The probability of planarity of a random graph near the critical point

Marc Noy, Vlady Ravelomanana, Juanjo Rué

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid Freie Universität Berlin, Berlin

XIX Midsummer Combinatorial Workshop, Praha

The material of this talk

1.- Planarity on the critical window for random graphs
2.- Our result. The strategy
3.- Cubic planar multigraphs
4.- Other applications

Planarity on the critical window for random graphs

The model $G(n, M)$

There are $2\left(\begin{array}{c}\binom{n}{2}\end{array}\right.$ labelled graphs with n vertices.
A random graph $G(n, M)$ is the probability space with properties:

- Sample space: set of labelled graphs with n vertices and $M=M(n)$ edges.
- Probability: Uniform probability $\left(\left(\begin{array}{c}n \\ 2 \\ M\end{array}\right)^{-1}\right)$

Properties:

\bigcirc Fixed number of edges \checkmark
\& The probability that a fixed edge belongs to the random graph is $p=\binom{n}{2}^{-1} M . \checkmark$
$\boldsymbol{\omega}$ There is not independence.

The Erdős-Rényi phase transition

Random graphs in $G(n, M)$ present a dichotomy for $M=\frac{n}{2}$:
1.- (Subcritical) $M=c n, c<\frac{1}{2}$: a.a.s. all connected components have size $O(\log n)$, and are either trees or unicyclic graphs.
2.- (Critical) $M=\frac{n}{2}+\lambda n^{2 / 3}$: a.a.s. the largest connected component has size of order $n^{2 / 3}$
3.- (Supercritical) $M=c n, c>\frac{1}{2}$: a.a.s. there is a unique component of size of order n.

Double jump in the creation of the giant component.

The problem; what was known

ON THE EVOLUTION OF RANDOM GRAPHS

by
P. ERDÓS and A. RÉNYI

Dedicated to Professor P. Tunán at his 50th birthday.

We can show that for $N(n)=\frac{n}{2}+\lambda \sqrt{n}$ with any real λ the probability of $\Gamma_{n, N(n)}$ not being planar has a positive lower limit, but we cannot calculate ts value. It may even be I, though this seems unlikely.

PROBLEM: Compute

$$
p(\lambda)=\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{G\left(n, \frac{n}{2}\left(1+\lambda n^{-1 / 3}\right)\right) \text { is planar }\right\}
$$

What was known:

- Janson, Łuczak, Knuth, Pittel (94): $0.9870<p(0)<0.9997$
- Luczak, Pittel, Wierman (93): $0<p(\lambda)<1$

Our contribution: the whole description of $p(\lambda)$

Our result. The strategy

The main theorem

Theorem (Noy, Ravelomanana, R.) Let g_{r} be the number of cubic planar weighted multigraphs with $2 r$ vertices. Write

$$
A(y, \lambda)=\frac{e^{-\lambda^{3} / 6}}{3^{(y+1) / 3}} \sum_{k \geq 0} \frac{\left(\frac{1}{2} 3^{2 / 3} \lambda\right)^{k}}{k!\Gamma((y+1-2 k) / 3)}
$$

Then the limiting probability that the random graph $G\left(n, \frac{n}{2}\left(1+\lambda n^{-1 / 3}\right)\right)$ is planar is

$$
p(\lambda)=\sum_{r \geq 0} \frac{\sqrt{2 \pi}}{(2 r)!} g_{r} A\left(3 r+\frac{1}{2}, \lambda\right)
$$

In particular, the limiting probability that $G\left(n, \frac{n}{2}\right)$ is planar is

$$
p(0)=\sum_{r \geq 0} \sqrt{\frac{2}{3}}\left(\frac{4}{3}\right)^{r} g_{r} \frac{r!}{(2 r)!^{2}} \approx 0.99780
$$

The strategy (I): pruning a graph

The strategy (I): pruning a graph

The strategy (I): pruning a graph

The resulting multigraph is the core of the initial graph

The strategy (and II): shape in the critical window

Łuczak, Pittel, Wierman (94):
the structure of a random graph in the critical window

Hence...We need to count!

The symbolic method à la Flajolet

COMBINATORIAL RELATIONS between CLASSES
$\downarrow \downarrow$
EQUATIONS between GENERATING FUNCTIONS

Class	Relations
$\mathcal{C}=\mathcal{A} \cup \mathcal{B}$	$C(x)=A(x)+B(x)$
$\mathcal{C}=\mathcal{A} \times \mathcal{B}$	$C(x)=A(x) \cdot B(x)$
$\mathcal{C}=\operatorname{Seq}(\mathcal{B})$	$C(x)=(1-B(x))^{-1}$
$\mathcal{C}=\operatorname{Set}(\mathcal{B})$	$C(x)=\exp (B(x))$
$\mathcal{C}=\mathcal{A} \circ \mathcal{B}$	$C(x)=A(B(x))$

All GF are exponential \equiv labelled objects

$$
A(x)=\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}
$$

Trees

We apply the previous grammar to count rooted trees

$$
\mathcal{T}=\bullet \times \operatorname{Set}(\mathcal{T}) \rightarrow T(x)=x e^{T(x)}
$$

To forget the root, we just integrate: $\left(x U^{\prime}(x)=T(x)\right)$
$\int_{0}^{x} \frac{T(s)}{s} d s=\left\{\begin{array}{c}T(s)=u \\ T^{\prime}(s) d s=d u\end{array}\right\}=\int_{T(0)}^{T(x)} 1-u d u=T(x)-\frac{1}{2} T(x)^{2}$
and the general version

$$
e^{U(x)}=e^{T(x)} e^{-\frac{1}{2} T(x)^{2}}
$$

Unicyclic graphs

$$
\mathcal{V}=\bigcirc \geq 3(\mathcal{T}) \rightarrow V(x)=\sum_{n=3}^{\infty} \frac{1}{2} \frac{(n-1)!}{n!}(T(x))^{n}
$$

We can write $V(x)$ in a compact way:

$$
\frac{1}{2}\left(-\log (1-T(x))-T(x)-\frac{T(x)^{2}}{2}\right) \rightarrow e^{V(x)}=\frac{e^{-T(x) / 2-T(x)^{2} / 4}}{\sqrt{1-T(x)}}
$$

Cubic planar multigraphs

Planar graphs arising from cubic multigraphs

In an informal way:

$$
\mathcal{G}(\bullet \leftarrow \mathcal{T}, \bullet-\bullet \leftarrow \operatorname{Seq}(\mathcal{T}))
$$

Weighted planar cubic multigraphs

Cubic multigraphs have $2 r$ vertices and $3 r$ edges (Euler's Relation)

$$
G(x, y)=\sum_{r \geq 1} \frac{g_{r}}{(2 r)!} x^{2 r} y^{3 r}=g\left(x^{2} y^{3}\right)
$$

We need to remember the number of loops and the number of multiple edges to avoid symmetries:

$$
\text { weights } 2^{-f_{1}-f_{2}}(3!)^{-f_{3}}
$$

$$
\frac{1}{2!} \frac{1}{6} x^{2} y^{3}
$$

$$
\frac{1}{2!} \frac{1}{2^{2}} x^{2} y^{3}
$$

The equations

We have equations defining $G(z)$:

$$
\begin{array}{ll}
G(z) & =\exp G_{1}(z) \\
3 z \frac{d G_{1}(z)}{d z} & =D(z)+C(z) \\
B(z) & =\frac{z^{2}}{2}(D(z)+C(z))+\frac{z^{2}}{2} \\
C(z) & =S(z)+P(z)+H(z)+B(z) \\
D(z) & =\frac{B(z)^{2}}{z^{2}} \\
S(z) & =C(z)^{2}-C(z) S(z) \\
P(z) & =z^{2} C(z)+\frac{1}{2} z^{2} C(z)^{2}+\frac{z^{2}}{2} \\
2(1+C(z)) H(z) & =u(z)(1-2 u(z))-u(z)(1-u(z))^{3} \\
z^{2}(C(z)+1)^{3} & =u(z)(1-u(z))^{3} .
\end{array}
$$

$u(z)$ is the INPUT: arising from map enumeration

The equations: an appetizer

All GF obtained (except $G(z)$) are algebraic GF; for instance:

$$
\begin{aligned}
& 1048576 z^{6}+1034496 z^{4}-55296 z^{2}+ \\
& \left(9437184 z^{6}+6731264 z^{4}-1677312 z^{2}+55296\right) C+ \\
& \left(37748736 z^{6}+18925312 z^{4}-7913472 z^{2}+470016\right) C^{2}+ \\
& \left(88080384 z^{6}+30127104 z^{4}-16687104 z^{2}+1622016\right) C^{3}+ \\
& \left(132120576 z^{6}+29935360 z^{4}-19138560 z^{2}+2928640\right) C^{4}+ \\
& \left(132120576 z^{6}+19314176 z^{4}-12429312 z^{2}+2981888\right) C^{5}+ \\
& \left(88080384 z^{6}+8112384 z^{4}-4300800 z^{2}+1720320\right) C^{6}+ \\
& \left(37748736 z^{6}+2097152 z^{4}-614400 z^{2}+524288\right) C^{7}+ \\
& \left(9437184 z^{6}+262144 z^{4}+65536\right) C^{8}+1048576 C^{9} z^{6}=0 .
\end{aligned}
$$

The estimates

- The excess of a graph $(e x(G))$ is the number of edges minus the number of vertices

$$
n!\left[z^{n}\right] \overbrace{\frac{U(z)^{n-M+r}}{(n-M+r)!} \frac{e^{-T(z) / 2-T(z)^{2} / 4}}{\sqrt{1-T(z)}}}^{\text {Trees, } e x=-1} \overbrace{\frac{g_{r} T(z)^{2 r}}{\text { Unicyclic, } e x=0}}^{(1-T(z))^{3 r}}
$$

- We finally use saddle point estimates

Other applications

General families of graphs

Many families of graphs admit an straightforward analysis:
(Noy, Ravelomanana, R.)
Let $\mathcal{G}=\operatorname{Ex}\left(H_{1}, \ldots, H_{k}\right)$ and assume all the H_{i} are 3-connected.
Let h_{r} be the number of cubic multigraphs in \mathcal{G} with $2 r$ vertices. Then the limiting probability that the random graph $G\left(n, \frac{n}{2}\left(1+\lambda n^{-1 / 3}\right)\right)$ is in \mathcal{G} is

$$
p_{\mathcal{G}}(\lambda)=\sum_{r \geq 0} \frac{\sqrt{2 \pi}}{(2 r)!} h_{r} A\left(3 r+\frac{1}{2}, \lambda\right) .
$$

In particular, the limiting probability that $G\left(n, \frac{n}{2}\right)$ is in \mathcal{G} is

$$
p_{\mathcal{G}}(0)=\sum_{r \geq 0} \sqrt{\frac{2}{3}}\left(\frac{4}{3}\right)^{r} h_{r} \frac{r!}{(2 r)!^{2}} .
$$

Moreover, for each λ we have

$$
0<p_{\mathcal{G}}(\lambda)<1
$$

Examples...please

Some interesting families fit in the previous scheme:

- Ex $\left(K_{4}\right)$: series-parallel graphs: there are not 3-connected elements in the family!
- $\operatorname{Ex}\left(K_{3,3}\right)$: The same limiting probability as planar... K_{5} does not appear as a core!
- Many others: $\operatorname{Ex}\left(K_{3,3}^{+}\right), \operatorname{Ex}\left(K_{5}^{-}\right), \operatorname{Ex}\left(K_{2} \times K_{3}\right) \ldots$
- PROBLEM: coloured graphs (in preparation...)
- PROBLEM: compute exactly for graphs on surfaces

Gràcies!

The probability of planarity of a random graph near the critical point

Marc Noy, Vlady Ravelomanana, Juanjo Rué

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid Freie Universität Berlin, Berlin

XIX Midsummer Combinatorial Workshop, Praha

