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Alternatively: Convex hull of finitely many points

P := {x ∈ Rd | Ax 6 b} = conv(V )



Introduction

• Complexity of optimizing a linear function over a polytope depends on
the number of inequalities (LP)

Extended formulation: A polytope Q is an extended formulation (EF)
of P if P is a projection of Q.

• Optimizing over a polytope can be achieved by optimizing over an EF.
• Number of inequalities in an EF may be substantially fewer!
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Extended formulations

EF: Q and EF of P ⇔ P is a projection of Q

size of an EF Q is defined as the number of inequalities representing Q

Extension complexity denoted ex(P) is the minimum number of
inequalities representing any EF of P.

Example: xc(Pn) = Θ(log n) where Pn is a regular n-gon.
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Extended formulations for NP-hard problems: Backdrop

• Combinatorial optimization problems have associated “natural”
polytopes

Kn = ([n],En)

TSP(n) := {χ(S) | S ⊂ En,S a hamiltonian cycle in Kn}

• Traveling Salesman problem is solvable in polynomial time iff we can
optimize over TSP(n) in polynomial time.

• Swart (80’s) claimed a polynomial size LP formulation of the Traveling
Salesman problem. The feasible region of his LP defined an EF of
TSP(n).

• xc(TSP(n)) > 2
√
n Fiorini, Massar, Pokutta, T., de Wolf (STOC 2012)
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• Does every polytope associated to NP-hard problems has
superpolynomial extension complexity?

(P?NP)
• How do we prove lower bounds for polytopes associated with problems
in general?
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NP-hardness: the usual game

3SAT

SUBSET-SUM STABLE SET

MAX-CUT



Extension complexity: the game so far

3SAT

SUBSET-SUM

STABLE SET

MAX-CUT

TSP



Two observations

Two observations:

I If P is a face of Q, then xc(P) 6 xc(Q).

I If P is a projection of Q, then xc(P) 6 xc(Q).



A Meta-Heuristic

SAT (Φ) := {x ∈ [0, 1]n | Φ(x) = 1}

• For every n there exist formulae Φn with n variables such that
xc(SAT (Φn)) > 2

√
n. (FMPTW ’12)

Heuristic:
• Define the “natural” polytope with your favorite problem.

• Inspect the available textbook NP-hardness reduction for your problem.

• Do any of the previous two observations apply?

• Use the lower-bound for SAT polytope.
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Proving lower bounds (Ad-hoc inspection of reductions)
Example 1: Subset sum

SUBSETSUM(A, b) := conv

({
x ∈ [0, 1]n |

n∑
i=1

aixi = b

})

Reduction from SAT

x1 x2 x3 C1 C2 C3 C4
v1 = 1 0 0 1 0 1 0

v′1 = 1 0 0 0 1 0 1

v2 = 0 1 0 0 1 1 0

v′2 = 0 1 0 1 0 0 1

v3 = 0 0 1 1 1 0 0

v′3 = 0 0 1 0 0 1 1

s1 = 0 0 0 1 0 0 0

s′1 = 0 0 0 2 0 0 0

s2 = 0 0 0 0 1 0 0

s′2 = 0 0 0 0 2 0 0

s3 = 0 0 0 0 0 1 0

s′3 = 0 0 0 0 0 2 0

s4 = 0 0 0 0 0 0 1

s′4 = 0 0 0 0 0 0 2

b = 1 1 1 4 4 4 4

Table : The base 10 numbers created as an instance of subset-sum for the
3SAT formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).
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Example 1: Subset sum

SUBSETSUM(A, b) := conv

({
x ∈ [0, 1]n |

n∑
i=1

aixi = b

})

Observation: x is a vertex of SUBSETSUM(A(Φ), b) if and only if x
restricted to variables (v1, . . . , vn) is a vertex of SAT (Φ)

SAT polytope is a projection of the SUBSETSUM polytope
• xc(SUBSETSUM) > xc(SAT )



Proving lower bounds (Ad-hoc inspection of reductions)
Example 1: Subset sum

SUBSETSUM(A, b) := conv

({
x ∈ [0, 1]n |

n∑
i=1

aixi = b

})

Observation: x is a vertex of SUBSETSUM(A(Φ), b) if and only if x
restricted to variables (v1, . . . , vn) is a vertex of SAT (Φ)

SAT polytope is a projection of the SUBSETSUM polytope
• xc(SUBSETSUM) > xc(SAT )



Some other polytopes

1. 3-dimensional Matching

3DM(G ) := conv({χ(E ′) | E ′ ⊆ E is a 3d −matching})

2. Stable set for cubic planar graphs

STAB(G ) := conv({χ(V ′) | V ′ ⊆ V is a stable set})

3. Cut polytope for K6 minor-free graphs

CUT (G ) := conv({χ(E ′) | E ′ ⊆ E is a cut})

4. Cut polytope for K1,n,n aka Bell Polytope



Some other polytopes

1. 3-dimensional Matching xc(3DM(G )) > 2Ω(n1/4)

3DM(G ) := conv({χ(E ′) | E ′ ⊆ E is a 3d −matching})

2. Stable set for cubic planar graphs xc(STAB(G )) > 2Ω(
√
n)

STAB(G ) := conv({χ(V ′) | V ′ ⊆ V is a stable set})

3. Cut polytope for K6 minor-free graphs xc(CUT (G )) > 2Ω(n1/4)

CUT (G ) := conv({χ(E ′) | E ′ ⊆ E is a cut})

4. CUT (K1,n,n) i.e. Bell Polytope xc(CUT (K1,n,n)) > 2Ω(n)



Some other polytopes

We also show a general result about cut polytopes of minors of a graph.

Theorem
Let G be a graph and H be a minor of G . Then,

xc(CUT (G )) > xc(CUT (H)).



Concluding remarks / questions

I How to canonically associate polytopes with “problems”?

I What kind of reductions allow for translation of lower bounds?

I What is the class of problems that are captured by small extended
formulations?
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Thank You!



Associating polytopes to problems

• Associate polytopes to a “verifier”

P(I ,M, n) = conv({y ∈ [0, 1]n | M(I , y) accepts.}

• Captures our intuition of “natural” for many polytopes.

• Instead of talking about different problems, we can talk about different
verifiers for the same problem.
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Linear reductions

A reduction from an optimization problem A to B is called linear iff
there exists a matrix R such

∀(c ,K )∃x ∈ P(A), cT x > B ⇔ ∃y ∈ P(B),wT y > K ′

where, (w,K’)=(c,K)R.

Theorem: P(A) is a projection of some face of P(B) if and only if there
is a linear reduction from A to B.
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