree model, T ∈ T , γ(T ) = H, and
M ⊆ D(T ). Let k = (ks,t : (s, t) ∈ M) be a tuple of positive integers with the
property that branching T on any edge (s, t) yields another tree in T .

Then the sequence (γ(Tk), φ) of ornamented graphs yields by composition
a strongly polynomial sequence of graphs in k and the parameters indexing the
sequences {φ(v) : v ∈ V (γ(T ))}.

Our third main result gives a sufficient criterion for a family of graphs to be
decomposable into finitely many strongly polynomial subsequences.

Let H be a class of graphs given by a rooted tree model γ : T → H. For
H ∈ H, we define υT (H) to be the minimum value of |V (T )| over T ∈ T
such that γ(Tk) = H for some k = (ks,t : (s, t) ∈ D(T )). We call υT (H) the
branching core size of H in the rooted tree model γ : T → H.

Theorem 3.3. Let H be a class of graphs given by a rooted tree model γ :
T → H. Suppose that F ⊆ H is such that {υT (F ) : F ∈ F} is bounded. Then
F can be partitioned into a finite number of strongly polynomial subsequences
of graphs. Moreover, the strongly polynomial subsequences can be produced by
branching a finite number of rooted trees in T .

It is easy to give examples of a family of unbounded branching core size
in one tree model that is of bounded branching core size in another: complete
graphs {Kk : k ∈ N} have bounded branching core as cotrees but unbounded
tree-depth branching core size. Theorem 3.3 ensures that such a family can
be finitely partitioned into strongly polynomial subsequences, even though of
unbounded branching core size relative to some tree models.

A partial converse to Theorem 3.3 would require some strengthening of its
hypothesis. For example, we believe that although the sequence (Kk tKk+1 t
· · · tKk+`−1)k,`∈N is strongly polynomial, the family of graphs {Kk tKk+1 t
· · · tKk+`−1 : k, ` ∈ N} has unbounded branching core size in any tree model.

3.2 Proofs

Proof of Theorem 3.1. By Lemma 2.3 it suffices to prove that, for each con-
nected graph G, the number ind(G, γ(Tk)) of induced copies of G in γ(Tk) is a
polynomial in k. Further, by Definition 2.9 (ii), (iii) and (iv), there are finitely
many distinct isomorphism classes of subtrees S1, . . . , Sj of Tk, where j de-
pends only on G and not on k, and corresponding isomorphic copies G1, . . . , Gj

of G in γ(Tk), such that for each 1 ≤ i ≤ j we have γ(Si) = Gi
∼= G and

L(Si) ⊆ V (Gi) ⊆ V (Si). Conversely, if S is a subtree of Tk such that γ(S) ∼= G
then S ∼= Si for some 1 ≤ i ≤ j. Hence,

ind(G, γ(Tk)) =

j∑
i=1

ind(Si, T
k). (1)

Thus it suffices to prove that ind(Si, T
k) is a polynomial in k for each 1 ≤ i ≤ j.
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For each subtree Tt rooted at t 6= r in the coloured rooted tree T , there are
kp(t),t isomorphic copies of Tt in Tk produced by branching. Consequently,

Aut(Tk) contains kp(t),t! elements arising from permutations of these kp(t),t

copies of Tt in Tk. Let Σ be the wreath product of these permutation groups
for each t. Then, Σ ≤ Aut(Tk) and |Σ| = k! =

∏
t∈V (T )−r kp(t),t!.

For each 1 ≤ i ≤ j, the set of isomorphic copies of Si appearing in Tk is
partitioned into a finite number ri of orbits under the action of Σ. Let Si,` with
1 ≤ ` ≤ ri be representatives from these orbits, and let pi,` denote the size of
the orbit containing Si,`. We next prove that each pi,` is a polynomial pi,`(k)
in k and so ind(Si, T

k) =
∑ri

`=1 pi,`(k) is a polynomial in k for each 1 ≤ i ≤ j.
Let us fix 1 ≤ i ≤ j and 1 ≤ ` ≤ ri.

Observe that there is a minimal m = (ms,t : (s, t) ∈ D(T )) ≤ k, depending
on Si,` but not on k, such that Si,` is an induced subgraph of the induced
subtree Tm of Tk. (The notation m ≤ k or k ≥ m indicates that ms,t ≤ ks,t
for each (s, t) ∈ D(T ).)

For k ≥ m, the stabilizer of Si,` under the action of Σ contains all per-
mutations of ks,t − ms,t copies of a subtree Tt not containing any vertices
of Si,`. The stabilizer of Si,` therefore has size a multiple of (k − m)! =∏

(s,t)∈D(T )(ks,t −ms,t)! and so pi,` is a divisor of k!/(k −m)!, which is poly-
nomial in k. On the other hand, an automorphism in Σ that stabilizes Si,`

cannot move any of the ms,t branches containing vertices of Si,` to any of the
ks,t − ms,t branches that do not contain a vertex of Si,`, but only these ms,t

branches among themselves. Hence, the stabilizer of Si,` has size a divisor of
(k−m)!m! which implies that pi,` is a multiple of k!

(k−m)!m! .

Thus, when k ≥ m, pi,` = pi,`(k) is a polynomial in k that is a multiple
of k!

(k−m)!m! and divisor of k!
(k−m)! . In particular, we have pi,`(k) = 0 when

ks,t < ms,t for some (s, t) ∈ D(T ). By definition of m, if ks,t < ms,t for some
(s, t) ∈ D(T ) then Si,` does not occur as a subgraph of Tk. So the polynomial
pi,`(k) counts the number of occurrences of Si,` in Tk not only for k ≥ m but
also for k ≤m, when it is equal to zero. In other words, pi,` = pi,`(k) for all k,
not just for k ≥m.

We therefore conclude that ind(Si, T
k) =

∑
1≤`≤ri pi,`(k) is a polynomial in

k for each 1 ≤ i ≤ j. By equation (1) and Lemma 2.3 we have that the sequence
(γ(Tk)) is a strongly polynomial in k.

Proof of Theorem 3.2. For a fixed connected graph G, a copy of G in the com-
position (γ(Tk), φ) falls into a finite number of types, each of which can be
described by a subtree S of Tk and, for each s ∈ V (S), an isomorphism type
Gs of induced subgraph of φ(s), such that the composition of γ(S) ornamented
by Gs on vertex s ∈ V (S) is isomorphic to G. By assumption, the number of
copies of Gs in φ(s) is a polynomial in the parameters indexing the sequence
φ(s). This polynomial multiplied by the number of copies of S in Tk, which
is a polynomial in k by the argument given in the proof of Theorem 3.1, is a
polynomial in the parameters indexing the sequence φ(s) and k. Summing over
the finitely many choices of S and induced subgraph isomorphism types of G
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that occur in φ(v) we obtain the desired conclusion.

Proof of Theorem 3.3. By the assumption that F is of bounded minimum branch-
ing core size, there is a bound B such that for each F ∈ F we have γ(Tk) = F
for some asymmetric A-coloured rooted tree T with |V (T )| = υT (F ) ≤ B and
some k ∈ ND(T ).

The set of A-coloured asymmetric rooted trees T (no colour-preserving au-
tomorphisms) of bounded size (|V (T )| ≤ B) is finite, as A is finite [13]. Hence
there is a finite list of asymmetric A-coloured rooted trees T1, . . . , T` such that
for each F ∈ F there is 1 ≤ i ≤ ` and k ∈ ND(Ti) such that F = γ(Tk

i ).
Hence the terms of the strongly polynomial sequences (Tk

i )k∈ND(Ti) , 1 ≤ i ≤
`, together cover all of F .

Proof that (Kk tKk+1 t · · · tKk+`−1) is strongly polynomial. The number of
homomorphisms from a graph G to the graph KktKk+1t· · ·tKk+`−1 is given
by ∑

V1tV2t···tV`=V (G)

∏
1≤i≤`

P (G[Vi]; k + i− 1) (2)

where P (G[Vi]) is the chromatic polynomial of the subgraph of G induced on
Vi, and

∏
P (G[Vi]; k+i−1) is a polynomial in k+i−1 of degree |Vi|.

The expression (2) is therefore a symmetric polynomial in variables k, k +
1, . . . , k+ `−1 of degree bounded by |V (G)|, and so is a linear combination
of elementary symmetric polynomials in k, k + 1, . . . , k+`−1 (at most up to
degree |V (G)|). These elementary symmetric polynomials are coefficients of the
falling factorial (x− k)` (up to degree |V (G)|), which are polynomials in k and
` (for example, the first elementary symmetric function is `k +

(
`
2

)
) and which

can be given explicitly in terms of Stirling numbers of the second kind. Hence
expression (2) defines a polynomial in just the two variables k and `.

4 Examples

We present three examples of rooted tree models for graphs: in Section 4.1
clique-width expression trees (including cotrees for cographs), in Section 4.2
tree-depth embeddings of graphs in the closure of rooted trees, and in Section 4.3
m-partite cotrees (related to shrub-depth). For each we specify the set of A-
coloured rooted trees T , the class of graphs H that they encode (by specifying
a rooted tree T together with a colouring αA : V (T ) → A such that (T, αA)
encodes H), and the edges of a rooted tree in T on which branching can be
applied while staying in the class T . We then illustrate the diversity of strongly
polynomial sequences that Theorems 3.1 and 3.2 provide.

We also give representations of the cycle C4 for each of the three rooted tree
models, and apply Theorem 3.1 to obtain a strongly polynomial sequence of
graphs to which C4 belongs as a term.

We begin with cotrees, as a special case of clique-width expression trees,
for it is by this tree model for cographs that the strongly polynomial sequences
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determining the chromatic polynomial, the Tutte polynomial, the Averbouch–
Godlin–Makowsky polynomial, and the Tittmann–Averbouch–Makowsky poly-
nomial are most simply described.

4.1 Cotrees and clique-width expression trees

4.1.1 Cotrees and cographs

Let H be the set of cographs (graphs with no induced path on 4 vertices) and
T the set of A-coloured rooted trees in which A = {0, 1} and each T ∈ T has a
colour from A on each non-leaf vertex, while L(T ) is uncoloured. The leaf set
L(T ) is the vertex set of the graph encoded by the coloured rooted tree T .

The least common ancestor s ∧ t of two vertices s and t in a rooted tree T
is the vertex at the maximum level in the common subpath P (s) ∩ P (t). The
encoding γ : T → H sets V (γ(T )) = L(T ) and joins s and t by an edge if and
only if αA(s ∧ t) = 1.

Some simple examples of marked cotrees are given in Figure 3. For each
of them, we indicate the strongly polynomial sequence of cographs obtained by
Theorem 3.1 (arbitrarily branching the corresponding cotree; marks indicating
branching multiplicities). We write Kk for the complement of the complete
graph Kk.

b

1

Kk

k

b

0

k

Kk

b

1

k

0

b
l

0

Kk,l

b

0

k

1

b
l

1

Kk ∪Kl

Figure 3: Examples of strongly polynomial sequences produced by branching
of cotrees according to multiplicities given by edge marks. (Unmarked edges
in the diagram have mark set equal to 1.) The root is the lowest vertex. The
operation of disjoint union is represented by a white circle labelled 0, that of
join by a white node labelled 1. Vertices of the graph represented by the cotree
are the black circles (taken with multiplicity given by branching).

In Figure 4 we display a cotree for the cycle C4, its condensed representa-
tion as a marked cotree (again, marks indicating branching multiplicities), and
finally the strongly polynomial sequence of cographs obtained by γ (arbitrarily
branching this condensed cotree). Here, we use the notation Kk[Kl] to indicate
the composition of the ornamented graph (Kk, φ) where φ assigns the graph Kl
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to every vertex of Kk. This composition gives a complete multipartite graph
with variable number and size of parts.

b

1

0 0

C4

b bb b

1

2

0

C4

2

b

1

l

0

Kk[K l] ∼= kKl

k

marked cotree marked cotreecotree

Figure 4: Cotree for C4 as a marked cotree, and the result of arbitrary branching
on each edge. The right-most marked cotree represents the multipartite graph
Kk,...,k with l parts.

Figure 5 shows the sequences of cographs (defined by branching cotrees or-
namented with loops) from which one can obtain, by Theorems 3.1 and 3.2, the
chromatic polynomial, the Tutte polynomial, the Averbouch-Godlin-Makowsky
polynomial, and the Tittmann-Averbouch-Makosky polynomial. We use Kl

k to
denote the complete graph Kk with a loop of mutiplicity l attached at each ver-
tex, and K1,k[K1

1 (centre);K1
j (leaves)] for the composition of the ornamented

graph (K1,k, φ) where K1,k denotes the star on k+ 1 vertices, and φ assigns the
indicated graphs to the center and the leaves of K1,k. We can clearly see how the
chromatic polynomial is a specialization of the Tutte polynomial, and the Tutte
polynomial a specialization of the Averbouch–Godlin–Makowsky polynomial.

4.1.2 Clique-width expression trees

Let H be the class of all simple graphs of clique-width at most k and T the set
of A-coloured rooted trees in which A = [k] ∪ {ηi,j : i, j ∈ [k], i < j} ∪ {ρi→j :
i, j ∈ [k], i 6= j} ∪ {⊕} and a tree in T has leaves coloured by N, non-leaves by
either ⊕ (disjoint union), ηi,j (join vertices labelled i and j) or ρi→j (relabel
vertices i with label j). Further, a vertex coloured ηi,j has only one child, which
is coloured ⊕, and ρi→j has also only one child. Therefore in branching we only
mark edges whose vertex nearest the root is coloured ⊕.

For k = 2 clique-width expression trees can be transformed into cotrees as
defined above. Indeed, cographs are precisely the graphs of clique-width at
most 2.

Figure 4 can be redrawn as a clique-width 2 expression tree, but we omit
this here and proceed in Figures 6, 7 and 8 to other representations of C4 by
clique-width expression trees and the associated families of graphs obtained by
general branching on edges of the expression tree.
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0
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b
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b

l l

chromatic Potts Averbouch–Godlin–Makowsky

(l = 0 is Dohmen–Ponitz–Tittmann)

Tittmann–Averbouch–Makowsky

Figure 5: Strongly polynomial sequences of cographs determining known graph
polynomials. A loop attached to a vertex of a cotree remains attached in its
branched copies, and is attached with multiplicity l when marked by l.
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Figure 6: Simplest clique-width expression tree for C4, which with general
branching situates this graph among complete bipartite graphs Kk,l.
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Figure 7: C4 encoded by a different clique-width 2 expression tree to that of
Figure 6, and the same tree with general branching multiplicities, giving the
composition of the ornamented graph illustrated rightmost. The latter general-
izes the graph obtained by general branching of the first tree-depth encoding of
C4 illustrated in Figure 9.
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Figure 8: C4 encoded by a clique-width 3 expression tree and the same tree
with general branching multiplicities, giving the composition of C4 ornamented
by cocliques, illustrated on the right as an ornamented graph.
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4.2 Tree depth model

The closure of a rooted tree T is the graph clos(T ) on vertex set V (T ) where st
is an edge if s ∈ P (t) or t ∈ P (s), and s 6= t. A simple graph H has tree-depth
d, denoted by td(H) = d, if H is a subgraph of clos(T ) for some rooted tree T
of height d−1, and it is not a subgraph of the closure of a rooted tree of smaller
height. For example, the path Pk has tree-depth dlog2(k+1)e and the complete
graph Kk has tree-depth k. See [12].

Let H be the class of all simple graphs of tree depth at most d and T the
set of all A-coloured rooted trees in which the colour set A is the set of all finite
subsets of {0, 1, . . . , d − 1} and in which a vertex at level ` in a tree T ∈ T ,
1 ≤ ` ≤ d, receives a colour that is a subset of {0, 1, . . . , ` − 1}, and the root
always receives the emptyset as colour. For a graph contained in the closure of
some rooted tree T of height ≤ d, the colour set A is thus restricted to subsets
of {0, 1, . . . , d− 1}.

Let H ∈ H be contained in the closure of a rooted tree T as a spanning
subgraph. For given H there are many choices for T , such as a depth-first search
tree for H, or a tree T of minimal height td(H) − 1 whose closure contains H
as a subgraph.

The subgraph H of clos(T ), where T has height d ≥ td(H) − 1, is encoded
by assigning to the vertices of T subsets of {0, 1, 2, . . . , d − 1}. The colour of
vertex s indicates which of the vertices on the chain P (s) vertex s is adjacent
to in H. Specifically, a non-root vertex s ∈ V (T ) is assigned the set α(s) ⊆
{0, 1, . . . , |P (s)|−2} when in the subgraphH the vertex s is joined to its ancestors
(other vertices in the chain P (s)) precisely at levels i ∈ α(s). (The root, the
only vertex at level 0, is always assigned the empty set.) In other words,

α(s) = {|P (s)|−1−d(s, t) : t ∈ P (s), st ∈ E(H)},

where d(s, t) is the distance between s and t in T . For example, s receives the
empty set if it is joined to none of its ancestors, and the set {0, 1 . . . , |P (s)|−2}
when it is joined to all its ancestors.

In Figure 9 we display two strongly polynomial sequences produced by
branching different representations of C4 embedded in the closure of a rooted
tree.

4.3 Shrub depth model

The notions of shrub depth and m-partite cographs were introduced in [6]. We
just make the definitions of required in order to describe the relevant coloured
rooted tree encoding of graphs as m-partite cotrees.

Let H be the set of m-partite cographs and T the set of A-coloured rooted
trees in which A is the set of

(
m+1

2

)
unordered pairs of elements in [m], and each

T ∈ T has a colour set equal to a subset of A on each non-leaf vertex, while
each L(T ) is coloured with an element of [m]. The leaf set L(T ) is the vertex
set of the graph encoded by the coloured tree T .
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As for cotrees, in a m-partite cotree adjacencies between leaf vertices s, t ∈
L(T ) are determined by the colour of the least common ancestor s ∧ t. The
encoding γ : T → H sets V (γ(T )) = L(T ) and joins s and t by an edge if and
only if the pair of colours αA(s), αA(t) belongs to αA(s ∧ t). Branching can
be performed on any edge of shrub-depth tree representation so as to represent
another graph.

The clique-width expression trees of Figure 7 and 8 have direct translations
as 2-partite cotrees. Another pair of 2-partite cotrees representing C4 is dis-
played in Figure 10. By representing C4 by a 4-partite cotree with 6 edges
we see in Figure 11 a strongly polynomial sequence indexed by 6 parameters
k, l,m, n, p, q that contains C4 as an initial term.
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Figure 9: Two embeddings of C4 in a rooted tree, and the result of branching more

generally. In the rightmost graphs, the lines represent graph joins of the ornament

graphs on the vertices. The top-right graph can be obtained as a composition of an

ornamented graph (the star K1,k with each edge replaced by a path of length two,

ornamented with Kl on some vertices). The bottom right graph requires composition

of an ornamentation of a more complicated underlying graph.
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Figure 10: C4 encoded in two ways by a 2-partite cotree and the same trees
with general branching multiplicities. The top one gives the composition of
the complete bipartite graph Km,m ornamented by cocliques, while the bottom
one consists of cliques Kkm and Klm together with edges joining each of m
subcliques of size k to m subcliques of size l, as shown.
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branching multiplicities along with the graph it represents, illustrated as a graph
ornamented by cocliques.
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5 Concluding remarks

Theorems 3.1 and 3.2 allow the construction of a large family of strongly poly-
nomial sequences, which includes those determining the chromatic polynomial,
the Tutte polynomial, the Averbouch–Godlin–Makowsky, and the Tittmann–
Averbouch–Makowsky polynomial. (See the cotree representations in Figure 5
above.) However, not all strongly polynomial sequences are covered by them.

The generalized Johnson graph (Jk,`,D), 1 ≤ ` ≤ k ∈ N, ∅ ⊂ D ⊆ {0, 1, . . . , `},
is the graph whose vertices are subsets of {1, 2, . . . , k} of size `, two vertices being
adjacent if and only if their intersection has size belonging to D. In particular,
when D = {0} the graph Jk,`,{0} is the Kneser graph KGk,`.

For fixed `,D, the sequence (Jk,`,D) is shown in [9, Prop. 3] to have the
property that hom(G, Jk,`,D) is a fixed polynomial in k for sufficiently large
k. It is not difficult to develop the proof of this result to show that in fact
(Jk,`,D) is a strongly polynomial sequence. However, we cannot find a rooted
tree model that can produce this sequence by branching, except when ` = 1,
where Jk,1,{0} = Kk , Jk,1,{1} is Kk with a loop on each vertex, and Jk,1,{0,1} is
Kk with a loop on each vertex. A way to build up the sequence of generalized
Johnson graphs (Jk,`,D) from more basic strongly polynomial sequences has been
found in [8]. Using a model-theoretic approach, our branching of coloured rooted
trees becomes a special case of interpretation of graphs in another relational
structure: the generalized Johnson graphs find their interpretation in transitive
tournaments rather than in coloured rooted trees.
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