Reconstructing Phylogenetic Networks

Mareike Fischer, Leo van Iersel, Steven Kelk, Nela Lekić, Simone Linz, Celine Scornavacca, Leen Stougie

Centrum Wiskunde & Informatica (CWI)
Amsterdam

MCW Prague, 30 July 2013
Definition

Let X be a finite set. A **(rooted) phylogenetic tree** on X is a rooted tree with no indegree-1 outdegree-1 vertices whose leaves are bijectively labelled by the elements of X.
Definition

Let X be a finite set. A (rooted) phylogenetic network on X is a rooted directed acyclic graph with no indegree-1 outdegree-1 vertices whose leaves are bijectively labelled by the elements of X.

Parasitic Jaeger
Pomarine Skua
Great Skua
The first phylogenetic network (Buffon, 1755)
Definition

A reticulation is a vertex with indegree at least 2.
Tree-based methods

1. Compute trees from DNA sequences.
 - Different parts of DNA might give different trees.

2. Try to induce a phylogenetic network from the trees.

Definition

A phylogenetic tree T is **displayed** by a phylogenetic network N if T can be obtained from a subgraph of N by contracting edges.
Example: tree T is displayed by network N
The other binary tree T' displayed by network N
Challenge: try to reconstruct the network from the trees
Definition

The **reticulation number** of a phylogenetic network N is

$$\sum_{v \in V \setminus \{\text{root}\}} d^-(v) - 1.$$

Problem

Minimum Reticulation

- **Instance**: phylogenetic trees T_1, T_2
- **Solution**: phylogenetic network that displays T_1 and T_2
- **Minimize**: reticulation number of the network.

Theorem

There exists a constant factor approximation algorithm for Minimum Reticulation if and only if there exists a constant factor approximation algorithm for Directed Feedback Vertex Set.

Open question: how to handle more than two trees (efficiently)?
Reconstructing phylogenetic networks

- **Tree-based methods**
 1. Construct trees from DNA sequences.
 2. Find a network that displays the trees and has minimum reticulation number.

- **Sequence-based methods**
 - Find a network directly from the DNA sequences.
 - Optimize **Parsimony** or Likelihood score of network.
Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf, assign sequences to the internal vertices in order to minimize the total number of mutations.

Example input

ACCTG ATCTG ATCTC GTAAA TTACT
Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf, assign sequences to the internal vertices in order to **minimize** the total number of **mutations**.

Example labelling of internal vertices
Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf, assign sequences to the internal vertices in order to minimize the total number of mutations.

Example of one mutation

```
ACCTG
ATCTG
ATCTG
ATCTA
ATCTC
TTCTA
TTAAA
GTAAA
TTACT
```

Leo van Iersel (CWI) Reconstructing Phylogenetic Networks MCW Prague, 30 July 2013 18 / 44
Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf, assign sequences to the internal vertices in order to **minimize** the total number of **mutations**.

![Diagram showing a tree with sequences and numbers indicating mutations.]

All 9 mutations.
Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf, assign sequences to the interior vertices in order to **minimize** the total number of **mutations**.

- Polynomial-time solvable:
 - Consider each character separately.
 - Use dynamic programming (Fitch, 1971).

- Two possible extensions to networks:
 - hardwired
 - softwired
A \(p \)-state \textbf{character} on \(X \) is a function \(\alpha : X \rightarrow \{1, \ldots, p\} \).

The \textbf{change} \(c_{\tau}(e) \) on edge \(e = (u, v) \) w.r.t. a \(p \)-state character \(\tau \) on \(V(N) \) is defined as:

\[
c_{\tau}(e) = \begin{cases}
0 & \text{if } \tau(u) = \tau(v) \\
1 & \text{if } \tau(u) \neq \tau(v)
\end{cases}
\]

The \textbf{hardwired parsimony score} of a phylogenetic network \(N \) and \(p \)-state character \(\alpha \) is given by

\[
PS_{\text{hw}}(N, \alpha) = \min_{\tau} \sum_{e \in E(N)} c_{\tau}(e),
\]

where the minimum is taken over all \(p \)-state characters \(\tau \) on \(V(N) \) that extend \(\alpha \).
Example input: \((N, \alpha)\)
A 3-state character τ on $V(N)$ that extends α.
$PS_{hw}(N, \alpha) = 4$
The **softwired parsimony score** of a phylogenetic network N and p-state character α is given by

$$PS_{sw}(N, \alpha) = \min_{T \in \mathcal{T}(N)} PS(T, \alpha),$$

where $\mathcal{T}(N)$ is the set of trees on X displayed by N.

Softwired Maximum Parsimony on Networks

Leo van Iersel (CWI)
Reconstructing Phylogenetic Networks
MCW Prague, 30 July 2013 25 / 44
One of the two trees on X displayed by the network
A 3-state character τ on $V(T)$ that extends α.

Leo van Iersel (CWI)
Reconstructing Phylogenetic Networks
MCW Prague, 30 July 2013
27 / 44
There are 3 changes
The other tree needs 4 changes

The minimum over the two trees is 3, so $PS_{sw}(N, \alpha) = 3$.
Proposition

$PS_{hw}(N, \alpha)$ is not an $o(n)$-approximation of $PS_{sw}(N, \alpha)$.
Softwired Parsimony Score

\[PS_{sw}(N, \alpha) = 2 \]
Hardwired Parsimony Score

$PS_{hw}(N, \alpha) = 4 = r + 1$

with r the number of reticulations.
Proposition

Let G be the graph obtained from network N by merging all leaves x with $\alpha(x) = i$ into a single node γ_i, for $i = 1, \ldots, p$. Then, $PS_{hw}(N, \alpha)$ equals the size of a minimum multiterminal cut in G with terminals $\gamma_1, \ldots, \gamma_p$.

Corollary

Computing the hardwired parsimony score of a phylogenetic network and a binary character is polynomial-time solvable.

Corollary

Computing the hardwired parsimony score of a phylogenetic network and a p-state character, for $p \geq 3$, is NP-hard and APX-hard but fixed-parameter tractable (FPT) in the parsimony score, and there exists a polynomial-time 1.3438-approximation for all p and a $\frac{12}{11}$-approximation for $p = 3$.
Example
Merge 0-leaves and 1-leaves
Hardwired Parsimony Score is 4
Observation

There exists a (trivial) $|X|$-approximation for computing the softwired parsimony score of a phylogenetic network.

Theorem

For every constant $\epsilon > 0$ there is no polynomial-time approximation algorithm that approximates $PS_{sw}(N, \alpha)$ to a factor $|X|^{1-\epsilon}$, for a phylogenetic network N and a binary character α, unless $P = NP$.

Definition

A phylogenetic network is binary if the root has outdegree 2 and all other vertices have total degree 1 or 3.

Theorem

For every constant $\epsilon > 0$ there is no polynomial-time approximation algorithm that approximates $PS_{sw}(N, \alpha)$ to a factor $|X|^{\frac{1}{3}-\epsilon}$, for a binary phylogenetic network N and a binary character α, unless $P = NP$.
Proof: reduction from 3SAT
Binary case
Theorem

There is no **FPT** algorithm for computing the softwired parsimony score, with the score as parameter, unless $P = NP$.

Definition

A phylogenetic network is **level-k** if each biconnected component has reticulation number at most k.

Theorem

There is an **FPT** algorithm for computing the softwired parsimony score, with the **level** of the network as parameter.
ILP for softwired parsimony score

\[
\begin{align*}
\min \sum_{e \in E} c_e \\
\text{s.t. } \sum_{s \in \mathcal{P}} x_{v,s} &= 1 \quad \text{for all } v \in V \\
& c_e \geq x_{u,s} - x_{v,s} - (1 - y_e) \quad \text{for all } e = (u, v) \in E, s \in \mathcal{P} \\
& c_e \geq x_{v,s} - x_{u,s} - (1 - y_e) \quad \text{for all } e = (u, v) \in E, s \in \mathcal{P} \\
& \sum_{v: (v, r) \in E} y_{(v, r)} = 1 \quad \text{for each reticulation } r \\
& y_e = 1 \quad \text{for each non-reticulate edge } e \\
& x_{v, \alpha(v)} = 1 \quad \text{for each leaf } v \\
& c_e, y_e \in \{0, 1\} \quad \text{for all } e \in E \\
& x_{v,s} \in \{0, 1\} \quad \text{for all } v \in V, s \in \mathcal{P}
\end{align*}
\]

with \(\mathcal{P} = \{1, \ldots, p\} \) and \(\alpha(v) \) the given character state of a leaf \(v \).
Both parsimony scores can be computed quickly using ILP

\(X	\)	Avg. num. of retic.	Average computation time (s)		
	Hardwired PS	Softwired PS				
	2-state	3-state	4-state	2-state	3-state	4-state
50	17.0	0.0	0.0	0.1	0.1	0.3
100	37.0	0.0	0.0	0.2	0.0	0.6
150	54.1	0.0	0.1	0.6	0.1	0.8
200	72.8	0.0	0.1	1.1	0.1	1.4
250	91.3	0.0	0.1	3.5	0.1	2.2
300	112.6	0.0	0.2	5.2	0.1	3.7
Future Work

- Are there approximation or FPT algorithms for computing the softwired parsimony score of restricted classes of networks?

- How to search for an optimal network?

- What if the different characters are not independent?
Thanks

- Mareike Fischer (Greifswald)
- Steven Kelk (Maastricht)
- Celine Scornavacca (Montpellier)
- Simone Linz (Christchurch)
- Leen Stougie (Amsterdam)
- Nela Lekić (Maastricht)