The Arithmetic of the Random Poset

Dragan Mašulović

Department of Mathematics and Informatics
University of Novi Sad, Serbia

> MCW XIX
> Jul 29 - Aug 2, 2013

Overview

1 Homogeneous structures and Fraïssé classes

2 Surreal numbers

3 The arithmetic of the random poset

Next ...

1 Homogeneous structures and Fraïssé classes

2 Surreal numbers

3 The arithmetic of the random poset

Understanding structures by finite approximations

What can one say about a structure by looking at its finite substructures?

Understanding structures by finite approximations

Let \mathcal{A} be a countable relational structure.
Let age (\mathcal{A}) be the class of all finite structures \mathcal{B} such that $\mathcal{B} \hookrightarrow \mathcal{A}$.

Properties of age (\mathcal{A}) :

- there are only countably many pairwise nonisomorphic structures in age (\mathcal{A});
- Hereditary Property (HP): if $\mathcal{B} \in \operatorname{age}(\mathcal{A})$ and $\mathcal{C} \hookrightarrow \mathcal{B}$ then $\mathcal{C} \in \operatorname{age}(\mathcal{A})$;
- Joint Embedding Property (JEP): for all $\mathcal{B}_{1}, \mathcal{B}_{2} \in \operatorname{age}(\mathcal{A})$ there is a $\mathcal{C} \in \operatorname{age}(\mathcal{A})$ such that $\mathcal{B}_{1} \hookrightarrow \mathcal{C}$ and $\mathcal{B}_{2} \hookrightarrow \mathcal{C}$.

Understanding structures by finite approximations

Conversely, let \mathbf{K} be a class of finite structures such that:

- there are only countably many pairwise nonisomorphic structures in K;
- K has (HP); and
- K has (JEP).

Is there a countable strucutre \mathcal{A} such that age $(\mathcal{A})=\mathbf{K}$?

Understanding structures by finite approximations

Conversely, let \mathbf{K} be a class of finite structures such that:

- there are only countably many pairwise nonisomorphic structures in K;
- K has (HP); and
- K has (JEP).

Is there a countable strucutre \mathcal{A} such that age $(\mathcal{A})=\mathbf{K}$?

Understanding structures by finite approximations

Conversely, let \mathbf{K} be a class of finite structures such that:

- there are only countably many pairwise nonisomorphic structures in K;
- K has (HP); and
- K has (JEP).

Is there a countable strucutre \mathcal{A} such that age $(\mathcal{A})=\mathbf{K}$?
Is this structure unique (up to isomorphism)?

Understanding structures by finite approximations

Conversely, let \mathbf{K} be a class of finite structures such that:

- there are only countably many pairwise nonisomorphic structures in K;
- K has (HP); and
- K has (JEP).

Is there a countable strucutre \mathcal{A} such that age $(\mathcal{A})=\mathbf{K}$?
Is this structure unique (up to isomorphism)?

Understanding structures by finite approximations

Conversely, let \mathbf{K} be a class of finite structures such that:

- there are only countably many pairwise nonisomorphic structures in K;
- K has (HP); and
- K has (JEP).

Is there a countable strucutre \mathcal{A} such that age $(\mathcal{A})=\mathbf{K}$?
Is this structure unique (up to isomorphism)?
Example. It is obvious that $\operatorname{age}(\mathbb{N}, \leqslant)=\operatorname{age}(\mathbb{Z}, \leqslant)$.

Understanding structures by finite approximations

What countable structures are uniquely determined by their ages?

What classes of finite structures are ages
of such countable structures?

Understanding structures by finite approximations

A countable structure \mathcal{A} is homogeneous if every isomorphism $f: \mathcal{B} \rightarrow \mathcal{C}$ between finite substructures of \mathcal{A} extends to an automorphism of \mathcal{A}.

A class \mathbf{K} of finite structures is an amalgamation class if

- there are only countably many pairwise noniso struct's in \mathbf{K};
- K has (HP);
- K has (JEP); and
- K has the Amalgamation Property $(A P)$: for all $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathbf{K}$ and embeddings $f: \mathcal{A} \hookrightarrow \mathcal{B}$ and $g: \mathcal{A} \hookrightarrow \mathcal{C}$, there exist $\mathcal{D} \in \mathbf{K}$

Understanding structures by finite approximations

Theorem. [Fraisse, 1953]
1 If \mathcal{A} is a countable homogeneous structure, then age (\mathcal{A}) is an amalgamation class.
2 If \mathbf{K} is an amalgamation class, then there is a unique (up to isomorphism) countable homogeneous structure \mathcal{A} such that age $(\mathcal{A})=\mathbf{K}$.
3 If \mathcal{B} is a countable structure younger than \mathcal{A} (that is, $\operatorname{age}(\mathcal{B}) \subseteq \boldsymbol{a g e}(\mathcal{A})$), then $\mathcal{B} \hookrightarrow \mathcal{A}$.

Definition. If \mathbf{K} is an amalgamation class and \mathcal{A} is the countable homogeneous structure such that $\operatorname{age}(\mathcal{A})=\mathbf{K}$, we say that \mathcal{A} is the Fraïssé limit of \mathbf{K}.

Some Fraïssé limits

$(\mathbb{Q},<)=$ Fraïssé limit of the class of all linear orders
Random graph = Fraïssé limit of the class of all finite graphs
Random poset $=$ Fraïssé limit of the class of all finite posets

Some Fraïssé limits

$(\mathbb{Q},<)=$ Fraïssé limit of the class of all linear orders
Random graph = Fraïssé limit of the class of all finite graphs
Random poset $=$ Fraïssé limit of the class of all finite posets
What do they look like?

Some Fraïssé limits

Random graph

Vertices: $\mathbb{N}=\{1,2,3, \ldots\}$
Edges:
Let $m=\left\langle a_{s} a_{s-1} \ldots a_{1}\right\rangle_{2}$ and $n=\left\langle b_{t} b_{t-1} \ldots b_{1}\right\rangle_{2}$.
Put $\quad m \sim n$ if $\quad a_{n}=1$ or $b_{m}=1$

Some Fraïssé limits

Random graph

Vertices: $\mathbb{N}=\{1,2,3, \ldots\}$
Edges:
Let $m=\left\langle a_{s} a_{s-1} \ldots a_{1}\right\rangle_{2}$ and $n=\left\langle b_{t} b_{t-1} \ldots b_{1}\right\rangle_{2}$.
Put $m \sim n$ if $a_{n}=1$ or $b_{m}=1$
What does the random poset look like? Hm...

Next ...

1 Homogeneous structures and Fraïssé classes

2 Surreal numbers

3 The arithmetic of the random poset

Recall: Von Neumann's construction of ω in ZF

\varnothing

Recall: Von Neumann's construction of ω in ZF

$$
0:=\varnothing
$$

Recall: Von Neumann's construction of ω in ZF

$$
0:=\varnothing
$$

$\{0\}$

Recall: Von Neumann's construction of ω in ZF

$$
\begin{aligned}
& 0:=\varnothing \\
& 1:=\{0\}
\end{aligned}
$$

Recall: Von Neumann's construction of ω in ZF

$$
\begin{aligned}
0:= & \varnothing \\
1:= & \{0\} \\
& \{0,1\}
\end{aligned}
$$

Recall: Von Neumann's construction of ω in ZF

$$
\begin{aligned}
0 & :=\varnothing \\
1 & :=\{0\} \\
2 & :=\{0,1\}
\end{aligned}
$$

Recall: Von Neumann's construction of ω in ZF

$$
\begin{aligned}
0 & :=\varnothing \\
1 & :=\{0\} \\
2 & :=\{0,1\} \\
& \{0,1,2\}
\end{aligned}
$$

Recall: Von Neumann's construction of ω in ZF

$$
\begin{aligned}
0 & :=\varnothing \\
1 & :=\{0\} \\
2 & :=\{0,1\} \\
3 & :=\{0,1,2\}
\end{aligned}
$$

Recall: Von Neumann's construction of ω in ZF

$$
\begin{aligned}
0 & :=\varnothing \\
1: & =\{0\} \\
2: & =\{0,1\} \\
3: & =\{0,1,2\} \\
& \vdots \\
n:= & \{0,1,2, \ldots, n-1\} \\
& \vdots \\
\omega:= & \{0,1, \ldots, n, \ldots\}
\end{aligned}
$$

Recall: Construction of \mathbb{Q}

Take $\mathbb{Q}^{*}=\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$ and let

$$
(a, b) \approx(c, d) \quad \text { if } \quad a d=b c
$$

For example, $(1,2) \approx(3,6) \approx(-1,-2) \approx \ldots=: \frac{1}{2}$

Then $\mathbb{Q}=\mathbb{Q}^{*} / \approx$.

Recall: Dedekind's construction of \mathbb{R}

Take any partition $\{L, R\}$ of \mathbb{Q} such that $L<R$
and form a new number $x=(L \mid R)$
with the intuition that $L<x<R$.

Conway's class of surreal numbers \mathbb{S}

J. H. Conway. On Numbers and Games. London Mathematical Society Monographs, Academic Press, New York, 1976.

Conway's class of surreal numbers \mathbb{S}

J. H. Conway. On Numbers and Games. London Mathematical Society Monographs, Academic Press, New York, 1976.
D. E. Knuth. Surreal Numbers. Addison-Wesley, Redwood City, CA, 1974.

Conway's class of surreal numbers \mathbb{S}

J. H. Conway. On Numbers and Games. London Mathematical Society Monographs, Academic Press, New York, 1976.
D. E. Knuth. Surreal Numbers. Addison-Wesley, Redwood City, CA, 1974. Idea: Start making Dedekind-like cuts immediately!

If L and R are two sets of numbers such that no $x \in L$ is greater or equal to some $y \in R$, then $(L \mid R)$ is a new number.

The intuition is that $(L \mid R)$ is a cut which represents a new number between L and R.

Conway's construction of \mathbb{S}

Conway's construction of \mathbb{S}

$(\varnothing \mid \varnothing)$

Conway's construction of \mathbb{S}

$$
0:=(\varnothing \mid \varnothing)
$$

Conway's construction of \mathbb{S}

$$
\begin{aligned}
0:= & (\varnothing \mid \varnothing) \\
& (\varnothing \mid\{0\}), \quad(\{0\} \mid \varnothing)
\end{aligned}
$$

Conway's construction of \mathbb{S}

$$
\begin{aligned}
0 & :=(\varnothing \mid \varnothing) \\
-1 & :=(\varnothing \mid\{0\}), \quad(\{0\} \mid \varnothing)
\end{aligned}
$$

Conway's construction of \mathbb{S}

$$
\begin{aligned}
0 & :=(\varnothing \mid \varnothing) \\
-1 & :=(\varnothing \mid\{0\}), \quad(\{0\} \mid \varnothing)=: 1
\end{aligned}
$$

Conway's construction of \mathbb{S}

$$
\begin{aligned}
0:= & (\varnothing \mid \varnothing) \\
-1:= & (\varnothing \mid\{0\}), \quad(\{0\} \mid \varnothing)=: 1 \\
& (\varnothing \mid\{-1\}) \approx(\varnothing \mid\{-1,0\}) \approx(\varnothing \mid\{-1,1\}) \approx(\varnothing \mid\{-1,0,1\})
\end{aligned}
$$

Conway's construction of \mathbb{S}

$$
\begin{aligned}
0 & :=(\varnothing \mid \varnothing) \\
-1 & :=(\varnothing \mid\{0\}), \quad(\{0\} \mid \varnothing)=: 1 \\
-2 & :=(\varnothing \mid\{-1\}) \approx(\varnothing \mid\{-1,0\}) \approx(\varnothing \mid\{-1,1\}) \approx(\varnothing \mid\{-1,0,1\})
\end{aligned}
$$

Conway's construction of \mathbb{S}

$$
\begin{aligned}
0 & :=(\varnothing \mid \varnothing) \\
-1 & :=(\varnothing \mid\{0\}), \quad(\{0\} \mid \varnothing)=: 1 \\
-2 & :=(\varnothing \mid\{-1\}) \approx(\varnothing \mid\{-1,0\}) \approx(\varnothing \mid\{-1,1\}) \approx(\varnothing \mid\{-1,0,1\}) \\
2 & :=(\{1\} \mid \varnothing) \approx(\{0,1\} \mid \varnothing) \approx(\{-1,1\} \mid \varnothing) \approx(\{-1,0,1\} \mid \varnothing)
\end{aligned}
$$

Conway's construction of \mathbb{S}

$$
\begin{aligned}
0:= & (\varnothing \mid \varnothing) \\
-1:= & (\varnothing \mid\{0\}), \quad(\{0\} \mid \varnothing)=: 1 \\
-2:= & (\varnothing \mid\{-1\}) \approx(\varnothing \mid\{-1,0\}) \approx(\varnothing \mid\{-1,1\}) \approx(\varnothing \mid\{-1,0,1\}) \\
2:= & (\{1\} \mid \varnothing) \approx(\{0,1\} \mid \varnothing) \approx(\{-1,1\} \mid \varnothing) \approx(\{-1,0,1\} \mid \varnothing) \\
& (\{-1\} \mid\{0\}) \\
& (\{0\} \mid\{1\})
\end{aligned}
$$

Conway's construction of \mathbb{S}

$$
\begin{aligned}
0 & :=(\varnothing \mid \varnothing) \\
-1 & :=(\varnothing \mid\{0\}), \quad(\{0\} \mid \varnothing)=: 1 \\
-2 & :=(\varnothing \mid\{-1\}) \approx(\varnothing \mid\{-1,0\}) \approx(\varnothing \mid\{-1,1\}) \approx(\varnothing \mid\{-1,0,1\}) \\
2 & :=(\{1\} \mid \varnothing) \approx(\{0,1\} \mid \varnothing) \approx(\{-1,1\} \mid \varnothing) \approx(\{-1,0,1\} \mid \varnothing) \\
-\frac{1}{2} & :=(\{-1\} \mid\{0\}) \\
\frac{1}{2} & :=(\{0\} \mid\{1\})
\end{aligned}
$$

Conway's construction of \mathbb{S}

$$
\begin{aligned}
& 0:=(\varnothing \mid \varnothing) \\
&-1:=(\varnothing \mid\{0\}), \quad(\{0\} \mid \varnothing)=: 1 \\
&-2:=(\varnothing \mid\{-1\}) \approx(\varnothing \mid\{-1,0\}) \approx(\varnothing \mid\{-1,1\}) \approx(\varnothing \mid\{-1,0,1\}) \\
& 2:=(\{1\} \mid \varnothing) \approx(\{0,1\} \mid \varnothing) \approx(\{-1,1\} \mid \varnothing) \approx(\{-1,0,1\} \mid \varnothing) \\
&-\frac{1}{2}:= \\
& \frac{1}{2}:=(\{-1\} \mid\{0\}) \\
&(\{0\} \mid\{1\}) \\
&(\{-1\} \mid\{1\})
\end{aligned}
$$

Conway's construction of \mathbb{S}

$$
\begin{aligned}
0 & :=(\varnothing \mid \varnothing) \\
-1 & :=(\varnothing \mid\{0\}), \quad(\{0\} \mid \varnothing)=: 1 \\
-2 & :=(\varnothing \mid\{-1\}) \approx(\varnothing \mid\{-1,0\}) \approx(\varnothing \mid\{-1,1\}) \approx(\varnothing \mid\{-1,0,1\}) \\
2 & :=(\{1\} \mid \varnothing) \approx(\{0,1\} \mid \varnothing) \approx(\{-1,1\} \mid \varnothing) \approx(\{-1,0,1\} \mid \varnothing) \\
-\frac{1}{2} & :=(\{-1\} \mid\{0\}) \\
\frac{1}{2} & :=(\{0\} \mid\{1\}) \\
0 & \approx(\{-1\} \mid\{1\})
\end{aligned}
$$

Conway's construction of \mathbb{S}

The following inductive definition formally introduces names of surreal numbers and a linear quasiorder $\leqslant \mathbb{s}$ on names:
(1) If L and R are sets of names such that $r \leqslant s /$ for no $I \in L$ and no $r \in R$ then $(L \mid R)$ is a name.
(2) Let $x=(L \mid R)$ and $y=(U \mid V)$ be names. Then $x \leqslant s y$ if $y \leqslant \mathbb{S} /$ for no $I \in L$ and $v \leqslant \mathbb{S} x$ for no $v \in V$.
$x \approx y$ if $x \leqslant_{\mathbb{S}} y$ and $y \leqslant \mathbb{S} x$.
$x<\mathbb{S} y$ if $x \leqslant \mathbb{s} y$ and $x \not \approx y$.

Conway's construction of \mathbb{S}

Thus we get the following hierarchy of names, indexed by ordinals:

- $\mathbb{S}_{0}=\{(\varnothing \mid \varnothing)\}$,
- $\mathbb{S}_{\alpha+1}=\mathbb{S}_{\alpha} \cup\left\{(L \mid R): L, R \subseteq \mathbb{S}_{\alpha}\right.$ and $\left.L<\mathbb{S} R\right\}$,
- $\mathbb{S}_{\lambda}=\bigcup_{\alpha<\lambda} \mathbb{S}_{\alpha}$, for a limit ordinal λ.

Then $\mathbb{S}=\bigcup_{\alpha} \mathbb{S}_{\alpha}$ is the class of names, and \mathbb{S} / \approx is the class of surreal numbers.

Conway's class of surreal numbers \mathbb{S}

\mathbb{S} contains \mathbb{R}

Conway's class of surreal numbers \mathbb{S}

\mathbb{S} contains \mathbb{R}
\mathbb{S} contains all ordinals e.g. $\omega=(\{1,2,3, \ldots\} \mid \varnothing)$

Conway's class of surreal numbers \mathbb{S}

\mathbb{S} contains \mathbb{R}
\mathbb{S} contains all ordinals e.g. $\omega=(\{1,2,3, \ldots\} \mid \varnothing)$
\mathbb{S} contains infinitesimals e.g. $\epsilon=\left(\{0\} \left\lvert\,\left\{\frac{1}{n}: n \in \mathbb{N}\right\}\right.\right)$

Conway's class of surreal numbers \mathbb{S}

\mathbb{S} contains \mathbb{R}
\mathbb{S} contains all ordinals e.g. $\omega=(\{1,2,3, \ldots\} \mid \varnothing)$
\mathbb{S} contains infinitesimals e.g. $\epsilon=\left(\{0\} \left\lvert\,\left\{\frac{1}{n}: n \in \mathbb{N}\right\}\right.\right)$
\mathbb{S} contains peculiarities e.g. $\omega-1=(\{1,2,3, \ldots\} \mid\{\omega\})$

Conway's class of surreal numbers \mathbb{S}

\mathbb{S} contains \mathbb{R}
\mathbb{S} contains all ordinals e.g. $\omega=(\{1,2,3, \ldots\} \mid \varnothing)$
\mathbb{S} contains infinitesimals e.g. $\epsilon=\left(\{0\} \left\lvert\,\left\{\frac{1}{n}: n \in \mathbb{N}\right\}\right.\right)$
\mathbb{S} contains peculiarities e.g. $\omega-1=(\{1,2,3, \ldots\} \mid\{\omega\})$
\ldots and much more e.g. $(\omega-1)+\epsilon$

Conway's class of surreal numbers \mathbb{S}

\mathbb{S} is actually a field!
$-x=\left(-R_{x} \mid-L_{x}\right)$
$x+y=\left(\left(L_{x}+y\right) \cup\left(x+L_{y}\right) \mid\left(R_{x}+y\right) \cup\left(x+R_{y}\right)\right)$
$x \cdot y=\left(\mathcal{L}_{1} \cup \mathcal{L}_{2} \mid \mathcal{R}_{1} \cup \mathcal{R}_{2}\right)$, where

$$
\begin{aligned}
& \mathcal{L}_{1}=\left\{\left(x^{L} \cdot y\right)+\left(x \cdot y^{L}\right)-\left(x^{L} \cdot y^{L}\right): x^{L} \in L_{x}, y^{L} \in L_{y}\right\}, \\
& \mathcal{L}_{2}=\left\{\left(x^{R} \cdot y\right)+\left(x \cdot y^{R}\right)-\left(x^{R} \cdot y^{R}\right): x^{R} \in R_{x}, y^{R} \in R_{y}\right\}, \\
& \mathcal{R}_{1}=\left\{\left(x^{L} \cdot y\right)+\left(x \cdot y^{R}\right)-\left(x^{L} \cdot y^{R}\right): x^{L} \in L_{x}, y^{R} \in R_{y}\right\}, \\
& \mathcal{R}_{2}=\left\{\left(x^{R} \cdot y\right)+\left(x \cdot y^{L}\right)-\left(x^{R} \cdot y^{L}\right): x^{R} \in R_{x}, y^{L} \in L_{y}\right\} .
\end{aligned}
$$

$x^{-1}=$ (something quite awful)

Next ...

1 Homogeneous structures and Fraïssé classes

2 Surreal numbers

3 The arithmetic of the random poset

The Hubička-Nešetřil presentation of the random poset

In their paper
J. Hubička, J. Nešetřil. Finite presentation of homogeneous graphs, posets and ramsey classes. Israel Journal of Mathematics 149 (2005), 21-44
J. Hubička and J. Nešetřil introduced an intriguing presentation $\mathcal{P}^{\mathbb{S}}$ of the random poset in \mathbb{S}_{ω}.

The Hubička-Nešetřil presentation of the random poset

For $a, b \in \mathbb{S}_{\omega}$ we write $a \preccurlyeq b$ if $\left(\{a\} \cup R_{a}\right) \cap\left(\{b\} \cup L_{b}\right) \neq \varnothing$.
Let $\mathcal{P}^{\mathbb{S}}$ be the set of all $m=\left(L_{m} \mid R_{m}\right) \in \mathbb{S}_{\omega}$ such that:

- L_{m} and R_{m} are finite subsets of $\mathcal{P}^{\mathbb{S}}$ such that $L_{m} \cap R_{m}=\varnothing$;
- $x \preccurlyeq y$ for all $x \in L_{m}, y \in R_{m}$;
- $L_{x} \subseteq L_{m}$ for all $x \in L_{m}$, and $R_{x} \subseteq R_{m}$ for all $x \in R_{m}$.

Theorem.

$1 \preccurlyeq$ is a partial order on $\mathcal{P}^{\mathbb{S}}$.
$2\left(\mathcal{P}^{\mathbb{S}}, \prec\right)$ is isomorphic to the random poset.
3 For all $a, b \in \mathcal{P}^{\mathbb{S}}$, if $a \prec b$ then $a<\mathbb{S} b$.

The arithmetic of the random poset

Lemma. The following holds for all $a \in \mathcal{P}^{\mathbb{S}}$:

$$
\begin{aligned}
& 1-(-a)=a ; \\
& 2-a \in \mathcal{P}^{\mathbb{S}} .
\end{aligned}
$$

For $a, b \in \mathcal{P}^{\mathbb{S}}$ define $a+b$ as follows:

$$
\begin{aligned}
a+b= & \left(\left(L_{a}+b\right) \cup\left(a+L_{b}\right) \cup\left(L_{a}+L_{b}\right) \mid\right. \\
& \left.\left(R_{a}+b\right) \cup\left(a+R_{b}\right) \cup\left(R_{a}+R_{b}\right)\right) .
\end{aligned}
$$

The arithmetic of the random poset

Theorem. ($\mathcal{P}^{\mathbb{S}},+,-, 0, \preccurlyeq$) is an ordered commutative monoid with involution. In other words, the following holds for all $a, b, c, d \in \mathcal{P}^{\mathbb{S}}$:
$1 a+b \in \mathcal{P}^{\mathbb{S}}$;
$20+a=a+0=a$;
$3 a+b=b+a$;
$4-(a+b)=(-a)+(-b) ;$
$5(a+b)+c=a+(b+c)$;
6 if $a \preccurlyeq b$ and $c \preccurlyeq d$ then $a+c \preccurlyeq b+d$;
7 if $a \prec b$ and $c \preccurlyeq d$ then $a+c \prec b+d$.

The arithmetic of the random poset

Theorem. ($\mathcal{P}^{\mathbb{S}},+,-, 0, \preccurlyeq$) is an ordered commutative monoid with involution. In other words, the following holds for all $a, b, c, d \in \mathcal{P}^{\mathbb{S}}$:
$1 a+b \in \mathcal{P}^{\mathbb{S}}$;
$20+a=a+0=a$;
$3 a+b=b+a$;
$4-(a+b)=(-a)+(-b)$;
$5(a+b)+c=a+(b+c)$;
6 if $a \preccurlyeq b$ and $c \preccurlyeq d$ then $a+c \preccurlyeq b+d$;
7 if $a \prec b$ and $c \preccurlyeq d$ then $a+c \prec b+d$.
Why not more than that?

The arithmetic of the random poset

Why not more than that?
Recall: $0=(\varnothing \mid \varnothing),-1=(\varnothing \mid\{0\}), 1=(\{0\} \mid \varnothing)$.
An easy computation shows that $1+(-1)=(\{-1\} \mid\{1\})$.
Clearly, $0 \neq(\{-1\} \mid\{1\}) \in \mathcal{P}^{\mathbb{S}}$.
Therefore, $x+(-x) \neq 0$ in general.

The arithmetic of the random poset

$$
\text { Let } \mathcal{N}=\left\{x \in \mathcal{P}^{\mathbb{S}}: x \approx 0\right\} .
$$

Lemma.
$10 \in \mathcal{N}$;
$2-\mathcal{N}=\mathcal{N}$;
$3 \mathcal{N}+\mathcal{N}=\mathcal{N}$;
$4 a+\mathcal{N}=b+\mathcal{N}$ if and only if $a+(-b) \in \mathcal{N}$, for all $a, b \in \mathcal{P}^{\mathbb{S}}$.
Theorem. $\left(\mathcal{P}^{\mathbb{S}} / \mathcal{N},+,-, 0, \preccurlyeq\right)$ is an ordered abelian group.

Multiplication?

Bad luck!

Conway's multiplication can be adapted, but it applies only to "integers" in \mathbb{S} :

Lemma. Assume that for some $x, y \in \mathcal{P}^{\mathbb{S}}$ we have $L_{x}=\varnothing$ or $R_{x}=\varnothing$, and $L_{y}=\varnothing$ or $R_{y}=\varnothing$. Then $x \cdot y \in \mathcal{P}^{\mathbb{S}}$.

Example. Recall: $\frac{1}{2}=(\{0\} \mid\{1\}) \in \mathcal{P}^{\mathbb{S}}$. One can show that $\frac{1}{2} \cdot \frac{1}{2} \notin \mathcal{P}^{\mathbb{S}}$.

Open Problems

1 Is it possible to adapt Conway's multiplication so that it applies to the whole of $\mathcal{P}^{\mathbb{S}}$?
2 Is it possible to adapt Conway's inverse $\left(x^{-1}\right)$ so that it applies to $\mathcal{P}^{\mathbb{S}}$?
3 Is it possible to turn $\mathcal{P}^{\mathbb{S}}$ into a field (so that it corresponds to the fact that \mathbb{Q} is a field)?
4 There is a Hubička-Nešetřil presentation $\mathcal{R}^{\mathbb{S}}$ of the random graph in terms of surreal numbers. Is it possible to adapt Conway's arithmetic operations to $\mathcal{R}^{\mathbb{S}}$?

