Extension complexity of combinatorial polytopes

Hans Raj Tiwary ${ }^{1}$
${ }^{1}$ Université Libre de Bruxelles

Joint Work with David Avis (McGill University, Kyoto University) and Samuel Fiorini (ULB)

Introduction

Polytope: Bounded intersection of finitely many halfspaces

$$
P:=\left\{x \in \mathbb{R}^{d} \mid A x \leqslant b\right\}
$$

Introduction

Polytope: Bounded intersection of finitely many halfspaces Alternatively: Convex hull of finitely many points

$$
P:=\left\{x \in \mathbb{R}^{d} \mid A x \leqslant b\right\}=\operatorname{conv}(V)
$$

Introduction

- Complexity of optimizing a linear function over a polytope depends on the number of inequalities (LP)

Introduction

- Complexity of optimizing a linear function over a polytope depends on the number of inequalities (LP)
Extended formulation: A polytope Q is an extended formulation (EF) of P if P is a projection of Q.

Introduction

- Complexity of optimizing a linear function over a polytope depends on the number of inequalities (LP)
Extended formulation: A polytope Q is an extended formulation (EF) of P if P is a projection of Q.

Introduction

- Complexity of optimizing a linear function over a polytope depends on the number of inequalities (LP)
Extended formulation: A polytope Q is an extended formulation (EF) of P if P is a projection of Q.

- Optimizing over a polytope can be achieved by optimizing over an EF.

Introduction

- Complexity of optimizing a linear function over a polytope depends on the number of inequalities (LP)
Extended formulation: A polytope Q is an extended formulation (EF) of P if P is a projection of Q.

- Optimizing over a polytope can be achieved by optimizing over an EF.
- Number of inequalities in an EF may be substantially fewer!

Extended formulations

EF: Q and EF of $P \Leftrightarrow P$ is a projection of Q

Extended formulations

EF: Q and EF of $P \Leftrightarrow P$ is a projection of Q
size of an EF Q is defined as the number of inequalities representing Q

Extended formulations

EF: Q and EF of $P \Leftrightarrow P$ is a projection of Q
size of an EF Q is defined as the number of inequalities representing Q
Extension complexity denoted $\mathbf{e x}(P)$ is the minimum number of inequalities representing any EF of P.

Extended formulations

EF: Q and EF of $P \Leftrightarrow P$ is a projection of Q
size of an EF Q is defined as the number of inequalities representing Q
Extension complexity denoted ex (P) is the minimum number of inequalities representing any EF of P.

Example: $x c\left(P_{n}\right)=\Theta(\log n)$ where P_{n} is a regular n-gon.

Extended formulations for NP-hard problems: Backdrop

- Combinatorial optimization problems have associated "natural" polytopes

Extended formulations for NP-hard problems: Backdrop

- Combinatorial optimization problems have associated "natural" polytopes

$$
\begin{gathered}
K_{n}=\left([n], E_{n}\right) \\
T S P(n):=\left\{\chi(S) \mid S \subset E_{n}, S \text { a hamiltonian cycle in } K_{n}\right\}
\end{gathered}
$$

Extended formulations for NP-hard problems: Backdrop

- Combinatorial optimization problems have associated "natural" polytopes

$$
\begin{gathered}
K_{n}=\left([n], E_{n}\right) \\
T S P(n):=\left\{\chi(S) \mid S \subset E_{n}, S \text { a hamiltonian cycle in } K_{n}\right\}
\end{gathered}
$$

- Traveling Salesman problem is solvable in polynomial time iff we can optimize over $\operatorname{TSP}(n)$ in polynomial time.

Extended formulations for NP-hard problems: Backdrop

- Combinatorial optimization problems have associated "natural" polytopes

$$
\begin{gathered}
K_{n}=\left([n], E_{n}\right) \\
T S P(n):=\left\{\chi(S) \mid S \subset E_{n}, S \text { a hamiltonian cycle in } K_{n}\right\}
\end{gathered}
$$

- Traveling Salesman problem is solvable in polynomial time iff we can optimize over $\operatorname{TSP}(n)$ in polynomial time.
- Swart (80's) claimed a polynomial size LP formulation of the Traveling Salesman problem. The feasible region of his LP defined an EF of TSP (n).

Extended formulations for NP-hard problems: Backdrop

- Combinatorial optimization problems have associated "natural" polytopes

$$
\begin{gathered}
K_{n}=\left([n], E_{n}\right) \\
T S P(n):=\left\{\chi(S) \mid S \subset E_{n}, S \text { a hamiltonian cycle in } K_{n}\right\}
\end{gathered}
$$

- Traveling Salesman problem is solvable in polynomial time iff we can optimize over $\operatorname{TSP}(n)$ in polynomial time.
- Swart (80's) claimed a polynomial size LP formulation of the Traveling Salesman problem. The feasible region of his LP defined an EF of TSP (n).
- $x c(\operatorname{TSP}(n)) \geqslant 2^{\sqrt{n}}$ Fiorini, Massar, Pokutta, T., de Wolf (STOC 2012)

Metaquestion

- Does every polytope associated to NP-hard problems has superpolynomial extension complexity?

Metaquestion

- Does every polytope associated to NP-hard problems has superpolynomial extension complexity? (P?NP)

Metaquestion

- Does every polytope associated to NP-hard problems has superpolynomial extension complexity? (P?NP)
- How do we prove lower bounds for polytopes associated with problems in general?

Metaquestion

- Does every polytope associated to NP-hard problems has superpolynomial extension complexity? (P?NP)
- How do we prove lower bounds for polytopes associated with problems in general?

NP-hardness: the usual game

Extension complexity: the game so far

Two observations

Two observations:

- If P is a face of Q, then $\mathrm{xc}(P) \leqslant \mathrm{xc}(Q)$.
- If P is a projection of Q, then $\mathrm{xc}(P) \leqslant \mathrm{xc}(Q)$.

A Meta-Heuristic

$$
\operatorname{SAT}(\Phi):=\left\{x \in[0,1]^{n} \mid \Phi(x)=1\right\}
$$

A Meta-Heuristic

$$
\operatorname{SAT}(\Phi):=\left\{x \in[0,1]^{n} \mid \Phi(x)=1\right\}
$$

- For every n there exist formulae Φ_{n} with n variables such that $x c\left(S A T\left(\Phi_{n}\right)\right) \geqslant 2^{\sqrt{n}}$.
(FMPTW '12)

A Meta-Heuristic

$$
\operatorname{SAT}(\Phi):=\left\{x \in[0,1]^{n} \mid \Phi(x)=1\right\}
$$

- For every n there exist formulae Φ_{n} with n variables such that $x c\left(\operatorname{SAT}\left(\Phi_{n}\right)\right) \geqslant 2^{\sqrt{n}}$.
(FMPTW '12)

Heuristic:

- Define the "natural" polytope with your favorite problem.

A Meta-Heuristic

$$
\operatorname{SAT}(\Phi):=\left\{x \in[0,1]^{n} \mid \Phi(x)=1\right\}
$$

- For every n there exist formulae Φ_{n} with n variables such that $x c\left(\operatorname{SAT}\left(\Phi_{n}\right)\right) \geqslant 2^{\sqrt{n}}$.
(FMPTW '12)

Heuristic:

- Define the "natural" polytope with your favorite problem.
- Inspect the available textbook NP-hardness reduction for your problem.

A Meta-Heuristic

$$
\operatorname{SAT}(\Phi):=\left\{x \in[0,1]^{n} \mid \Phi(x)=1\right\}
$$

- For every n there exist formulae Φ_{n} with n variables such that $x c\left(\operatorname{SAT}\left(\Phi_{n}\right)\right) \geqslant 2^{\sqrt{n}}$.
(FMPTW '12)

Heuristic:

- Define the "natural" polytope with your favorite problem.
- Inspect the available textbook NP-hardness reduction for your problem.
- Do any of the previous two observations apply?

A Meta-Heuristic

$$
\operatorname{SAT}(\Phi):=\left\{x \in[0,1]^{n} \mid \Phi(x)=1\right\}
$$

- For every n there exist formulae Φ_{n} with n variables such that $x c\left(\operatorname{SAT}\left(\Phi_{n}\right)\right) \geqslant 2^{\sqrt{n}}$.
(FMPTW '12)

Heuristic:

- Define the "natural" polytope with your favorite problem.
- Inspect the available textbook NP-hardness reduction for your problem.
- Do any of the previous two observations apply?
- Use the lower-bound for SAT polytope.

Proving lower bounds (Ad-hoc inspection of reductions)

Example 1: Subset sum

$$
\operatorname{SUBSETSUM}(A, b):=\operatorname{conv}\left(\left\{x \in[0,1]^{n} \mid \sum_{i=1}^{n} a_{i} x_{i}=b\right\}\right)
$$

Proving lower bounds (Ad-hoc inspection of reductions)

Example 1: Subset sum

$$
\operatorname{SUBSETSUM}(A, b):=\operatorname{conv}\left(\left\{x \in[0,1]^{n} \mid \sum_{i=1}^{n} a_{i} x_{i}=b\right\}\right)
$$

Reduction from SAT

		x_{1}	x_{2}	x_{3}	C_{1}	C_{2}	C_{3}	C_{4}
v_{1}	$=$	1	0	0	1	0	1	0
v_{1}^{\prime}	$=$	1	0	0	0	1	0	1
v_{2}	$=$	0	1	0	0	1	1	0
v_{2}^{\prime}	$=$	0	1	0	1	0	0	1
v_{3}	$=$	0	0	1	1	1	0	0
v_{3}^{\prime}	$=$	0	0	1	0	0	1	1
s_{1}	$=$	0	0	0	1	0	0	0
s_{1}^{\prime}	$=$	0	0	0	2	0	0	0
s_{2}	$=$	0	0	0	0	1	0	0
s_{2}^{\prime}	$=$	0	0	0	0	2	0	0
s_{3}	$=$	0	0	0	0	0	1	0
s_{3}^{\prime}	$=$	0	0	0	0	0	2	0
s_{4}	$=$	0	0	0	0	0	0	1
s_{4}^{\prime}	$=$	0	0	0	0	0	0	2
b	$=$	1	1	1	4	4	4	4

Table: The base 10 numbers created as an instance of subset-sum for the 3SAT formula $\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)$.

Proving lower bounds (Ad-hoc inspection of reductions)

Example 1: Subset sum

$$
\operatorname{SUBSETSUM}(A, b):=\operatorname{conv}\left(\left\{x \in[0,1]^{n} \mid \sum_{i=1}^{n} a_{i} x_{i}=b\right\}\right)
$$

Observation: x is a vertex of $\operatorname{SUBSETSUM}(A(\Phi), b)$ if and only if x restricted to variables $\left(v_{1}, \ldots, v_{n}\right)$ is a vertex of $\operatorname{SAT}(\Phi)$

Proving lower bounds (Ad-hoc inspection of reductions)

Example 1: Subset sum

$$
\operatorname{SUBSETSUM}(A, b):=\operatorname{conv}\left(\left\{x \in[0,1]^{n} \mid \sum_{i=1}^{n} a_{i} x_{i}=b\right\}\right)
$$

Observation: x is a vertex of $\operatorname{SUBSETSUM}(A(\Phi), b)$ if and only if x restricted to variables $\left(v_{1}, \ldots, v_{n}\right)$ is a vertex of $\operatorname{SAT}(\Phi)$

SAT polytope is a projection of the SUBSETSUM polytope

- xc (SUBSETSUM) $\geqslant x c(S A T)$

Some other polytopes

1. 3-dimensional Matching

$$
3 D M(G):=\operatorname{conv}\left(\left\{\chi\left(E^{\prime}\right) \mid E^{\prime} \subseteq E \quad \text { is a } 3 d-\text { matching }\right\}\right)
$$

2. Stable set for cubic planar graphs

$$
\operatorname{STAB}(G):=\operatorname{conv}\left(\left\{\chi\left(V^{\prime}\right) \mid V^{\prime} \subseteq V \quad \text { is a stable set }\right\}\right)
$$

3. Cut polytope for K_{6} minor-free graphs

$$
\operatorname{CUT}(G):=\operatorname{conv}\left(\left\{\chi\left(E^{\prime}\right) \mid E^{\prime} \subseteq E \quad \text { is a cut }\right\}\right)
$$

4. Cut polytope for $K_{1, n, n}$ aka Bell Polytope

Some other polytopes

1. 3-dimensional Matching
$x c(3 D M(G)) \geqslant 2^{\Omega\left(n^{1 / 4}\right)}$

$$
3 D M(G):=\operatorname{conv}\left(\left\{\chi\left(E^{\prime}\right) \mid E^{\prime} \subseteq E \quad \text { is a } 3 d-\text { matching }\right\}\right)
$$

2. Stable set for cubic planar graphs

$$
x c(\operatorname{STAB}(G)) \geqslant 2^{\Omega(\sqrt{n})}
$$

$$
\operatorname{STAB}(G):=\operatorname{conv}\left(\left\{\chi\left(V^{\prime}\right) \mid V^{\prime} \subseteq V \text { is a stable set }\right\}\right)
$$

3. Cut polytope for K_{6} minor-free graphs $\quad x c(\operatorname{CUT}(G)) \geqslant 2^{\Omega\left(n^{1 / 4}\right)}$

$$
\operatorname{CUT}(G):=\operatorname{conv}\left(\left\{\chi\left(E^{\prime}\right) \mid E^{\prime} \subseteq E \quad \text { is a cut }\right\}\right)
$$

4. $\operatorname{CUT}\left(K_{1, n, n}\right)$ i.e. Bell Polytope

$$
x c\left(\operatorname{CUT}\left(K_{1, n, n}\right)\right) \geqslant 2^{\Omega(n)}
$$

Some other polytopes

We also show a general result about cut polytopes of minors of a graph.
Theorem
Let G be a graph and H be a minor of G. Then,

$$
x c(\operatorname{CUT}(G)) \geqslant x c(\operatorname{CUT}(H)) .
$$

Concluding remarks / questions

- How to canonically associate polytopes with "problems"?

Concluding remarks / questions

- How to canonically associate polytopes with "problems"?
- What kind of reductions allow for translation of lower bounds?

Concluding remarks / questions

- How to canonically associate polytopes with "problems"?
-What kind of reductions allow for translation of lower bounds?
- What is the class of problems that are captured by small extended formulations?

Thank You!

Associating polytopes to problems

- Associate polytopes to a "verifier"

Associating polytopes to problems

- Associate polytopes to a "verifier"

$$
P(I, M, n)=\operatorname{conv}\left(\left\{y \in[0,1]^{n} \mid M(I, y) \text { accepts. }\right\}\right.
$$

Associating polytopes to problems

- Associate polytopes to a "verifier"

$$
P(I, M, n)=\operatorname{conv}\left(\left\{y \in[0,1]^{n} \mid M(I, y) \text { accepts. }\right\}\right.
$$

- Captures our intuition of "natural" for many polytopes.

Associating polytopes to problems

- Associate polytopes to a "verifier"

$$
P(I, M, n)=\operatorname{conv}\left(\left\{y \in[0,1]^{n} \mid M(I, y) \text { accepts. }\right\}\right.
$$

- Captures our intuition of "natural" for many polytopes.
- Instead of talking about different problems, we can talk about different verifiers for the same problem.

Linear reductions

A reduction from an optimization problem A to B is called linear iff there exists a matrix R such

$$
\forall(c, K) \exists x \in P(A), c^{T} x \geqslant B \Leftrightarrow \exists y \in P(B), w^{T} y \geqslant K^{\prime}
$$

where, $\left(w, K^{\prime}\right)=(c, K) R$.

Linear reductions

A reduction from an optimization problem A to B is called linear iff there exists a matrix R such

$$
\forall(c, K) \exists x \in P(A), c^{\top} x \geqslant B \Leftrightarrow \exists y \in P(B), w^{\top} y \geqslant K^{\prime}
$$

where, $\left(w, K^{\prime}\right)=(c, K) R$.

Theorem: $P(A)$ is a projection of some face of $P(B)$ if and only if there is a linear reduction from A to B.

