The probability of planarity of a random graph near the critical point

MARC NOY, VLADY RAVELOMANANA, Juanjo Rué

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid Freie Universität Berlin, Berlin

XIX Midsummer Combinatorial Workshop, Praha

The material of this talk

- 1.- Planarity on the critical window for random graphs
- 2.- Our result. The strategy
- **3.-** Cubic planar multigraphs
- 4.- Other applications

Planarity on the critical window for random graphs

The model G(n, M)

There are $2^{\binom{n}{2}}$ labelled graphs with *n* vertices.

A random graph G(n, M) is the probability space with properties:

- Sample space: set of labelled graphs with n vertices and M = M(n) edges.
- Probability: Uniform probability $\binom{\binom{n}{2}}{M}^{-1}$

Properties:

- $\heartsuit\,$ Fixed number of edges $\checkmark\,$
- ♣ The probability that a fixed edge belongs to the random graph is $p = \binom{n}{2}^{-1} M$. ✓
- ♠ There is not independence.

The Erdős-Rényi phase transition

Random graphs in G(n, M) present a dichotomy for $M = \frac{n}{2}$:

- 1.- (Subcritical) $M = cn, c < \frac{1}{2}$: a.a.s. all connected components have size $O(\log n)$, and are either trees or unicyclic graphs.
- 2.- (Critical) $M = \frac{n}{2} + \lambda n^{2/3}$: a.a.s. the largest connected component has size of order $n^{2/3}$
- 3.- (Supercritical) $M = cn, c > \frac{1}{2}$: a.a.s. there is a unique component of size of order n.

Double jump in the creation of the *giant component*.

The problem; what was known

ON THE EVOLUTION OF RANDOM GRAPHS

by

P. ERDŐS and A. RÉNYI

Dedicated to Professor P. Turán at his 50th birthday.

We can show that for $N(n) = \frac{n}{2} + \lambda \sqrt{n}$ with any real λ the probability of $\Gamma_{n,N(n)}$ not being planar has a positive lower limit, but we cannot calculate to value. It may even be I, though this seems unlikely.

PROBLEM: Compute

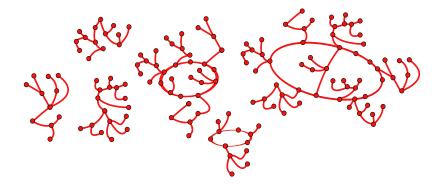
$$p(\lambda) = \lim_{n \to \infty} \Pr\left\{ G\left(n, \frac{n}{2}(1 + \lambda n^{-1/3})\right) \text{ is planar} \right\}$$

What was known:

- ▶ Janson, Łuczak, Knuth, Pittel (94): 0.9870 < p(0) < 0.9997
- Luczak, Pittel, Wierman (93): $0 < p(\lambda) < 1$

Our contribution: the whole description of $p(\lambda)$

Our result. The strategy



The main theorem

Theorem (Noy, Ravelomanana, R.) Let g_r be the number of cubic planar weighted multigraphs with 2r vertices. Write

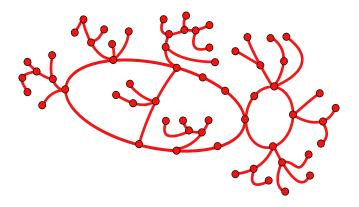
$$A(y,\lambda) = \frac{e^{-\lambda^3/6}}{3^{(y+1)/3}} \sum_{k \ge 0} \frac{\left(\frac{1}{2}3^{2/3}\lambda\right)^k}{k!\,\Gamma\left((y+1-2k)/3\right)}$$

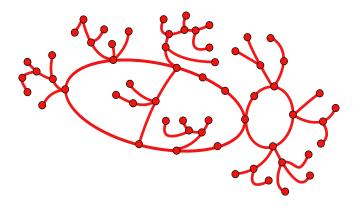
Then the limiting probability that the random graph $G\left(n, \frac{n}{2}(1 + \lambda n^{-1/3})\right)$ is planar is

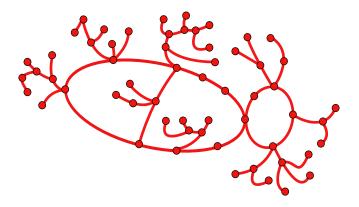
$$p(\lambda) = \sum_{r \ge 0} \frac{\sqrt{2\pi}}{(2r)!} g_r A\left(3r + \frac{1}{2}, \lambda\right).$$

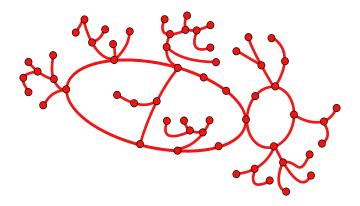
In particular, the limiting probability that $G\left(n, \frac{n}{2}\right)$ is planar is

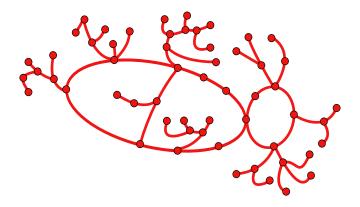
$$p(0) = \sum_{r \ge 0} \sqrt{\frac{2}{3}} \left(\frac{4}{3}\right)^r g_r \frac{r!}{(2r)!^2} \approx 0.99780.$$

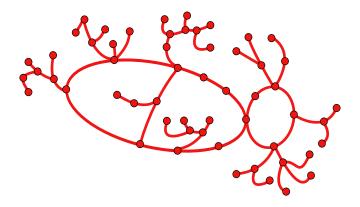


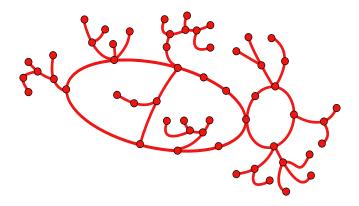


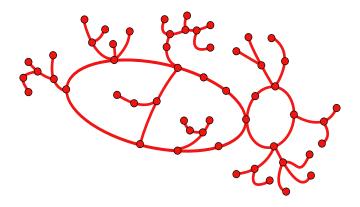


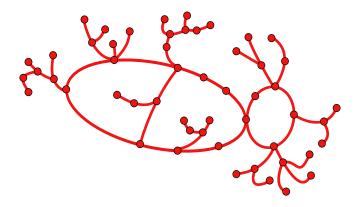


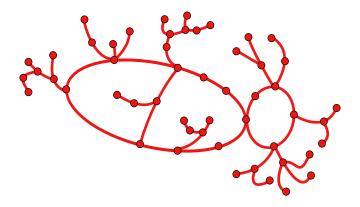


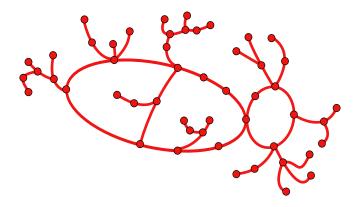


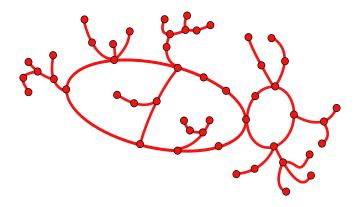


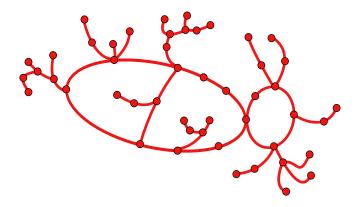


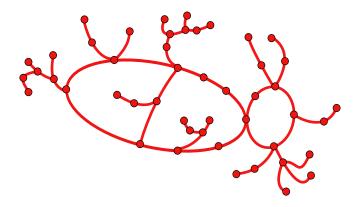


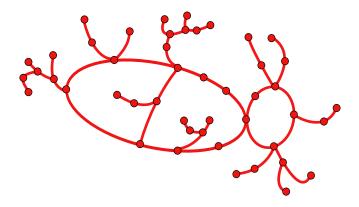


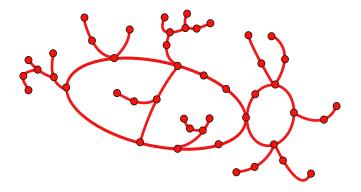


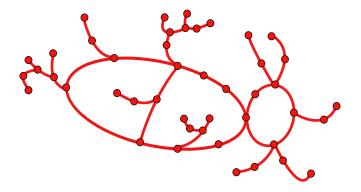


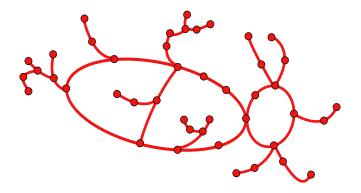


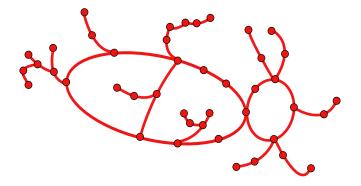


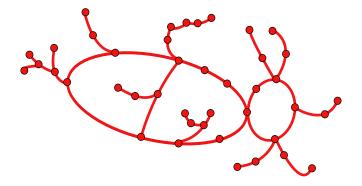


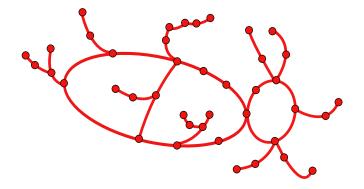


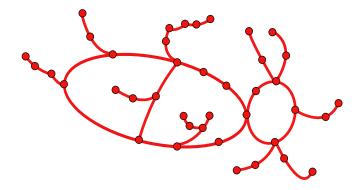


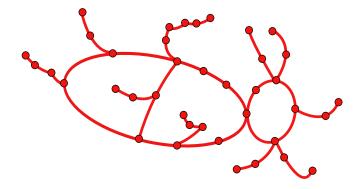


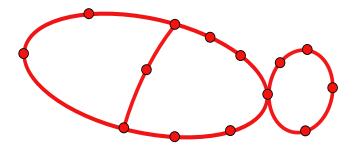


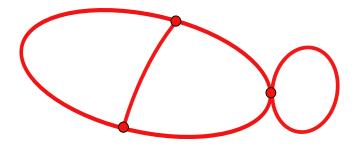










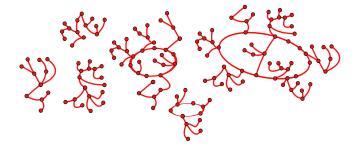


The resulting multigraph is the **core** of the initial graph

The strategy (and II): shape in the critical window

Łuczak, Pittel, Wierman (94):

the structure of a random graph in the critical window



 $p(\lambda) = \frac{\text{number of planar graphs with } \frac{n}{2}(1 + \lambda n^{-1/3}) \text{ edges}}{\binom{\binom{n}{2}}{\frac{n}{2}(1 + \lambda n^{-1/3})}}$

Hence...We need to count!

The symbolic method à la Flajolet

COMBINATORIAL RELATIONS between **CLASSES**

 \uparrow

EQUATIONS between GENERATING FUNCTIONS

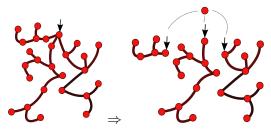
Class	Relations
$\mathcal{C} = \mathcal{A} \cup \mathcal{B}$	C(x) = A(x) + B(x)
$\mathcal{C}=\mathcal{A} imes\mathcal{B}$	$C(x) = A(x) \cdot B(x)$
$\mathcal{C} = \operatorname{Seq}(\mathcal{B})$	$C(x) = (1 - B(x))^{-1}$
$\mathcal{C}=\operatorname{Set}(\mathcal{B})$	$C(x) = \exp(B(x))$
$\mathcal{C}=\mathcal{A}\circ\mathcal{B}$	C(x) = A(B(x))

All GF are *exponential* \equiv *labelled* objects

$$A(x) = \sum_{n \ge 0} a_n \frac{x^n}{n!}$$

Trees

We apply the previous grammar to count *rooted* trees



$$\mathcal{T} = \bullet \times \operatorname{Set}(\mathcal{T}) \to T(x) = x e^{T(x)}$$

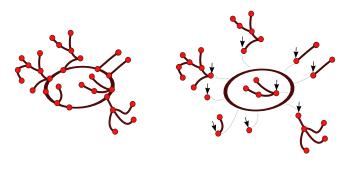
To forget the root, we just integrate: (xU'(x) = T(x))

$$\int_0^x \frac{T(s)}{s} ds = \left\{ \begin{array}{c} T(s) = u \\ T'(s) \, ds = du \end{array} \right\} = \int_{T(0)}^{T(x)} 1 - u \, du = T(x) - \frac{1}{2} T(x)^2$$

and the general version

$$e^{U(x)} = e^{T(x)}e^{-\frac{1}{2}T(x)^2}$$

Unicyclic graphs

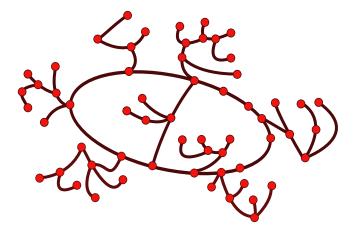


$$\mathcal{V} = \bigcirc_{\geq 3}(\mathcal{T}) \to V(x) = \sum_{n=3}^{\infty} \frac{1}{2} \frac{(n-1)!}{n!} (T(x))^n$$

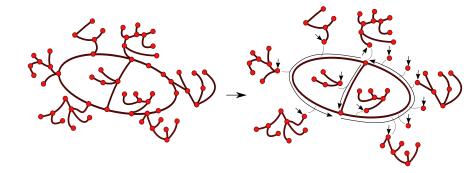
We can write V(x) in a compact way:

$$\frac{1}{2}\left(-\log\left(1-T(x)\right)-T(x)-\frac{T(x)^2}{2}\right) \to e^{V(x)} = \frac{e^{-T(x)/2-T(x)^2/4}}{\sqrt{1-T(x)}}$$

Cubic planar multigraphs



Planar graphs arising from cubic multigraphs



In an informal way:

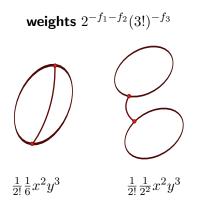
$$\mathcal{G}(\bullet \leftarrow \mathcal{T}, \bullet - \bullet \leftarrow \operatorname{Seq}(\mathcal{T}))$$

Weighted planar cubic multigraphs

Cubic multigraphs have 2r vertices and 3r edges (Euler's Relation)

$$G(x,y) = \sum_{r \ge 1} \frac{g_r}{(2r)!} x^{2r} y^{3r} = g(x^2 y^3)$$

We need to remember the number of loops and the number of multiple edges to avoid symmetries:



The equations

We have equations defining G(z):

G(z)	=	$\exp G_1(z)$
$3z \frac{dG_1(z)}{dz}$	=	D(z) + C(z)
B(z)	=	$\frac{z^2}{2}(D(z) + C(z)) + \frac{z^2}{2}$
C(z)	=	S(z) + P(z) + H(z) + B(z)
D(z)	=	$\frac{B(z)^2}{z^2}$
S(z)	=	$C(z)^2 - C(z)S(z)$
P(z)	=	$z^2 C(z) + \frac{1}{2} z^2 C(z)^2 + \frac{z^2}{2}$
2(1+C(z))H(z)	=	$u(z)(1-2u(z)) - u(z)(1-u(z))^3$
$z^2(C(z)+1)^3$	=	$u(z)(1-u(z))^3.$

u(z) is the **INPUT**: arising from map enumeration

The equations: an appetizer

All GF obtained (except G(z)) are algebraic GF; for instance:

 $\begin{array}{l} 1048576\,z^{6}+1034496\,z^{4}-55296\,z^{2}+\\ \left(9437184\,z^{6}+6731264\,z^{4}-1677312\,z^{2}+55296\right)C+\\ \left(37748736\,z^{6}+18925312\,z^{4}-7913472\,z^{2}+470016\right)C^{2}+\\ \left(88080384\,z^{6}+30127104\,z^{4}-16687104\,z^{2}+1622016\right)C^{3}+\\ \left(132120576\,z^{6}+29935360\,z^{4}-19138560\,z^{2}+2928640\right)C^{4}+\\ \left(132120576\,z^{6}+19314176\,z^{4}-12429312\,z^{2}+2981888\right)C^{5}+\\ \left(88080384\,z^{6}+8112384\,z^{4}-4300800\,z^{2}+1720320\right)C^{6}+\\ \left(37748736\,z^{6}+2097152\,z^{4}-614400\,z^{2}+524288\right)C^{7}+\\ \left(9437184\,z^{6}+262144\,z^{4}+65536\right)C^{8}+1048576\,C^{9}z^{6}=0. \end{array}$

The estimates

► The excess of a graph (ex(G)) is the number of edges minus the number of vertices

$$n![z^n] \underbrace{\frac{U(z)^{n-M+r}}{(n-M+r)!} e^{-T(z)/2 - T(z)^2/4}}_{\sqrt{1-T(z)}} \underbrace{\frac{g_r T(z)^{2r}}{(1-T(z))^{3r}}}_{(1-T(z))^{3r}}$$

▶ We finally use saddle point estimates

Other applications

General families of graphs

Many families of graphs admit an straightforward analysis:

(Noy, Ravelomanana, R.)

Let $\mathcal{G} = \text{Ex}(H_1, \ldots, H_k)$ and assume all the H_i are 3-connected. Let h_r be the number of cubic multigraphs in \mathcal{G} with 2r vertices. Then the limiting probability that the random graph $G(n, \frac{n}{2}(1 + \lambda n^{-1/3}))$ is in \mathcal{G} is

$$p_{\mathcal{G}}(\lambda) = \sum_{r \ge 0} \frac{\sqrt{2\pi}}{(2r)!} h_r A\left(3r + \frac{1}{2}, \lambda\right).$$

In particular, the limiting probability that $G(n, \frac{n}{2})$ is in \mathcal{G} is

$$p_{\mathcal{G}}(0) = \sum_{r \ge 0} \sqrt{\frac{2}{3}} \left(\frac{4}{3}\right)^r h_r \frac{r!}{(2r)!^2}.$$

Moreover, for each λ we have

 $0 < p_{\mathcal{G}}(\lambda) < 1.$

Examples...please

Some interesting families fit in the previous scheme:

- ▶ $E_x(K_4)$: series-parallel graphs: there are not 3-connected elements in the family!
- ► Ex(K_{3,3}): The same limiting probability as planar... K₅ does not appear as a core!
- Many others: $\mathsf{Ex}(K_{3,3}^+), \, \mathsf{Ex}(K_5^-), \, \mathsf{Ex}(K_2 \times K_3) \dots$
- ► **PROBLEM:** coloured graphs (in preparation...)
- ▶ **PROBLEM:** compute exactly for graphs on surfaces

The probability of planarity of a random graph near the critical point

MARC NOY, VLADY RAVELOMANANA, Juanjo Rué

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid Freie Universität Berlin, Berlin

XIX Midsummer Combinatorial Workshop, Praha

