Hedetniemi conjecture for strict vector chromatic number

Robert Šámal
(joint with C.Godsil, D.Roberson, S.Severini)
Computer Science Institute, Charles University, Prague
July 31, 2013
MCW, Prague

Outline

(9) Introduction
(2) Strict vector coloring
(3) Vector coloring

4 Quantum coloring
(5) Further work

Graph homomorphism

Graph homomorphism is $\varphi: V(G) \rightarrow V(H)$ such that

$$
u \sim v \Rightarrow \varphi(u) \sim \varphi(v)
$$

Monotone graph parameters

Graph parameter f : Graphs $\rightarrow \mathbb{R}$ is monotone if

$$
G \rightarrow H \Rightarrow f(G) \leq f(H)
$$

Examples: $\chi, \chi_{c}, \chi_{f}, \ldots$

Graph products

G, H - graphs. Their products have vertex set $V(G) \times V(H)$ and adjacency defined so, that $\left(g_{1}, h_{1}\right) \sim\left(g_{2}, h_{2}\right)$ iff

- $g_{1} \sim g_{2}$ and $h_{1} \sim h_{2} \quad$ - categorical product $G \times H$
- $g_{1} \sim g_{2}$ and $h_{1}=h_{2}$ OR vice versa
— cartesian product $G \square H$
- $g_{1} \sim g_{2}$ or $h_{1} \sim h_{2} \quad$ - disjunctive product $G * H$

Finally, strong product $G \boxtimes H:=(G \times H) \cup(G \square H)$

Products and χ

$G \rightarrow G \square H$

Products and χ

$G \rightarrow G \square H \Rightarrow \chi(G) \leq \chi(G \square H)$

Products and χ

$$
G \rightarrow G \square H \Rightarrow \chi(G) \leq \chi(G \square H)
$$

Observation

$\chi(G \square H) \geq \max \{\chi(G), \chi(H)\}$

Products and χ

$$
G \rightarrow G \square H \Rightarrow \chi(G) \leq \chi(G \square H)
$$

Theorem (Sabidussi 1964)
$\chi(G \square H)=\max \{\chi(G), \chi(H)\}$

Products and χ

$$
G \rightarrow G \square H \Rightarrow \chi(G) \leq \chi(G \square H)
$$

Theorem (Sabidussi 1964)
$\chi(G \square H)=\max \{\chi(G), \chi(H)\}$
$G \times H \rightarrow G$

Products and χ

$$
G \rightarrow G \square H \Rightarrow \chi(G) \leq \chi(G \square H)
$$

Theorem (Sabidussi 1964)

$\chi(G \square H)=\max \{\chi(G), \chi(H)\}$
$G \times H \rightarrow G \Rightarrow \chi(G \times H) \leq \chi(G)$

Products and χ

$$
G \rightarrow G \square H \Rightarrow \chi(G) \leq \chi(G \square H)
$$

Theorem (Sabidussi 1964)

$\chi(G \square H)=\max \{\chi(G), \chi(H)\}$

$$
G \times H \rightarrow G \Rightarrow \chi(G \times H) \leq \chi(G)
$$

Observation

$\chi(G \times H) \leq \min \{\chi(G), \chi(H)\}$

Products and χ

$$
G \rightarrow G \square H \Rightarrow \chi(G) \leq \chi(G \square H)
$$

Theorem (Sabidussi 1964)

$\chi(G \square H)=\max \{\chi(G), \chi(H)\}$

$$
G \times H \rightarrow G \Rightarrow \chi(G \times H) \leq \chi(G)
$$

Conjecture (Hedetniemi 1966)
$\chi(G \times H)=\min \{\chi(G), \chi(H)\}$

Products and χ

$$
G \rightarrow G \square H \Rightarrow \chi(G) \leq \chi(G \square H)
$$

Theorem (Sabidussi 1964)
$\chi(G \square H)=\max \{\chi(G), \chi(H)\}$
$G \times H \rightarrow G \Rightarrow \chi(G \times H) \leq \chi(G)$
Conjecture (Hedetniemi 1966)
$\chi(G \times H)=\min \{\chi(G), \chi(H)\}$

Theorem (Zhu 2011)
$\chi_{f}(G \times H)=\min \left\{\chi_{f}(G), \chi_{f}(H)\right\}$

Strict vector coloring - definition

strict vector k-coloring of a graph G is $\varphi: V(G) \rightarrow$ unit vectors such that

$$
u \sim v \Rightarrow \varphi(u) \cdot \varphi(v)=-\frac{1}{k-1}
$$

strict vector chromatic number of a graph G

$$
\bar{\vartheta}(G)=\min \{k>1 \mid \exists \text { strict vector } k \text {-coloring of } G\}
$$

> - defined by [KMS 1998] to approximate $\chi(G)$
> - can be approximated with arb. precision by SDP
> - $\omega(G) \leq \bar{\vartheta}(G) \leq \chi(G)$ (Sandwich theorem) [GLSch 1981]
> - equal to $\vartheta(\bar{G})$ defined by [Lovász 1979] to count $\Theta\left(C_{5}\right)$

Strict vector coloring - definition

strict vector k-coloring of a graph G is $\varphi: V(G) \rightarrow$ unit vectors such that

$$
u \sim v \Rightarrow \varphi(u) \cdot \varphi(v)=-\frac{1}{k-1}
$$

strict vector chromatic number of a graph G

$$
\bar{\vartheta}(G)=\min \{k>1 \mid \exists \text { strict vector } k \text {-coloring of } G\}
$$

- defined by [KMS 1998] to approximate $\chi(G)$
- can be approximated with arb. precision by SDP - $\omega(G) \leq \bar{\vartheta}(G) \leq \chi(G)$ (Sandwich theorem) [GLSch 1981] - equal to $\vartheta(\bar{G})$ defined by [Lovász 1979] to count $\Theta\left(C_{5}\right)$

Strict vector coloring - definition

strict vector k-coloring of a graph G is $\varphi: V(G) \rightarrow$ unit vectors such that

$$
u \sim v \Rightarrow \varphi(u) \cdot \varphi(v)=-\frac{1}{k-1}
$$

strict vector chromatic number of a graph G

$$
\bar{\vartheta}(G)=\min \{k>1 \mid \exists \text { strict vector } k \text {-coloring of } G\}
$$

- defined by [KMS 1998] to approximate $\chi(G)$
- can be approximated with arb. precision by SDP
- $\omega(G) \leq \bar{\vartheta}(G) \leq \chi(G)$ (Sandwich theorem) [GLSch 1981]
- equal to $\vartheta(\bar{G})$ defined by [Lovász 1979] to count $\Theta\left(C_{5}\right)$

Strict vector coloring - definition

strict vector k-coloring of a graph G is $\varphi: V(G) \rightarrow$ unit vectors such that

$$
u \sim v \Rightarrow \varphi(u) \cdot \varphi(v)=-\frac{1}{k-1}
$$

strict vector chromatic number of a graph G

$$
\bar{\vartheta}(G)=\min \{k>1 \mid \exists \text { strict vector } k \text {-coloring of } G\}
$$

- defined by [KMS 1998] to approximate $\chi(G)$
- can be approximated with arb. precision by SDP
- $\omega(G) \leq \bar{\vartheta}(G) \leq \chi(G)$ (Sandwich theorem) [GLSch 1981]
- equal to $\vartheta(G)$ defined by [Lovász 1979] to count $\Theta\left(C_{5}\right)$

Strict vector coloring - definition

strict vector k-coloring of a graph G is $\varphi: V(G) \rightarrow$ unit vectors such that

$$
u \sim v \Rightarrow \varphi(u) \cdot \varphi(v)=-\frac{1}{k-1}
$$

strict vector chromatic number of a graph G

$$
\bar{\vartheta}(G)=\min \{k>1 \mid \exists \text { strict vector } k \text {-coloring of } G\}
$$

- defined by [KMS 1998] to approximate $\chi(G)$
- can be approximated with arb. precision by SDP
- $\omega(G) \leq \bar{\vartheta}(G) \leq \chi(G)$ (Sandwich theorem) [GLSch 1981]
- equal to $\vartheta(\bar{G})$ defined by [Lovász 1979] to count $\Theta\left(C_{5}\right)$

Strict vector coloring - Sabidussi

Lemma (Godsil, Roberson, Severini, Š. 2013)
If a graph has a strict vector k-coloring then it has also a strict vector k^{\prime}-coloring for every $k^{\prime}>k$.

Strict vector coloring - Sabidussi

Lemma (Godsil, Roberson, Severini, Š. 2013)
If a graph has a strict vector k-coloring then it has also a strict vector k^{\prime}-coloring for every $k^{\prime}>k$.

Proof: Add a new coordinate - the value will be the same for all vertices.

Strict vector coloring - Sabidussi

Lemma (Godsil, Roberson, Severini, Š. 2013)
If a graph has a strict vector k-coloring then it has also a strict vector k^{\prime}-coloring for every $k^{\prime}>k$.

Theorem (Godsil, Roberson, Severini, Š. 2013)
$\bar{\vartheta}(G \square H)=\max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$

Strict vector coloring - Sabidussi

Lemma (Godsil, Roberson, Severini, Š. 2013)
If a graph has a strict vector k-coloring then it has also a strict vector k^{\prime}-coloring for every $k^{\prime}>k$.

Theorem (Godsil, Roberson, Severini, Š. 2013)
 $\bar{\vartheta}(G \square H)=\max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$

Proof:

- \geq holds for every monotone graph parameter

Strict vector coloring - Sabidussi

Lemma (Godsil, Roberson, Severini, Š. 2013)
If a graph has a strict vector k-coloring then it has also a strict vector k^{\prime}-coloring for every $k^{\prime}>k$.

Theorem (Godsil, Roberson, Severini, Š. 2013)

$\bar{\vartheta}(G \square H)=\max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$

Proof:

- \geq holds for every monotone graph parameter
- \leq needs to show: if G, H have strict vector k-colorings g, h then $G \square H$ also has a strict vector k-coloring.

Strict vector coloring - Sabidussi

Lemma (Godsil, Roberson, Severini, Š. 2013)
If a graph has a strict vector k-coloring then it has also a strict vector k^{\prime}-coloring for every $k^{\prime}>k$.

Theorem (Godsil, Roberson, Severini, Š. 2013)

$\bar{\vartheta}(G \square H)=\max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$

Proof:

- \geq holds for every monotone graph parameter
- \leq needs to show: if G, H have strict vector k-colorings g, h then $G \square H$ also has a strict vector k-coloring.
- Take $g \otimes h$: put $(g \otimes h)(u, v)=g(u) \otimes h(v)$, where $u \in V(G)$ and $v \in V(H)$.

Strict vector coloring - union

- [Lovász 1979] $\vartheta(G \boxtimes H)=\vartheta(G) \vartheta(H)$
- [Knuth 1994] $\vartheta(G * H)=\vartheta(G) \vartheta(H)$ (observe that $G \boxtimes H \subseteq G * H$)
- observe that $\overline{G \boxtimes H}=\bar{G} * \bar{H}$ and $\overline{G * H}=\bar{G} \boxtimes \bar{H}$
- $\bar{\vartheta}(G * H)=\bar{\vartheta}(G \boxtimes H)=\bar{\vartheta}(G) \bar{\vartheta}(H)$
- $\bar{\vartheta}(G \cup H) \leq \bar{\vartheta}(G) \bar{\vartheta}(H)$

Proof: We may assume $V(G)=V(H)$.
$G \cup H$ is a subgraph of $G * H$ (a diagonal).

Strict vector coloring - union

- [Lovász 1979] $\vartheta(G \boxtimes H)=\vartheta(G) \vartheta(H)$
- [Knuth 1994] $\vartheta(G * H)=\vartheta(G) \vartheta(H)$ (observe that $G \boxtimes H \subseteq G * H$)
- observe that $\overline{G \boxtimes H}=\bar{G} * \bar{H}$ and $\overline{G * H}=\bar{G} \boxtimes \bar{H}$
- $\bar{\vartheta}(G * H)=\bar{\vartheta}(G \boxtimes H)=\bar{\vartheta}(G) \bar{\vartheta}(H)$
- $\bar{\vartheta}(G \cup H) \leq \bar{\vartheta}(G) \bar{\vartheta}(H)$

Proof: We may assume $V(G)=V(H)$.
$G \cup H$ is a subgraph of $G * H$ (a diagonal).

Strict vector coloring - union

- [Lovász 1979] $\vartheta(G \boxtimes H)=\vartheta(G) \vartheta(H)$
- [Knuth 1994] $\vartheta(G * H)=\vartheta(G) \vartheta(H)$ (observe that $G \boxtimes H \subseteq G * H$)
- observe that $\overline{G \boxtimes H}=\bar{G} * \bar{H}$ and $\overline{G * H}=\bar{G} \boxtimes \bar{H}$
- $\bar{\vartheta}(G * H)=\bar{\vartheta}(G \boxtimes H)=\bar{\vartheta}(G) \bar{\vartheta}(H)$

Proof: We may assume $V(G)=V(H)$.
$G \cup H$ is a subgraph of $G * H$ (a diagonal).

Strict vector coloring - union

- [Lovász 1979] $\vartheta(G \boxtimes H)=\vartheta(G) \vartheta(H)$
- [Knuth 1994] $\vartheta(G * H)=\vartheta(G) \vartheta(H)$ (observe that $G \boxtimes H \subseteq G * H$)
- observe that $\overline{G \boxtimes H}=\bar{G} * \bar{H}$ and $\overline{G * H}=\bar{G} \boxtimes \bar{H}$
- $\bar{\vartheta}(G * H)=\bar{\vartheta}(G \boxtimes H)=\bar{\vartheta}(G) \bar{\vartheta}(H)$
- $\bar{\vartheta}(G \cup H) \leq \bar{\vartheta}(G) \bar{\vartheta}(H)$

Proof: We may assume $V(G)=V(H)$.
$G \cup H$ is a subgraph of $G * H$ (a diagonal).

Strict vector coloring - union

- [Lovász 1979] $\vartheta(G \boxtimes H)=\vartheta(G) \vartheta(H)$
- [Knuth 1994] $\vartheta(G * H)=\vartheta(G) \vartheta(H)$ (observe that $G \boxtimes H \subseteq G * H$)
- observe that $\overline{G \boxtimes H}=\bar{G} * \bar{H}$ and $\overline{G * H}=\bar{G} \boxtimes \bar{H}$
- $\bar{\vartheta}(G * H)=\bar{\vartheta}(G \boxtimes H)=\bar{\vartheta}(G) \bar{\vartheta}(H)$
- $\bar{\vartheta}(G \cup H) \leq \bar{\vartheta}(G) \bar{\vartheta}(H)$

Proof: We may assume $V(G)=V(H)$.

Strict vector coloring - union

- [Lovász 1979] $\vartheta(G \boxtimes H)=\vartheta(G) \vartheta(H)$
- [Knuth 1994] $\vartheta(G * H)=\vartheta(G) \vartheta(H)$ (observe that $G \boxtimes H \subseteq G * H$)
- observe that $\overline{G \boxtimes H}=\bar{G} * \bar{H}$ and $\overline{G * H}=\bar{G} \boxtimes \bar{H}$
- $\bar{\vartheta}(G * H)=\bar{\vartheta}(G \boxtimes H)=\bar{\vartheta}(G) \bar{\vartheta}(H)$
- $\bar{\vartheta}(G \cup H) \leq \bar{\vartheta}(G) \bar{\vartheta}(H)$

Proof: We may assume $V(G)=V(H)$.
$G \cup H$ is a subgraph of $G * H$ (a diagonal).

Strict vector coloring - Hedetniemi

Theorem (Godsil, Roberson, Severini, Š. 2013)
$\bar{\vartheta}(G \times H)=\min \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$
Proof:

- Consider $A=G \square H$ and $B=G \times H$.
- $\bar{\vartheta}(A \cup B) \leq \bar{\vartheta}(A) \bar{\vartheta}(B)$
- $\bar{\vartheta}(A \cup B)=\bar{\vartheta}(G \boxtimes H)=\bar{\vartheta}(G) \bar{\vartheta}(H)$
- $\bar{\vartheta}(A)=\bar{\vartheta}(G \square H)=\max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$
- Thus

$$
\bar{\vartheta}(G) \bar{\vartheta}(H) \leq \max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\} \cdot \bar{\vartheta}(G \times H)
$$

Strict vector coloring - Hedetniemi

Theorem (Godsil, Roberson, Severini, Š. 2013)
$\bar{\vartheta}(G \times H)=\min \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$

Proof:

- Consider $A=G \square H$ and $B=G \times H$.
- $\bar{\vartheta}(A \cup B) \leq \bar{\vartheta}(A) \bar{\vartheta}(B)$
- $\bar{\vartheta}(A \cup B)=\bar{\vartheta}(G \boxtimes H)=\bar{\vartheta}(G) \bar{\vartheta}(H)$
- $\bar{\vartheta}(A)=\bar{\vartheta}(G \square H)=\max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$
- Thus

$$
\bar{\vartheta}(G) \bar{\vartheta}(H) \leq \max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\} \cdot \bar{\vartheta}(G \times H)
$$

Strict vector coloring - Hedetniemi

Theorem (Godsil, Roberson, Severini, Š. 2013)
$\bar{\vartheta}(G \times H)=\min \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$

Proof:

- Consider $A=G \square H$ and $B=G \times H$.
- $\bar{\vartheta}(A \cup B) \leq \bar{\vartheta}(A) \bar{\vartheta}(B)$
- $\bar{\vartheta}(A \cup B)=\bar{\vartheta}(G \boxtimes H)=\bar{\vartheta}(G) \bar{\vartheta}(H)$
- $\bar{\vartheta}(A)=\bar{\vartheta}(G \square H)=\max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$
- Thus

$$
\bar{\vartheta}(G) \bar{\vartheta}(H) \leq \max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\} \cdot \bar{\vartheta}(G \times H)
$$

Strict vector coloring - Hedetniemi

Theorem (Godsil, Roberson, Severini, Š. 2013)
$\bar{\vartheta}(G \times H)=\min \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$

Proof:

- Consider $A=G \square H$ and $B=G \times H$.
- $\bar{\vartheta}(A \cup B) \leq \bar{\vartheta}(A) \bar{\vartheta}(B)$
- $\bar{\vartheta}(A \cup B)=\bar{\vartheta}(G \boxtimes H)=\bar{\vartheta}(G) \bar{\vartheta}(H)$
- $\bar{\vartheta}(A)=\bar{\vartheta}(G \square H)=\max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$
- Thus

$$
\bar{\vartheta}(G) \bar{\vartheta}(H) \leq \max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\} \cdot \bar{\vartheta}(G \times H)
$$

Strict vector coloring - Hedetniemi

Theorem (Godsil, Roberson, Severini, Š. 2013)
$\bar{\vartheta}(G \times H)=\min \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$

Proof:

- Consider $A=G \square H$ and $B=G \times H$.
- $\bar{\vartheta}(A \cup B) \leq \bar{\vartheta}(A) \bar{\vartheta}(B)$
- $\bar{\vartheta}(A \cup B)=\bar{\vartheta}(G \boxtimes H)=\bar{\vartheta}(G) \bar{\vartheta}(H)$
- $\bar{\vartheta}(A)=\bar{\vartheta}(G \square H)=\max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$

$$
\bar{\vartheta}(G) \bar{\vartheta}(H) \leq \max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\} \cdot \bar{\vartheta}(G \times H)
$$

Strict vector coloring - Hedetniemi

Theorem (Godsil, Roberson, Severini, Š. 2013)
$\bar{\vartheta}(G \times H)=\min \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$

Proof:

- Consider $A=G \square H$ and $B=G \times H$.
- $\bar{\vartheta}(A \cup B) \leq \bar{\vartheta}(A) \bar{\vartheta}(B)$
- $\bar{\vartheta}(A \cup B)=\bar{\vartheta}(G \boxtimes H)=\bar{\vartheta}(G) \bar{\vartheta}(H)$
- $\bar{\vartheta}(A)=\bar{\vartheta}(G \square H)=\max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\}$
- Thus

$$
\bar{\vartheta}(G) \bar{\vartheta}(H) \leq \max \{\bar{\vartheta}(G), \bar{\vartheta}(H)\} \cdot \bar{\vartheta}(G \times H)
$$

Vector coloring - definition

strict vector k-coloring of a graph $G-\varphi: V(G) \rightarrow$ unit vectors such that

$$
u \sim v \Rightarrow \varphi(u) \cdot \varphi(v)=-\frac{1}{k-1}
$$

strict vector chromatic number of a graph G

$$
\bar{\vartheta}(G)=\min \{k>1 \mid \exists \text { strict vector } k \text {-coloring of } G\}
$$

- analogy with circular chromatic number "adjacent vertices are mapped far apart"
- this is the version originally (and mainly) considered by [KMS 1998].

Vector coloring - definition

striitt vector k-coloring of a graph $G-\varphi: V(G) \rightarrow$ unit vectors such that

$$
u \sim v \Rightarrow \varphi(u) \cdot \varphi(v) \leq-\frac{1}{k-1}
$$

stritit vector chromatic number of a graph G

$$
\chi_{v}(G)=\min \{k>1 \mid \exists \text { strilitt vector } k \text {-coloring of } G\}
$$

- analogy with circular chromatic number "adjacent vertices are mapped far apart"
- this is the version originally (and mainly) considered by [KMS 1998].

Vector coloring - definition

striitt vector k-coloring of a graph $G-\varphi: V(G) \rightarrow$ unit vectors such that

$$
u \sim v \Rightarrow \varphi(u) \cdot \varphi(v) \leq-\frac{1}{k-1}
$$

striitt vector chromatic number of a graph G

$$
\chi_{v}(G)=\min \{k>1 \mid \exists s t t i l d t \text { vector } k \text {-coloring of } G\}
$$

- analogy with circular chromatic number "adjacent vertices are mapped far apart"
- this is the version originally (and mainly) considered by [KMS 1998].

Vector coloring - Sabidussi

Theorem (Godsil, Roberson, Severini, Š. 2013)
$\chi_{v}(G \square H)=\max \left\{\chi_{v}(G), \chi_{v}(H)\right\}$
Proof: the same as for $\bar{\vartheta}$.

Vector coloring - Sabidussi

Theorem (Godsil, Roberson, Severini, Š. 2013)
$\chi_{v}(G \square H)=\max \left\{\chi_{v}(G), \chi_{v}(H)\right\}$
Proof: the same as for $\bar{\vartheta}$.

Vector coloring - union

$$
\chi_{v}(G \cup H) \leq \chi_{v}(G) \chi_{v}(H)
$$

NOT TRUE IN GENERAL [Schrijver 1979]

Vector coloring - Hedetniemi

Conjecture (Godsil, Roberson, Severini, Š. 2013)
$\chi_{v}(G \times H)=\min \left\{\chi_{v}(G), \chi_{v}(H)\right\}$

Vector coloring for 1-homogeneous graphs

Theorem (Godsil, Roberson, Severini, Š. 2013)
If G and H are 1-homogeneous, then

$$
\chi_{v}(G \times H)=\min \left\{\chi_{v}(G), \chi_{v}(H)\right\}
$$

Quantum coloring - motivation

- quantum theory is weird
- in order to study computational consequences, quantum information protocols/games are studied and compared with the classical setting
- one of them is quantum coloring

Quantum coloring - definition

- Game for Alice and Bob against a referee.
- Both Alice and Bob know a graph G and can agree on a strategy how to pretend a k-coloring of G. After that, they may not communicate.
- Referee chooses vertices $a, b \in V(G)$ and gives a to Alice and b to Bob.
- Alice and Bob respond with a color in $\{1, \ldots, k\}$ "pretending this is the color of their vertex"
- If $a=b$, the color must be the same, if $a \sim b$, it must be different.
- Alice and Bob only care about 100\%-proof strategies.

Quantum coloring - definition

- Rather obviously, Alice and Bob win iff $k \geq \chi(G)$.
- However, by sharing a quantum entanglement they may win for smaller k 's.

$$
\chi_{q}(G):=\min \{k: A \& B \text { can win }\}
$$

- For Hadamard graphs $\Omega_{4 n}$ the separation is exponential
- $\chi_{q}(G) \leq k \Leftrightarrow G$ has a quantum homomorphism to K_{k} $\Leftrightarrow G \rightarrow M\left(K_{k}, d\right)$ (for some $d \in \mathbb{N}$ and a certain (infinite) graph $M\left(K_{k}, d\right)$). [Mančinska, Roberson 2012]
- It is not known, if the question " $\chi_{q}(G) \leq k$ " is algorithmically decidable.

Quantum coloring - definition

- Rather obviously, Alice and Bob win iff $k \geq \chi(G)$.
- However, by sharing a quantum entanglement they may win for smaller k 's.

$$
\chi_{q}(G):=\min \{k: A \& B \text { can win }\}
$$

- For Hadamard graphs $\Omega_{4 n}$ the separation is exponential
- $\chi_{q}(G) \leq k \Leftrightarrow G$ has a quantum homomorphism to K_{k} $\Leftrightarrow G \rightarrow M\left(K_{k}, d\right)$ (for some $d \in \mathbb{N}$ and a certain (infinite) graph $\left.M\left(K_{k}, d\right)\right)$. [Mančinska, Roberson 2012]
- It is not known, if the question " $\chi_{q}(G) \leq k$ " is algorithmically decidable.

Quantum coloring - definition

- Rather obviously, Alice and Bob win iff $k \geq \chi(G)$.
- However, by sharing a quantum entanglement they may win for smaller k 's.

$$
\chi_{q}(G):=\min \{k: A \& B \text { can win }\}
$$

- For Hadamard graphs $\Omega_{4 n}$ the separation is exponential
 graph $\left.M\left(K_{k}, d\right)\right)$. [Mančinska, Roberson 2012]
- It is not known, if the question " $\chi_{q}(G) \leq k$ " is algorithmically decidable.

Quantum coloring - definition

- Rather obviously, Alice and Bob win iff $k \geq \chi(G)$.
- However, by sharing a quantum entanglement they may win for smaller k 's.

$$
\chi_{q}(G):=\min \{k: A \& B \text { can win }\}
$$

- For Hadamard graphs $\Omega_{4 n}$ the separation is exponential
- $\chi_{q}(G) \leq k \Leftrightarrow G$ has a quantum homomorphism to K_{k} $\Leftrightarrow G \rightarrow M\left(K_{k}, d\right)$ (for some $d \in \mathbb{N}$ and a certain (infinite) graph $\left.M\left(K_{k}, d\right)\right)$. [Mančinska, Roberson 2012]

Quantum coloring - definition

- Rather obviously, Alice and Bob win iff $k \geq \chi(G)$.
- However, by sharing a quantum entanglement they may win for smaller k 's.

$$
\chi_{q}(G):=\min \{k: A \& B \text { can win }\}
$$

- For Hadamard graphs $\Omega_{4 n}$ the separation is exponential
- $\chi_{q}(G) \leq k \Leftrightarrow G$ has a quantum homomorphism to K_{k} $\Leftrightarrow G \rightarrow M\left(K_{k}, d\right)$ (for some $d \in \mathbb{N}$ and a certain (infinite) graph $M\left(K_{k}, d\right)$). [Mančinska, Roberson 2012]
- It is not known, if the question " $\chi_{q}(G) \leq k$ " is algorithmically decidable.

χ_{q} and χ_{v}

- For every graph $\chi_{v} \leq \bar{\vartheta} \leq \chi_{q} \leq \chi$
- $\chi_{a}(G \square H)=\max \left\{\chi_{a}(G), \chi_{q}(H)\right\}$
- If $\chi_{q}(G)=\bar{\vartheta}(G)$ and $\chi_{q}(H)=\bar{\vartheta}(H)$ then

$$
x_{q}(G \times H)=\min \left\{x_{q}(G), x_{q}(H)\right\}
$$

- In particular, this holds for every pair of the Hadamard graphs

$$
\chi_{q}\left(\Omega_{m} \times \Omega_{n}\right)=\min \left\{\chi_{q}\left(\Omega_{m}\right), \chi_{q}\left(\Omega_{n}\right)\right\}
$$

χ_{q} and χ_{v}

- For every graph $\chi_{v} \leq \bar{\vartheta} \leq \chi_{q} \leq \chi$
- $\chi_{q}(G \square H)=\max \left\{\chi_{q}(G), \chi_{q}(H)\right\}$
- If $\chi_{q}(G)=\bar{\vartheta}(G)$ and $\chi_{q}(H)=\bar{\vartheta}(H)$ then

$$
\chi_{q}(G \times H)=\min \left\{\chi_{q}(G), \chi_{q}(H)\right\}
$$

- In particular, this holds for every pair of the Hadamard graphs

$$
\chi_{q}\left(\Omega_{m} \times \Omega_{n}\right)=\min \left\{\chi_{q}\left(\Omega_{m}\right), \chi_{q}\left(\Omega_{n}\right)\right\}
$$

χ_{q} and χ_{v}

- For every graph $\chi_{v} \leq \bar{\vartheta} \leq \chi_{q} \leq \chi$
- $\chi_{q}(G \square H)=\max \left\{\chi_{q}(G), \chi_{q}(H)\right\}$
- If $\chi_{q}(G)=\bar{\vartheta}(G)$ and $\chi_{q}(H)=\bar{\vartheta}(H)$ then

$$
\chi_{q}(G \times H)=\min \left\{\chi_{q}(G), \chi_{q}(H)\right\}
$$

- In particular, this holds for every pair of the Hadamard graphs

χ_{q} and χ_{v}

- For every graph $\chi_{v} \leq \bar{\vartheta} \leq \chi_{q} \leq \chi$
- $\chi_{q}(G \square H)=\max \left\{\chi_{q}(G), \chi_{q}(H)\right\}$
- If $\chi_{q}(G)=\bar{\vartheta}(G)$ and $\chi_{q}(H)=\bar{\vartheta}(H)$ then

$$
\chi_{q}(G \times H)=\min \left\{\chi_{q}(G), \chi_{q}(H)\right\}
$$

- In particular, this holds for every pair of the Hadamard graphs

$$
\chi_{q}\left(\Omega_{m} \times \Omega_{n}\right)=\min \left\{\chi_{q}\left(\Omega_{m}\right), \chi_{q}\left(\Omega_{n}\right)\right\}
$$

Vector chromatic theory

Find nice theorems for $\chi_{v}, \bar{\vartheta}, \ldots$ as chromatic-type numbers.

