Reconstructing Phylogenetic Networks

Mareike Fischer, **Leo van Iersel**, Steven Kelk, Nela Lekić, Simone Linz, Celine Scornavacca, Leen Stougie

> Centrum Wiskunde & Informatica (CWI) Amsterdam

MCW Prague, 30 July 2013

Definition

Let X be a finite set. A (rooted) phylogenetic tree on X is a rooted tree with no indegree-1 outdegree-1 vertices whose leaves are bijectively labelled by the elements of X.

Leo van lersel (CWI)

Reconstructing Phylogenetic Networks

Crenarchaeota

Euryarchaeota

Archaea

Eukaryota

Bacteroidetes

Chlorobi Acidobacteria

Firmicutes

Actinobacteria

Cyanobacteria

Chloroflexi

Deinococcus-Thermus Bacteria

Thermotogae

Alphaproteobacteria Betaproteobacteria Gammaproteobacteria Deltaproteobacteria Epsilonproteobacteria unclassified Proteobacteria

Fungi

Metazoa

Fungi/Metazoa

Viridiplantae

Heterokonta

Heterolobosea

W.F. Doolittle et al. (2000)

Leo van lersel (CWI)

Reconstructing Phylogenetic Networks

MCW Prague, 30 July 2013

Definition

Let X be a finite set. A **(rooted) phylogenetic network** on X is a rooted directed acyclic graph with no indegree-1 outdegree-1 vertices whose leaves are bijectively labelled by the elements of X.

Leo van lersel (CWI)

Reconstructing Phylogenetic Networks

MCW Prague, 30 July 2013 7 / 44

Phylogenetic network for humans (Reich et al., 2011)

Definition

A reticulation is a vertex with indegree at least 2.

Leo van lersel (CWI)

Reconstructing Phylogenetic Networks

Tree-based methods

- Occupate trees from DNA sequences.
 - Different parts of DNA might give different trees.
- **②** Try to induce a phylogenetic network from the trees.

Definition

A phylogenetic tree T is **displayed** by a phylogenetic network N if T can be obtained from a subgraph of N by contracting edges.

Example: tree T is displayed by network N

The other binary tree T' displayed by network N

Challenge: try to reconstruct the network from the trees

Definition

The **reticulation number** of a phylogenetic network N is

V

$$\sum_{\in V \setminus \{\text{root}\}} d^-(v) - 1.$$

Problem

Minimum Reticulation

- Instance: phylogenetic trees T_1, T_2
- Solution: phylogenetic network that displays T_1 and T_2
- Minimize: reticulation number of the network.

Theorem

There exists a constant factor approximation algorithm for MINIMUM RETICULATION if and only if there exists a constant factor approximation algorithm for DIRECTED FEEDBACK VERTEX SET.

Open question: how to handle more than two trees (efficiently)?

Reconstructing phylogenetic networks

Tree-based methods

- Construct trees from DNA sequences.
- Find a network that displays the trees and has minimum reticulation number.
- Sequence-based methods
 - Find a network directly from the DNA sequences.
 - Optimize **Parsimony** or Likelihood score of network.

Small parsimony problem: given a tree and a sequence for each leaf, assign sequences to the internal vertices in order to **minimize** the total number of **mutations**.

Example input

Small parsimony problem: given a tree and a sequence for each leaf, assign sequences to the internal vertices in order to **minimize** the total number of **mutations**.

Example labelling of internal vertices

Small parsimony problem: given a tree and a sequence for each leaf, assign sequences to the internal vertices in order to **minimize** the total number of **mutations**.

Example of one mutation

Small parsimony problem: given a tree and a sequence for each leaf, assign sequences to the internal vertices in order to **minimize** the total number of **mutations**.

All 9 mutations.

19 / 44

Small parsimony problem: given a tree and a sequence for each leaf, assign sequences to the interior vertices in order to **minimize** the total number of **mutations**.

- Polynomial-time solvable:
 - Consider each character separately.
 - Use dynamic programming (Fitch, 1971).
- Two possible extensions to networks:
 - hardwired
 - softwired

Hardwired Maximum Parsimony on Networks

- A *p*-state character on X is a function $\alpha : X \to \{1, \dots, p\}$.
- The change c_τ(e) on edge e = (u, v) w.r.t. a p-state character τ on V(N) is defined as:

$$c_{\tau}(e) = \begin{cases} 0 \text{ if } \tau(u) = \tau(v) \\ 1 \text{ if } \tau(u) \neq \tau(v). \end{cases}$$

• The hardwired parsimony score of a phylogenetic network N and *p*-state character α is given by

$$PS_{\mathsf{hw}}(N, \alpha) = \min_{\tau} \sum_{e \in E(N)} c_{\tau}(e),$$

where the minimum is taken over all *p*-state characters τ on V(N) that extend α .

Example input: (N, α)

A 3-state character τ on V(N) that extends α .

$$PS_{hw}(N, \alpha) = 4$$

The **softwired parsimony score** of a phylogenetic network N and *p*-state character α is given by

$$PS_{sw}(N, \alpha) = \min_{T \in \mathcal{T}(N)} PS(T, \alpha),$$

where $\mathcal{T}(N)$ is the set of trees on X displayed by N.

One of the two trees on X displayed by the network

A 3-state character τ on V(T) that extends α .

There are 3 changes

The other tree needs 4 changes

The minimum over the two trees is 3, so $PS_{sw}(N, \alpha) = 3$.

Proposition

 $PS_{hw}(N, \alpha)$ is not an o(n)-approximation of $PS_{sw}(N, \alpha)$.

Softwired Parsimony Score 0 0 0 0 0

 $PS_{sw}(N, \alpha) = 2$

Leo van lersel (CWI)

 $PS_{hw}(N, \alpha) = 4 = r + 1$

with r the number of reticulations.

Leo van lersel (CWI)

Proposition

Let G be the graph obtained from network N by merging all leaves x with $\alpha(x) = i$ into a single node γ_i , for i = 1, ..., p. Then, $PS_{hw}(N, \alpha)$ equals the size of a minimum multiterminal cut in G with terminals $\gamma_1, ..., \gamma_p$.

Corollary

Computing the hardwired parsimony score of a phylogenetic network and a binary character is polynomial-time solvable.

Corollary

Computing the hardwired parsimony score of a phylogenetic network and a p-state character, for $p \ge 3$, is NP-hard and APX-hard but fixed-parameter tractable (FPT) in the parsimony score, and there exists a polynomial-time 1.3438-approximation for all p and a $\frac{12}{11}$ -approximation for p = 3.

Example

Leo van lersel (CWI)

Observation

There exists a (trivial) |X|-approximation for computing the softwired parsimony score of a phylogenetic network.

Theorem

For every constant $\epsilon > 0$ there is **no polynomial-time approximation algorithm** that approximates $PS_{sw}(N, \alpha)$ to a factor $|X|^{1-\epsilon}$, for a phylogenetic network N and a binary character α , unless P = NP.

Definition

A phylogenetic network is **binary** if the root has outdegree 2 and all other vertices have total degree 1 or 3.

Theorem

For every constant $\epsilon > 0$ there is no polynomial-time approximation algorithm that approximates $PS_{sw}(N, \alpha)$ to a factor $|X|^{\frac{1}{3}-\epsilon}$, for a binary phylogenetic network N and a binary character α , unless P = NP.

Leo van lersel (CWI)

Binary case

Theorem

There is **no FPT** algorithm for computing the softwired parsimony score, with the score as parameter, unless P = NP.

Definition

A phylogenetic network is **level**-k if each biconnected component has reticulation number at most k.

Theorem

There is an **FPT** algorithm for computing the softwired parsimony score, with the **level** of the network as parameter.

ILP for softwired parsimony score

$$\begin{split} \min \sum_{e \in E} c_e \\ \text{s.t.} \quad & \sum_{s \in \mathcal{P}} x_{v,s} = 1 \\ & c_e \ge x_{u,s} - x_{v,s} - (1 - y_e) \\ & c_e \ge x_{v,s} - x_{u,s} - (1 - y_e) \\ & \sum_{v:(v,r) \in E} y_{(v,r)} = 1 \\ & y_e = 1 \\ & x_{v,\alpha(v)} = 1 \\ & c_e, y_e \in \{0, 1\} \\ & x_{v,s} \in \{0, 1\} \end{split}$$

for all $v \in V$

for all $e = (u, v) \in E, s \in \mathcal{P}$ for all $e = (u, v) \in E, s \in \mathcal{P}$

for each reticulation r

for each non-reticulate edge efor each leaf vfor all $e \in E$ for all $v \in V, s \in \mathcal{P}$

with $\mathcal{P} = \{1, \dots, p\}$ and $\alpha(v)$ the given character state of a leaf v.

Both parsimony scores can be computed quickly using ILP

X	Avg.	Average computation time (s)					
	num. of	Hardwired PS			Softwired PS		
	retic.	2-state	3-state	4-state	2-state	3-state	4-state
50	17.0	0.0	0.0	0.1	0.1	0.1	0.3
100	37.0	0.0	0.0	0.2	0.0	0.1	0.6
150	54.1	0.0	0.1	0.6	0.1	0.2	0.8
200	72.8	0.0	0.1	1.1	0.1	0.4	1.4
250	91.3	0.0	0.1	3.5	0.1	0.4	2.2
300	112.6	0.0	0.2	5.2	0.1	0.6	3.7

Future Work

- Are there approximation or FPT algorithms for computing the softwired parsimony score of **restricted classes** of networks?
- How to search for an optimal network?
- What if the different characters are not independent?

Thanks

- Mareike Fischer (Greifswald)
- Steven Kelk (Maastricht)
- Celine Scornavacca (Montpellier)
- Simone Linz (Christchurch)
- Leen Stougie (Amsterdam)
- Nela Lekić (Maastricht)

