Parameterized Complexity of Directed Steiner Tree and Domination Problems on Sparse Graphs

> Mark Jones,¹ Daniel Lokshtanov,² M. S. Ramanujan,³ Saket Saurabh,^{2,3} and Ondra Suchý⁴

¹Royal Holloway University of London, United Kingdom ²University of Bergen, Norway ³The Institute of Mathematical Sciences, Chennai, India ⁴Czech Technical University in Prague ondrej.suchy@fit.cvut.cz

Midsummer Combinatorial Workshop, Prague, 31st July 2013

On general graphs

- FPT wrt |T| ($O^*(3^{|T|})$) [Dreyfuss & Wagner 1972]
- $O^*(2^{|T|})$ time, poly-space algorithm [Nederlof 2009]
- No poly kernel wrt $|\mathcal{T}|$ unless NP \subseteq coNP/poly
- W[2]-hard wrt k easy reduction from SET COVER
- FPT wrt treewidth

On general graphs

- FPT¹ wrt $|T| (O^*(3^{|T|}))^2$ [Dreyfuss & Wagner 1972]
- $O^*(2^{|T|})$ time, poly-space algorithm [Nederlof 2009]
- No poly kernel wrt $|\mathcal{T}|$ unless NP \subseteq coNP/poly
- W[2]-hard wrt k easy reduction from SET COVER
- FPT wrt treewidth

¹Fixed Parameter Tractable - there is an $O(f(|T|) \cdot n^{c})$ time algorithm $^{2}O^{*}()$ notation supresses polynomial factors

Ondra Suchý (Czech Technical Uni) Directed Steiner Tree on Sparse Graphs

On general graphs

- FPT¹ wrt $|T| (O^*(3^{|T|}))^2$ [Dreyfuss & Wagner 1972]
- $O^*(2^{|T|})$ time, poly-space algorithm [Nederlof 2009]
- No poly kernel wrt $|\mathcal{T}|$ unless NP \subseteq coNP/poly
- W[2]-hard wrt k easy reduction from SET COVER
- FPT wrt treewidth

¹Fixed Parameter Tractable - there is an $O(f(|T|) \cdot n^{c})$ time algorithm $^{2}O^{*}()$ notation supresses polynomial factors

Ondra Suchý (Czech Technical Uni) Directed Steiner Tree on Sparse Graphs

On general graphs

- FPT¹ wrt $|T| (O^*(3^{|T|}))^2$ [Dreyfuss & Wagner 1972]
- $O^*(2^{|T|})$ time, poly-space algorithm [Nederlof 2009]
- No poly kernel wrt |T| unless NP \subset coNP/poly
- W[2]-hard³ wrt k easy reduction from SET COVER
- FPT wrt treewidth

¹Fixed Parameter Tractable - there is an $O(f(|T|) \cdot n^{c})$ time algorithm ${}^{2}O^{*}()$ notation supresses polynomial factors ³There is no $O(f(k) \cdot n^c)$ algorithm, unless...

Ondra Suchý (Czech Technical Uni) Directed Steiner Tree on Sparse Graphs

On general graphs

- FPT¹ wrt $|T| (O^*(3^{|T|}))^2$ [Dreyfuss & Wagner 1972]
- $O^*(2^{|T|})$ time, poly-space algorithm [Nederlof 2009]
- No poly kernel wrt $|\mathcal{T}|$ unless NP \subseteq coNP/poly
- W[2]-hard³ wrt k easy reduction from SET COVER
- EPT wrt treewidth⁴

¹Fixed Parameter Tractable - there is an $O(f(|T|) \cdot n^{c})$ time algorithm ${}^{2}O^{*}()$ notation supresses polynomial factors

³There is no $O(f(k) \cdot n^c)$ algorithm, unless...

⁴Treewidth of a graph is the minimum width of a tree decome Ondra Suchý (Czech Technical Uni) Directed Steiner Tree on Sparse Graphs MCW, 31.7.2013 2 / 15

Steiner Tree on Planar graphs

On planar graphs

- contract edges between terminals
- on a path at least every second vertex is Steiner
- diameter ≤ 2k
- treewidth O(k)
- FPT wrt k

Steiner Tree on Planar graphs

On planar graphs

- contract edges between terminals
- on a path at least every second vertex is Steiner
- diameter $\leq 2k$
- treewidth O(k)
- FPT wrt k

• kernel of size $O((k + |T|)^{142})$ [Pilipczuk et al. 2013]

Sparse graph classes often studied:

- planar graphs
- *K_h*-minor free
- *K_h*-topological minor free
- *d*-degenerate

Sparse directed = sparse underlying undirected

Directed Steiner Tree

DIRECTED STEINER TREE **Input:** D = (V, A), root $r \in V$, $T \subseteq V$, k **Question:** Is there a set $S \subseteq V \setminus T$, $|S| \le k$ such that in $D[S \cup T \cup \{r\}]$ there is a path from r to every $t \in T$?

Directed Steiner Tree

DIRECTED STEINER TREE **Input:** D = (V, A), root $r \in V$, $T \subseteq V$, k **Question:** Is there a set $S \subseteq V \setminus T$, $|S| \le k$ such that in $D[S \cup T \cup \{r\}]$ there is a path from r to every $t \in T$?

On general digraphs

- FPT wrt |T| [Dreyfuss & Wagner 1972]
- $O^*(2^{|\mathcal{T}|})$ time, poly-space algorithm

[Nederlof 2009, Misra et al. 2010]

- W[2]-hard wrt k easy reduction from SET COVER
- FPT wrt treewidth

Directed Steiner Tree

DIRECTED STEINER TREE **Input:** D = (V, A), root $r \in V$, $T \subseteq V$, k **Question:** Is there a set $S \subseteq V \setminus T$, $|S| \le k$ such that in $D[S \cup T \cup \{r\}]$ there is a path from r to every $t \in T$?

On general digraphs

- FPT wrt |T| [Dreyfuss & Wagner 1972]
- $O^*(2^{|\mathcal{T}|})$ time, poly-space algorithm

[Nederlof 2009, Misra et al. 2010]

- W[2]-hard wrt k easy reduction from SET COVER
- FPT wrt treewidth

On planar graphs

- cannot contract the arcs between terminals
- need a different approach

contract strongly connected components
 -D[T] becomes a DAG

- contract strongly connected components
 -D[T] becomes a DAG
- enough to reach the sources of this DAG
 - source-terminals, sources

- contract strongly connected components
 -D[T] becomes a DAG
- enough to reach the sources of this DAG
 - source-terminals, sources
- at least we have to find an in-neighbor for each source-terminal
 - dominators
- u dominates v iff (u, v) in A

- contract strongly connected components
 -D[T] becomes a DAG
- enough to reach the sources of this DAG
 - source-terminals, sources
- at least we have to find an in-neighbor for each source-terminal
 - dominators
- u dominates v iff (u, v) in A
- at most k dominators in solution

- contract strongly connected components
 -D[T] becomes a DAG
- enough to reach the sources of this DAG
 - source-terminals, sources
- at least we have to find an in-neighbor for each source-terminal
 - dominators
- u dominates v iff (u, v) in A
- at most k dominators in solution

Switch to *d*-degenerate

- big dominator dominates at least d + 1 sources
- small dominator dominates at most d sources

- contract strongly connected components
 -D[T] becomes a DAG
- enough to reach the sources of this DAG
 - source-terminals, sources
- at least we have to find an in-neighbor for each source-terminal
 - dominators
- u dominates v iff (u, v) in A
- at most k dominators in solution

Switch to *d*-degenerate

- big dominator dominates at least d + 1 sources
- small dominator dominates at most d sources
- there are "only few" big dominators
- but many small dominators

- contract strongly connected components
 -D[T] becomes a DAG
- enough to reach the sources of this DAG
 - source-terminals, sources
- at least we have to find an in-neighbor for each source-terminal
 - dominators
- u dominates v iff (u, v) in A
- at most k dominators in solution

Switch to *d*-degenerate

- big dominator dominates at least d + 1 sources
- small dominator dominates at most d sources
- there are "only few" big dominators
- but many small dominators
- solution: ignore the small dominators !

Algorithm for *d*-degenerate

- look on the bipartite graph between big dominators and sources dominated by them
- D is d-degenerate \Rightarrow

there is a source v dominated by $\leq d$ dominators

Solution options:

- v is dominated by some big dominator in N⁻(v)
 -branch on which of them
- v is dominated by some small dominator -save it for later

-delete the big dominators in $N^-(v)$

Progress measure:

• at most dk sources can be dominated by k small dominators

Algorithm formally

the algorithm keeps 5 disjoint vertex sets:

- Y partial solution size $\leq k$.
- B_h dominators which dominate > d sources not dominated by Y.
- B_I dominators which dominate $\leq d$ of them.
- W_h sources not dominated by Y, but dominated by B_h.

• W_l - sources not dominated by Y or B_h .

the algorithm:

- Find vertex $v \in W_h$ with the least neighbors in B_h .
- For each u ∈ B_h ∩ N⁻(v) add u to Y, update the other sets, and recurse
- Put v in W_l, delete B_h ∩ N⁻(v), update, and recurse

Algorithm formally

the algorithm keeps 5 disjoint vertex sets:

- Y partial solution size $\leq k$.
- B_h dominators which dominate > d sources not dominated by Y.
- B_I dominators which dominate $\leq d$ of them.
- W_h sources not dominated by Y, but dominated by B_h.

• W_l - sources not dominated by Y or B_h .

the algorithm:

- Find vertex $v \in W_h$ with the least neighbors in B_h .
- For each $u \in B_h \cap N^-(v)$ add u to Y, update the other sets, and recurse
- Put v in W_l, delete B_h ∩ N⁻(v), update, and recurse
- the measure $d(k |Y|) |W_l|$ drops in each case
- if W_h empty, apply Nederlof's algo with $W_l \cup Y$ as terminals.

MCW, 31.7.2013 8 / 15

- DST is FPT wrt k on d-degenerate digraphs
- Running time $O^*(3^{kd+o(kd)})$

3

< 回 > < 三 > < 三 >

- DST is FPT wrt k on d-degenerate digraphs
- Running time $O^*(3^{kd+o(kd)})$
- DST is FPT wrt k on $o(\log n)$ degenerate classes of graphs

- DST is FPT wrt k on d-degenerate digraphs
- Running time $O^*(3^{kd+o(kd)})$
- DST is FPT wrt k on $o(\log n)$ degenerate classes of graphs

But:

Theorem

DST is W[2]-hard on 2-degenerate graphs.

- DST is FPT wrt k on d-degenerate digraphs
- Running time $O^*(3^{kd+o(kd)})$
- DST is FPT wrt k on $o(\log n)$ degenerate classes of graphs

But:

Theorem

DST is W[2]-hard on 2-degenerate graphs.

Reduction from SET COVER.

Set Cover

Input: A universe *U*, a family $\mathcal{F} \subseteq 2^U$, $k \in \mathbb{N}$

Question: Is there a subfamily $\mathcal{F}' \subseteq \mathcal{F}$, such that $|\mathcal{F}'| \leq k$ and $\bigcup \mathcal{F}' = U$?

Back to K_h -minor-free

 K_h -minor-free graphs

- are $O(h^2)$ -degenerate
- you can do contractions

Back to K_h -minor-free

 K_h -minor-free graphs

- are $O(h^2)$ -degenerate
- you can do contractions
- if each dominator dominates at least h sources, then some source dominated by at most $O(h^4)$ dominators

Back to K_h -minor-free

K_h-minor-free graphs

- are $O(h^2)$ -degenerate
- you can do contractions
- if each dominator dominates at least h sources, then some source dominated by at most $O(h^4)$ dominators
- above bounds actually for K_h -topological minor free

Our results for DST

- D[T] arbitrary
 - $O^*(3^{hk+o(hk)})$ -time on K_h -minor free digraphs
 - $O^*(f(h)^k)$ -time on K_h -topological minor free digraphs.
 - DST is W[2]-hard on 2-degenerate digraphs

超す イヨト イヨト ニヨ

Our results for DST

- D[T] arbitrary
 - $O^*(3^{hk+o(hk)})$ -time on K_h -minor free digraphs
 - $O^*(f(h)^k)$ -time on K_h -topological minor free digraphs.
 - DST is W[2]-hard on 2-degenerate digraphs

D[T] acyclic

- $O^*(3^{hk+o(hk)})$ -time on K_h -topological minor free digraphs
- $O^*(3^{dk+o(dk)})$ -time on *d*-degenerate graphs
 - DST is FPT wrt k on o(log n)-degenerate graph classes
 - first FPT algorithm for undirected STEINER TREE on *d*-degenerate

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Our results for DST

D[T] arbitrary

- $O^*(3^{hk+o(hk)})$ -time on K_h -minor free digraphs
- $O^*(f(h)^k)$ -time on K_h -topological minor free digraphs.
- DST is W[2]-hard on 2-degenerate digraphs

D[T] acyclic

- $O^*(3^{hk+o(hk)})$ -time on K_h -topological minor free digraphs
- $O^*(3^{dk+o(dk)})$ -time on *d*-degenerate graphs
 - ▶ DST is FPT wrt k on o(log n)-degenerate graph classes
 - first FPT algorithm for undirected STEINER TREE on *d*-degenerate
- For any constant c > 0, no f(k)n^{o(k/log k)}-time algorithm on graphs of degeneracy c log n unless ETH⁵ fails.
 - no $O^*(2^{o(d)f(k)})$ -time algorithm unless ETH fails
- no $O^*(2^{f(d)o(k)})$ -time algorithm unless ETH fails

⁵Exponential time hypothesis — 3-SAT cannot be solved in time $2^{o(n)}$ (\mathbb{R}) \mathbb{R} \mathfrak{S}

MCW, 31.7.2013

11 / 15

Application to Dominating Set

- there is a parameterized reduction from DOMINATING SET to (DIRECTED) STEINER TREE, preserving the degeneracy
- the algorithm can be adapted using the above reduction when there only a few vertices left to be dominated

Application to Dominating Set

- there is a parameterized reduction from DOMINATING SET to (DIRECTED) STEINER TREE, preserving the degeneracy
- the algorithm can be adapted using the above reduction when there only a few vertices left to be dominated

The sets

- Y partial solution size $\leq k$.
- B vertices dominated by Y.
- W not dominated by Y.
- B_h vertices of B dominating $\geq d + 1$ vertices of W.
- *B_I* vertices of *B* dominating ≤ *d* vertices of *W*.
- W_h vertices in W with neighbor in $B_h \cup W$.
- W_l remaining vertices of W.

graph class	running time	
K _h -minor free	$O^*(3^{hk+o(hk)})$	
K_h -topological minor	$O^*(3^{hk+o(hk)})$	
d-degenerate	$O^*(3^{dk+o(dk)})$	

< 🗇 🕨

graph class	running time	previously known
K _h -minor free	$O^*(3^{hk+o(hk)})$	subexponential
<i>K_h</i> -topological minor <i>d</i> -degenerate	$O^*(3^{hk+o(hk)})$ $O^*(3^{dk+o(dk)})$	

< 🗇 🕨 🔺

graph class	running time	previously known
K _h -minor free	$O^*(3^{hk+o(hk)})$	subexponential
<i>K_h-</i> topological minor <i>d-</i> degenerate	$O^*(3^{hk+o(hk)})$ $O^*(3^{dk+o(dk)})$	O*(2 ^{O(h log h)k}) [Alon & Gutner 2009] O*(2 ^{O(d log d)k}) [Alon & Gutner 2009]

3

graph class	running time	previously known
K_h -minor free	$O^*(3^{hk+o(hk)})$	subexponential
<i>K_h</i> -topological minor <i>d</i> -degenerate	$O^*(3^{hk+o(hk)})$ $O^*(3^{dk+o(dk)})$	O*(2 ^{O(h log h)k}) [Alon & Gutner 2009] O*(2 ^{O(d log d)k}) [Alon & Gutner 2009]

- FPT on $o(\log n)$ degenerate
- For any constant c > 0, there is no f(k)n^{o(k/log k)}-algorithm on graphs of degeneracy c log n unless ETH fails.
- no algorithm $O^*(2^{o(d)f(k)})$, unless ETH fails.
- no algorithm $O^*(2^{f(d)o(k)})$, unless ETH fails.

graph class	running time	previously known
<i>K_h-</i> minor free	$O^*(3^{hk+o(hk)})$	subexponential
<i>K_h</i> -topological minor <i>d</i> -degenerate	$O^*(3^{hk+o(hk)})$ $O^*(3^{dk+o(dk)})$	O*(2 ^{O(h log h)k}) [Alon & Gutner 2009] O*(2 ^{O(d log d)k}) [Alon & Gutner 2009]

- FPT on $o(\log n)$ degenerate
- For any constant c > 0, there is no f(k)n^{o(k/log k)}-algorithm on graphs of degeneracy c log n unless ETH fails.
- no algorithm $O^*(2^{o(d)f(k)})$, unless ETH fails.
- no algorithm $O^*(2^{f(d)o(k)})$, unless ETH fails.
- $O(dn \log n)$ -time d^2 -approximation algorithm on d-degenerate graphs.

Future research, Open questions general case W[2]-Hard Aritil & Stelic D(F) $f(h)^k$ DST 9O(hk)O(dk)O(hk) $2^{O(hk)}$ DS $2^{O(dk)}$ d-degenerated- K_h -Topological K_h -minor free \perp minor free

- Asymptot. optimal running times for *d*-degenerate graphs $2^{O(kd)}$
 - SETH lower bound on the basis?
 - Improving the upper bound currently 3^{kd+o(kd)}
- STRONGLY CONNECTED STEINER SUBGRAPH, DIRECTED STEINER NETWORK in planar graphs
- kernel for planar STEINER TREE wrt |T|? wrt k?

Future research, Open questions general case W[2]-Hard ATILIT RESIDENCE DIFT $f(h)^k$ O(hk)DST O(dk)O(hk) $2^{O(hk)}$ DS $2^{O(dk)}$ d-degenerated- K_h -Topological K_h -minor free \perp minor free • Asymptot. optimal running times for *d*-degenerate graphs - $2^{O(kd)}$ SETH⁶ lower bound on the basis?

- ▶ Improving the upper bound currently 3^{kd+o(kd)}
- STRONGLY CONNECTED STEINER SUBGRAPH, DIRECTED STEINER NETWORK in planar graphs
- kernel for planar STEINER TREE wrt |T|? wrt k?

⁶Strong ETH — SAT cannot be solved in time $(2 - \varepsilon)^{n}$

Ondra Suchý (Czech Technical Uni)

Directed Steiner Tree on Sparse Graphs

Thank you for your attention!

< /□ > < 三