Parameterized Complexity of Directed Steiner Tree and Domination Problems on Sparse Graphs

Mark Jones,1 Daniel Lokshtanov,2 M. S. Ramanujan,3 Saket Saurabh,2,3 and Ondra Suchý4

1Royal Holloway University of London, United Kingdom
2University of Bergen, Norway
3The Institute of Mathematical Sciences, Chennai, India
4Czech Technical University in Prague
ondrej.suchy@fit.cvut.cz

Midsummer Combinatorial Workshop,
Prague, 31st July 2013
Steiner Tree

Steiner Tree

Input: $G = (V, E)$, $T \subseteq V$, $k \in \mathbb{N}$

Question: Is there a set $S \subseteq V \setminus T$, $|S| \leq k$ such that $G[S \cup T]$ is connected?

Vertices in T ... terminals ... green
Vertices in $V \setminus T$... Steiner vertices
Steiner Tree

Input: $G = (V, E)$, $T \subseteq V$, $k \in \mathbb{N}$

Question: Is there a set $S \subseteq V \setminus T$, $|S| \leq k$ such that $G[S \cup T]$ is connected?

Vertices in T ... terminals ... green
Vertices in $V \setminus T$... Steiner vertices

On general graphs
- FPT wrt $|T|$ $(O^*(3^{|T|}))$ [Dreyfuss & Wagner 1972]
- $O^*(2^{|T|})$ time, poly-space algorithm [Nederlof 2009]
- No poly kernel wrt $|T|$ unless NP \subseteq coNP/poly
- W[2]-hard wrt k - easy reduction from Set Cover
- FPT wrt treewidth
Steiner Tree

Steiner Tree

Input: \(G = (V, E), \ T \subseteq V, \ k \in \mathbb{N} \)

Question: Is there a set \(S \subseteq V \setminus T, \ |S| \leq k \)
such that \(G[S \cup T] \) is connected?

Vertices in \(T \) ... terminals ... green
Vertices in \(V \setminus T \) ... Steiner vertices

On general graphs

- \(\text{FPT}^1 \text{ wrt } |T| \ (O^*(3^{|T|}))^2 \) [Dreyfuss & Wagner 1972]
- \(O^*(2^{|T|}) \) time, poly-space algorithm [Nederlof 2009]
- No poly kernel wrt \(|T|\) unless NP \(\subseteq \) coNP/poly
- \(\text{W}[2]\)-hard wrt \(k \) - easy reduction from \text{SET COVER}
- \(\text{FPT} \text{ wrt treewidth} \)

\(^1\)Fixed Parameter Tractable - there is an \(O(f(|T|) \cdot n^c) \) time algorithm

\(^2\)\(O^*(\) notation supresses polynomial factors
Steiner Tree

Steiner Tree

Input: \(G = (V, E), \ T \subseteq V, \ k \in \mathbb{N} \)

Question: Is there a set \(S \subseteq V \setminus T, \ |S| \leq k \) such that \(G[S \cup T] \) is connected?

Vertices in \(T \) ... terminals ... green
Vertices in \(V \setminus T \) ... Steiner vertices

On general graphs

- FPT\(^1\) wrt \(|T| \) \((O^*(3^{|T|}))^2 \) [Dreyfuss & Wagner 1972]
- \(O^*(2^{|T|}) \) time, poly-space algorithm [Nederlof 2009]
- No poly kernel wrt \(|T| \) unless \(\text{NP} \subseteq \text{coNP}/\text{poly} \)
- \(W[2] \)-hard wrt \(k \) - easy reduction from **Set Cover**
- FPT wrt treewidth

\(^1\)Fixed Parameter Tractable - there is an \(O(f(|T|) \cdot n^c) \) time algorithm
\(^2\)\(O^*() \) notation supresses polynomial factors
Steiner Tree

Input: \(G = (V, E), \ T \subseteq V, \ k \in \mathbb{N} \)

Question: Is there a set \(S \subseteq V \setminus T \), \(|S| \leq k \) such that \(G[S \cup T] \) is connected?

- Vertices in \(T \) ... terminals ... green
- Vertices in \(V \setminus T \) ... Steiner vertices

On general graphs

- FPT\(^1\) wrt \(|T| \) \((O^*(3^{|T|}))\)\(^2\) [Dreyfuss & Wagner 1972]
- \(O^*(2^{|T|}) \) time, poly-space algorithm [Nederlof 2009]
- No poly kernel wrt \(|T| \) unless \(\text{NP} \subseteq \text{coNP/poly} \)
- \(\text{W}[2] \)-hard\(^3\) wrt \(k \) - easy reduction from \text{Set Cover}
- FPT wrt treewidth

\(^1\)Fixed Parameter Tractable - there is an \(O(f(|T|) \cdot n^c) \) time algorithm

\(^2\)\(O^*() \) notation supresses polynomial factors

\(^3\)There is no \(O(f(k) \cdot n^c) \) algorithm, unless...
Steiner Tree

Input: \(G = (V, E), \ T \subseteq V, \ k \in \mathbb{N} \)

Question: Is there a set \(S \subseteq V \setminus T, \ |S| \leq k \) such that \(G[S \cup T] \) is connected?

Vertices in \(T \) ... terminals ... green
Vertices in \(V \setminus T \) ... Steiner vertices

On general graphs

- \(\text{FPT}^1 \) wrt \(|T|\) \((O^*(3^{|T|}))^2 \) [Dreyfuss & Wagner 1972]
- \(O^*(2^{|T|}) \) time, poly-space algorithm [Nederlof 2009]
- No poly kernel wrt \(|T|\) unless \(\text{NP} \subseteq \text{coNP/poly} \)
- \(W[2]\)-hard\(^3 \) wrt \(k \) - easy reduction from \(\text{SET COVER} \)
- \(\text{FPT wrt treewidth}^4 \)

\(^1\)Fixed Parameter Tractable - there is an \(O(f(|T|) \cdot n^c) \) time algorithm
\(^2\)\(O^*(\cdot) \) notation supresses polynomial factors
\(^3\)There is no \(O(f(k) \cdot n^c) \) algorithm, unless...
\(^4\)Treewidth of a graph is the minimum width of a tree decomposition of the
Steiner Tree on Planar graphs

On planar graphs
- contract edges between terminals
- on a path at least every second vertex is Steiner
- diameter $\leq 2k$
- treewidth $O(k)$
- FPT wrt k
Steiner Tree on Planar graphs

On planar graphs

- contract edges between terminals
- on a path at least every second vertex is Steiner
diameter $\leq 2k$
treewidth $O(k)$
FPT wrt k

- kernel of size $O((k + |T|)^{142})$ [Pilipczuk et al. 2013]
Intermezzo on sparse graphs

Sparse graph classes often studied:

- planar graphs
- K_h-minor free
- K_h-topological minor free
- d-degenerate

Sparse directed $=$ sparse underlying undirected
Directed Steiner Tree

Input: $D = (V, A)$, root $r \in V$, $T \subseteq V$, k

Question: Is there a set $S \subseteq V \setminus T$, $|S| \leq k$ such that in $D[S \cup T \cup \{r\}]$ there is a path from r to every $t \in T$?
Directed Steiner Tree

Input: $D = (V, A)$, root $r \in V$, $T \subseteq V$, k

Question: Is there a set $S \subseteq V \setminus T$, $|S| \leq k$ such that in $D[S \cup T \cup \{r\}]$ there is a path from r to every $t \in T$?

On general digraphs

- FPT wrt $|T|$ [Dreyfuss & Wagner 1972]
- $O^*(2^{|T|})$ time, poly-space algorithm

 [Nederlof 2009, Misra et al. 2010]
- W[2]-hard wrt k - easy reduction from **Set Cover**
- FPT wrt treewidth
Directed Steiner Tree

Input: \(D = (V, A) \), root \(r \in V \), \(T \subseteq V \), \(k \)

Question: Is there a set \(S \subseteq V \setminus T \), \(|S| \leq k \) such that in \(D[S \cup T \cup \{r\}] \) there is a path from \(r \) to every \(t \in T \)?

On general digraphs

- FPT wrt \(|T| \) [Dreyfuss & Wagner 1972]
- \(O^*(2^{|T|}) \) time, poly-space algorithm
 [Nederlof 2009, Misra et al. 2010]

- \(W[2] \)-hard wrt \(k \) - easy reduction from \textit{Set Cover}

On planar graphs

- cannot contract the arcs between terminals
- need a different approach
Directed Steiner Tree on planar graphs

- Contract strongly connected components
- $D[T]$ becomes a DAG
- Enough to reach the sources of this DAG
- Source-terminals, sources at least we have to find an in-neighbor for each source-terminal
- Dominators u dominates v iff $(u, v) \in A$
- At most k dominators in solution
- Switch to d-degenerate big dominator d-dominates at least $d + 1$ sources
- Small dominator d-dominates at most d sources
- There are "only few" big dominators but many small dominators
- Solution: ignore the small dominators!
Directed Steiner Tree on planar graphs

- contract strongly connected components
 \(-D[T]\) becomes a DAG

- source-terminals, sources at least we have to find an in-neighbor for each source-terminal

- dominators
 \(u\) dominates \(v\) \(\iff (u,v) \in A\)

- at most \(k\) dominators in solution

- Switch to \(d\)-degenerate

- big dominator - dominates at least \(d+1\) sources

- small dominator - dominates at most \(d\) sources

- there are "only few" big dominators but many small dominators

- solution: ignore the small dominators!
Directed Steiner Tree on planar graphs

- contract strongly connected components
 - $D[T]$ becomes a DAG
- enough to reach the sources of this DAG
 - source-terminals, sources

\[\text{at least we have to find an in-neighbor for each source-terminal}\]
\[\text{u dominates v iff } (u, v) \in A \text{ at most } k \text{ dominators in solution}\]

Switch to d-degenerate big dominator
- dominates at least $d + 1$ sources
small dominator
- dominates at most d sources
there are “only few” big dominators but many small dominators
solution: ignore the small dominators!
Directed Steiner Tree on planar graphs

- Contract strongly connected components
 \(D[T] \) becomes a DAG

- Enough to reach the sources of this DAG
 - source-terminals, sources

- At least we have to find an in-neighbor for each source-terminal
 - dominators

- \(u \) dominates \(v \) iff \((u, v)\) in \(A\)
Directed Steiner Tree on planar graphs

- contract strongly connected components
 - $D[T]$ becomes a DAG
- enough to reach the sources of this DAG
 - source-terminals, sources
- at least we have to find an in-neighbor for each source-terminal
 - dominators
- u dominates v iff $(u, v) \in A$
- at most k dominators in solution

Switch to d-degenerate big dominator
- dominates at least $d + 1$ sources
small dominator
- dominates at most d sources
there are "only few" big dominators but many small dominators
solution: ignore the small dominators!
Directed Steiner Tree on planar graphs

- contract strongly connected components
 - $D[T]$ becomes a DAG
- enough to reach the sources of this DAG
 - source-terminals, sources
- at least we have to find an in-neighbor for each source-terminal
 - dominators
- u dominates v iff (u, v) in A
- at most k dominators in solution

Switch to d-degenerate

- big dominator - dominates at least $d + 1$ sources
- small dominator - dominates at most d sources
Directed Steiner Tree on planar graphs

- contract strongly connected components
 \(-D[T]\) becomes a DAG
- enough to reach the sources of this DAG
 \(-source-terminals, sources\)
- at least we have to find an in-neighbor for each source-terminal
 \(-dominators\)
- \(u\) dominates \(v\) \iff \((u, v)\) in \(A\)
- at most \(k\) dominators in solution

Switch to \(d\)-degenerate

- \(big\ dominator\) - dominates at least \(d + 1\) sources
- \(small\ dominator\) - dominates at most \(d\) sources
- there are “only few” big dominators
- but many small dominators
Directed Steiner Tree on planar graphs

- contract strongly connected components
 - $\mathcal{D} [T]$ becomes a DAG
- enough to reach the sources of this DAG
 - source-terminals, sources
- at least we have to find an in-neighbor for each source-terminal
 - dominators

u dominates v iff (u, v) in A

- at most k dominators in solution

Switch to d-degenerate

- big dominator - dominates at least $d + 1$ sources
- small dominator - dominates at most d sources
- there are “only few” big dominators
- but many small dominators
- solution: ignore the small dominators!
Algorithm for d-degenerate

- look on the bipartite graph between big dominators and sources dominated by them
- D is d-degenerate \Rightarrow
 - there is a source v dominated by $\leq d$ dominators

Solution options:
- v is dominated by some big dominator in $N^-(v)$
 - branch on which of them
- v is dominated by some small dominator
 - save it for later
 - delete the big dominators in $N^-(v)$

Progress measure:
- at most dk sources can be dominated by k small dominators
Algorithm formally

the algorithm keeps 5 disjoint vertex sets:

- \(Y \) - partial solution - size \(\leq k \).
- \(B_h \) - dominators which dominate \(> d \) sources not dominated by \(Y \).
- \(B_l \) - dominators which dominate \(\leq d \) of them.
- \(W_h \) - sources not dominated by \(Y \), but dominated by \(B_h \).
- \(W_l \) - sources not dominated by \(Y \) or \(B_h \).

the algorithm:

- Find vertex \(v \in W_h \) with the least neighbors in \(B_h \).
- For each \(u \in B_h \cap N^-(v) \) add \(u \) to \(Y \), update the other sets, and recurse
- Put \(v \) in \(W_l \), delete \(B_h \cap N^-(v) \), update, and recurse
Algorithm formally

the algorithm keeps 5 disjoint vertex sets:
- Y - partial solution - size $\leq k$.
- B_h - dominators which dominate $> d$ sources not dominated by Y.
- B_l - dominators which dominate $\leq d$ of them.
- W_h - sources not dominated by Y, but dominated by B_h.
- W_l - sources not dominated by Y or B_h.

the algorithm:
- Find vertex $v \in W_h$ with the least neighbors in B_h.
- For each $u \in B_h \cap N^-(v)$ add u to Y, update the other sets, and recurse
- Put v in W_l, delete $B_h \cap N^-(v)$, update, and recurse
- the measure $d(k - |Y|) - |W_l|$ drops in each case
- if W_h empty, apply Nederlof’s algo with $W_l \cup Y$ as terminals
Consequences of the algorithm

- DST is FPT wrt k on d-degenerate digraphs
- Running time $O^*(3^{kd} + o(kd))$
Consequences of the algorithm

- DST is FPT wrt \(k \) on \(d \)-degenerate digraphs
- Running time \(O^*(3^{kd}+o(kd)) \)
- DST is FPT wrt \(k \) on \(o(\log n) \) degenerate classes of graphs
Consequences of the algorithm

- DST is FPT wrt k on d-degenerate digraphs
- Running time $O^*(3^{kd} + o(kd))$
- DST is FPT wrt k on $o(\log n)$ degenerate classes of graphs

But:

Theorem

Consequences of the algorithm

- DST is FPT wrt k on d-degenerate digraphs
- Running time $O^*(3^{kd} + o(kd))$
- DST is FPT wrt k on $o(\log n)$ degenerate classes of graphs

But:

Theorem

Reduction from **Set Cover**.

Set Cover

Input: A universe U, a family $\mathcal{F} \subseteq 2^U$, $k \in \mathbb{N}$

Question: Is there a subfamily $\mathcal{F}' \subseteq \mathcal{F}$, such that $|\mathcal{F}'| \leq k$ and $\bigcup \mathcal{F}' = U$?
Back to K_h-minor-free

K_h-minor-free graphs

- are $O(h^2)$-degenerate
- you can do contractions
Back to K_h-minor-free

K_h-minor-free graphs
- are $O(h^2)$-degenerate
- you can do contractions
- if each dominator dominates at least h sources, then some source dominated by at most $O(h^4)$ dominators
Back to K_h-minor-free

K_h-minor-free graphs

- are $O(h^2)$-degenerate
- you can do contractions
- if each dominator dominates at least h sources, then some source dominated by at most $O(h^4)$ dominators
- above bounds actually for K_h-topological minor free
Our results for DST

\[D[T] \text{ arbitrary} \]

- \(O^*(3^{hk} + o(hk)) \)-time on \(K_h \)-minor free digraphs
- \(O^*(f(h)^k) \)-time on \(K_h \)-topological minor free digraphs.
- DST is \(W[2] \)-hard on 2-degenerate digraphs
Our results for DST

\(D[T] \) arbitrary

- \(O^*(3^{hk} + o(hk)) \)-time on \(K_h \)-minor free digraphs
- \(O^*(f(h)^k) \)-time on \(K_h \)-topological minor free digraphs.
- DST is \(W[2] \)-hard on 2-degenerate digraphs

\(D[T] \) acyclic

- \(O^*(3^{hk} + o(hk)) \)-time on \(K_h \)-topological minor free digraphs
- \(O^*(3^{dk} + o(dk)) \)-time on \(d \)-degenerate graphs
 - DST is FPT wrt \(k \) on \(o(\log n) \)-degenerate graph classes
 - first FPT algorithm for undirected Steiner Tree on \(d \)-degenerate...
Our results for DST

$D[T]$ arbitrary

- $O^*(3^{hk}+o(hk))$-time on K_h-minor free digraphs
- $O^*(f(h)^k)$-time on K_h-topological minor free digraphs.
- DST is $W[2]$-hard on 2-degenerate digraphs

$D[T]$ acyclic

- $O^*(3^{hk}+o(hk))$-time on K_h-topological minor free digraphs
- $O^*(3^{dk}+o(dk))$-time on d-degenerate graphs
 - DST is FPT wrt k on $o(\log n)$-degenerate graph classes
 - first FPT algorithm for undirected $STEINER\ TREE$ on d-degenerate

For any constant $c > 0$, no $f(k)n^{o(\frac{k}{\log k})}$-time algorithm on graphs of degeneracy $c \log n$ unless ETH\(^5\) fails.
 - no $O^*(2^{o(d)f(k)})$-time algorithm unless ETH fails
 - no $O^*(2^{f(d)o(k)})$-time algorithm unless ETH fails

\(^5\)Exponential time hypothesis — 3-SAT cannot be solved in time $2^{o(n)}$
Application to Dominating Set

- there is a parameterized reduction from Dominating Set to (Directed) Steiner Tree, preserving the degeneracy
- the algorithm can be adapted - using the above reduction when there only a few vertices left to be dominated
Application to Dominating Set

- there is a parameterized reduction from Dominating Set to (Directed) Steiner Tree, preserving the degeneracy
- the algorithm can be adapted - using the above reduction when there only a few vertices left to be dominated

The sets

- Y - partial solution - size $\leq k$.
- B - vertices dominated by Y.
- W - not dominated by Y.
- B_h - vertices of B dominating $\geq d + 1$ vertices of W.
- B_l - vertices of B dominating $\leq d$ vertices of W.
- W_h - vertices in W with neighbor in $B_h \cup W$.
- W_l - remaining vertices of W.
Results for Dominating Set

<table>
<thead>
<tr>
<th>graph class</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_h-minor free</td>
<td>$O^*(3^{hk}+o(hk))$</td>
</tr>
<tr>
<td>K_h-topological minor</td>
<td>$O^*(3^{hk}+o(hk))$</td>
</tr>
<tr>
<td>d-degenerate</td>
<td>$O^*(3^{dk}+o(dk))$</td>
</tr>
</tbody>
</table>
Results for Dominating Set

<table>
<thead>
<tr>
<th>graph class</th>
<th>running time</th>
<th>previously known</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_h-minor free</td>
<td>$O^*(3^{hk}+o(hk))$</td>
<td>subexponential</td>
</tr>
<tr>
<td>K_h-topological minor</td>
<td>$O^*(3^{hk}+o(hk))$</td>
<td></td>
</tr>
<tr>
<td>d-degenerate</td>
<td>$O^*(3^{dk}+o(dk))$</td>
<td></td>
</tr>
</tbody>
</table>
Results for Dominating Set

<table>
<thead>
<tr>
<th>graph class</th>
<th>running time</th>
<th>previously known</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_h-minor free</td>
<td>$O^*(3^{hk} + o(hk))$</td>
<td>subexponential</td>
</tr>
<tr>
<td>K_h-topological minor</td>
<td>$O^*(3^{hk} + o(hk))$</td>
<td>$O^*(2^{O(h \log h)k})$</td>
</tr>
<tr>
<td>d-degenerate</td>
<td>$O^*(3^{dk} + o(dk))$</td>
<td>$O^*(2^{O(d \log d)k})$</td>
</tr>
</tbody>
</table>

[Alon & Gutner 2009]
Results for Dominating Set

<table>
<thead>
<tr>
<th>graph class</th>
<th>running time</th>
<th>previously known</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_h-minor free</td>
<td>$O^*(3^{hk}+o(hk))$</td>
<td>subexponential</td>
</tr>
<tr>
<td>K_h-topological minor</td>
<td>$O^*(3^{hk}+o(hk))$</td>
<td>$O^*(2^{O(h \log h)k})$</td>
</tr>
<tr>
<td>d-degenerate</td>
<td>$O^*(3^{dk}+o(dk))$</td>
<td>$O^*(2^{O(d \log d)k})$</td>
</tr>
</tbody>
</table>

- FPT on $o(\log n)$ degenerate
- For any constant $c > 0$, there is no $f(k)n^{o(\frac{k}{\log k})}$-algorithm on graphs of degeneracy $c \log n$ unless ETH fails.
- No algorithm $O^*(2^{o(d)f(k)})$, unless ETH fails.
- No algorithm $O^*(2^{f(d)o(k)})$, unless ETH fails.
Results for Dominating Set

<table>
<thead>
<tr>
<th>graph class</th>
<th>running time</th>
<th>previously known</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_h-minor free</td>
<td>$O^*(3^{hk}+o(hk))$</td>
<td>subexponential</td>
</tr>
<tr>
<td>K_h-topological minor</td>
<td>$O^*(3^{hk}+o(hk))$</td>
<td>$O^*(2^{O(h \log h)k})$</td>
</tr>
<tr>
<td>d-degenerate</td>
<td>$O^*(3^{dk}+o(dk))$</td>
<td>$O^*(2^{O(d \log d)k})$</td>
</tr>
</tbody>
</table>

- FPT on $o(\log n)$ degenerate
- For any constant $c > 0$, there is no $f(k)n^{o\left(\frac{k}{\log k}\right)}$-algorithm on graphs of degeneracy $c \log n$ unless ETH fails.
- No algorithm $O^*(2^{o(d)f(k)})$, unless ETH fails.
- No algorithm $O^*(2^{f(d)o(k)})$, unless ETH fails.
- $O(dn \log n)$-time d^2-approximation algorithm on d-degenerate graphs.

[Alon & Gutner 2009]
Future research, Open questions

- Asymptot. optimal running times for d-degenerate graphs - $2^{O(kd)}$
 - SETH lower bound on the basis?
 - Improving the upper bound - currently $3^{kd+o(kd)}$

- **Strongly Connected Steiner Subgraph**, **Directed Steiner Network** in planar graphs

- kernel for planar Steiner Tree wrt $|T|$? wrt k?
Future research, Open questions

Asymptot. optimal running times for d-degenerate graphs - $2^{O(kd)}$

- SETH6 lower bound on the basis?
- Improving the upper bound - currently $3^{kd+o(kd)}$

- Strongly Connected Steiner Subgraph,
 Directed Steiner Network in planar graphs
- Kernel for planar Steiner Tree wrt $|T|$? wrt k?

6Strong ETH — SAT cannot be solved in time $(2 - \varepsilon)^n$
Thank you for your attention!