The Arithmetic of the Random Poset

Dragan Mašulović

Department of Mathematics and Informatics University of Novi Sad, Serbia

> MCW XIX Jul 29 – Aug 2, 2013

1 Homogeneous structures and Fraïssé classes

2 Surreal numbers

3 The arithmetic of the random poset

1 Homogeneous structures and Fraïssé classes

2 Surreal numbers

3 The arithmetic of the random poset

What can one say about a structure by looking at its finite substructures?

Let $\ensuremath{\mathcal{A}}$ be a countable relational structure.

Let $age(\mathcal{A})$ be the class of all finite structures \mathcal{B} such that $\mathcal{B} \hookrightarrow \mathcal{A}$.

Properties of age(A):

- ► there are only countably many pairwise nonisomorphic structures in age(A);
- ► Hereditary Property (HP): if $\mathcal{B} \in \mathbf{age}(\mathcal{A})$ and $\mathcal{C} \hookrightarrow \mathcal{B}$ then $\mathcal{C} \in \mathbf{age}(\mathcal{A})$;
- ▶ Joint Embedding Property (JEP): for all $\mathcal{B}_1, \mathcal{B}_2 \in \mathbf{age}(\mathcal{A})$ there is a $\mathcal{C} \in \mathbf{age}(\mathcal{A})$ such that $\mathcal{B}_1 \hookrightarrow \mathcal{C}$ and $\mathcal{B}_2 \hookrightarrow \mathcal{C}$.

Conversely, let \mathbf{K} be a class of finite structures such that:

- there are only countably many pairwise nonisomorphic structures in K;
- K has (HP); and
- K has (JEP).

Is there a countable strucutre A such that **age** $(A) = \mathbf{K}$?

Conversely, let \mathbf{K} be a class of finite structures such that:

- there are only countably many pairwise nonisomorphic structures in K;
- K has (HP); and
- K has (JEP).

Is there a countable strucutre A such that **age** $(A) = \mathbf{K}$? **YES**

Conversely, let \mathbf{K} be a class of finite structures such that:

- there are only countably many pairwise nonisomorphic structures in K;
- K has (HP); and
- K has (JEP).

Is there a countable strucutre A such that **age** $(A) = \mathbf{K}$? **YES**

Is this structure unique (up to isomorphism)?

Conversely, let \mathbf{K} be a class of finite structures such that:

- there are only countably many pairwise nonisomorphic structures in K;
- K has (HP); and
- ► K has (JEP).

Is there a countable strucutre A such that **age** $(A) = \mathbf{K}$? **YES**

Is this structure unique (up to isomorphism)? NO

Conversely, let ${\bf K}$ be a class of finite structures such that:

- there are only countably many pairwise nonisomorphic structures in K;
- K has (HP); and
- K has (JEP).

Is there a countable strucutre A such that **age** $(A) = \mathbf{K}$? **YES**

Is this structure unique (up to isomorphism)? NO

Example. It is obvious that $age(\mathbb{N}, \leq) = age(\mathbb{Z}, \leq)$.

What countable structures are uniquely determined by their ages?

What classes of finite structures are ages of such countable structures?

A countable structure \mathcal{A} is *homogeneous* if every isomorphism $f : \mathcal{B} \to \mathcal{C}$ between finite substructures of \mathcal{A} extends to an automorphism of \mathcal{A} .

A class K of finite structures is an amalgamation class if

- ► there are only countably many pairwise noniso struct's in K;
- K has (HP);
- K has (JEP); and
- ► K has the Amalgamation Property (AP):

for all $\mathcal{A}, \mathcal{B}, \mathcal{C} \in \mathbf{K}$ and embeddings $f : \mathcal{A} \hookrightarrow \mathcal{B}$ and $g : \mathcal{A} \hookrightarrow \mathcal{C}$, there exist $\mathcal{D} \in \mathbf{K}$ and embeddings $u : \mathcal{B} \hookrightarrow \mathcal{D}$ and $v : \mathcal{C} \hookrightarrow \mathcal{D}$ such that $u \circ f = v \circ g$. $\mathcal{A} \hookrightarrow \mathcal{B}$

Theorem. [Fraisse, 1953]

- 1 If A is a countable homogeneous structure, then **age**(A) is an amalgamation class.
- 2 If **K** is an amalgamation class, then there is a unique (up to isomorphism) countable homogeneous structure A such that age(A) = K.
- 3 If \mathcal{B} is a countable structure *younger than* \mathcal{A} (that is, $age(\mathcal{B}) \subseteq age(\mathcal{A})$), then $\mathcal{B} \hookrightarrow \mathcal{A}$.

Definition. If **K** is an amalgamation class and A is the countable homogeneous structure such that age(A) = K, we say that A is the *Fraïssé limit* of **K**.

 $(\mathbb{Q}, <)$ = Fraïssé limit of the class of all linear orders

Random graph = Fraïssé limit of the class of all finite graphs

Random poset = Fraïssé limit of the class of all finite posets

 $(\mathbb{Q}, <)$ = Fraïssé limit of the class of all linear orders

Random graph = Fraïssé limit of the class of all finite graphs

Random poset = Fraïssé limit of the class of all finite posets

What do they look like?

Random graph

Vertices: $\mathbb{N} = \{1,2,3,\ldots\}$

Edges:

Let
$$m = \langle a_s a_{s-1} \dots a_1 \rangle_2$$
 and $n = \langle b_t b_{t-1} \dots b_1 \rangle_2$.

Put $m \sim n$ if $a_n = 1$ or $b_m = 1$

Random graph

Vertices: $\mathbb{N} = \{1,2,3,\ldots\}$

Edges:

Let
$$m = \langle a_s a_{s-1} \dots a_1 \rangle_2$$
 and $n = \langle b_t b_{t-1} \dots b_1 \rangle_2$.
Put $m \sim n$ if $a_n = 1$ or $b_m = 1$

What does the random poset look like? Hm...

1 Homogeneous structures and Fraïssé classes

2 Surreal numbers

3 The arithmetic of the random poset

Ø

 $\mathbf{0} := \emptyset$

 $\mathbf{0}:=\varnothing$

 $\{0\}$

 $\mathbf{0}:=\varnothing$

$$1 := \{0\}$$

 $\mathbf{0}:=\varnothing$

 $1 := \{0\}$ $\{0,1\}$

 $\mathbf{0}:=\varnothing$

- $\mathbf{1}:=\{\mathbf{0}\}$
- $2:=\{0,1\}$

 $\begin{array}{l} 0:=\varnothing\\ 1:=\{0\}\\ 2:=\{0,1\}\\ \{0,1,2\} \end{array}$

- $\mathbf{0}:=\varnothing$
- $\mathbf{1}:=\{\mathbf{0}\}$
- $2:=\{0,1\}$
- ${\bf 3}:=\{0,1,2\}$

 $0 := \emptyset$ $1 := \{0\}$ $2 := \{0, 1\}$ $3 := \{0, 1, 2\}$ ÷ $n := \{0, 1, 2, \dots, n-1\}$ ÷ $\omega := \{0, 1, \dots, n, \dots\}$

Recall: Construction of \mathbb{Q}

Take $\mathbb{Q}^* = \mathbb{Z} imes (\mathbb{Z} \setminus \{0\})$ and let $(a,b) \approx (c,d)$ if ad = bc

For example, $(1,2) \approx (3,6) \approx (-1,-2) \approx \ldots =: \frac{1}{2}$

Then $\mathbb{Q} = \mathbb{Q}^* / \approx$.

Recall: Dedekind's construction of $\ensuremath{\mathbb{R}}$

Take any partition $\{L, R\}$ of \mathbb{Q} such that L < R

and form a new number x = (L | R)

with the intuition that L < x < R.

Conway's class of surreal numbers $\ensuremath{\mathbb{S}}$

J. H. Conway. *On Numbers and Games.* London Mathematical Society Monographs, Academic Press, New York, 1976.

Conway's class of surreal numbers $\ensuremath{\mathbb{S}}$

J. H. Conway. *On Numbers and Games*. London Mathematical Society Monographs, Academic Press, New York, 1976.

D. E. Knuth. *Surreal Numbers.* Addison-Wesley, Redwood City, CA, 1974.

Conway's class of surreal numbers $\ensuremath{\mathbb{S}}$

J. H. Conway. *On Numbers and Games*. London Mathematical Society Monographs, Academic Press, New York, 1976.

D. E. Knuth. *Surreal Numbers.* Addison-Wesley, Redwood City, CA, 1974.

Idea: Start making Dedekind-like cuts immediately!

If *L* and *R* are two sets of numbers such that no $x \in L$ is greater or equal to some $y \in R$, then $(L \mid R)$ is a new number.

The intuition is that (L | R) is a cut which represents a new number between *L* and *R*.

$(\varnothing \mid \varnothing)$

$$\mathbf{0}:=(\varnothing\mid\varnothing)$$

$$egin{aligned} 0 &:= (arnothing \mid arnothing) \ (arnothing \mid \{0\}), & (\{0\} \mid arnothing) \end{aligned}$$

$$\mathsf{0} := (\varnothing \mid \varnothing)$$

 $-1 := (\varnothing \mid \{0\}), \ (\{0\} \mid \varnothing)$

$$\mathbf{0} := (\emptyset \mid \emptyset)$$

$$-1 := (\emptyset \mid \{0\}), \ (\{0\} \mid \emptyset) =: 1$$

$$\mathbf{0} := (\emptyset \mid \emptyset)$$

 $-1 := (\emptyset \mid \{0\}), \ (\{0\} \mid \emptyset) =: 1$

 $(\varnothing \mid \{-1\}) \approx (\varnothing \mid \{-1,0\}) \approx (\varnothing \mid \{-1,1\}) \approx (\varnothing \mid \{-1,0,1\})$

 $\mathbf{0} := (\emptyset \mid \emptyset)$

 $-1 := (\varnothing \mid \{0\}), \ (\{0\} \mid \varnothing) =: 1$

 $-2:=(\varnothing \mid \{-1\}) \approx (\varnothing \mid \{-1,0\}) \approx (\varnothing \mid \{-1,1\}) \approx (\varnothing \mid \{-1,0,1\})$

 $\mathbf{0} := (\varnothing \mid \varnothing)$

 $-1 := (\emptyset \mid \{0\}), \ (\{0\} \mid \emptyset) =: 1$

 $-2:=(\varnothing \mid \{-1\}) \approx (\varnothing \mid \{-1,0\}) \approx (\varnothing \mid \{-1,1\}) \approx (\varnothing \mid \{-1,0,1\})$

 $\mathbf{2}:=(\{1\}\mid \varnothing)\approx (\{0,1\}\mid \varnothing)\approx (\{-1,1\}\mid \varnothing)\approx (\{-1,0,1\}\mid \varnothing)$

 $\mathbf{0}:=(\varnothing\mid\varnothing)$

 $-1 := (\varnothing \mid \{0\}), \ (\{0\} \mid \varnothing) =: 1$

 $-2:=(\varnothing\mid\{-1\})\approx(\varnothing\mid\{-1,0\})\approx(\varnothing\mid\{-1,1\})\approx(\varnothing\mid\{-1,0,1\})$

 $\begin{aligned} 2 &:= (\{1\} \mid \varnothing) \approx (\{0,1\} \mid \varnothing) \approx (\{-1,1\} \mid \varnothing) \approx (\{-1,0,1\} \mid \varnothing) \\ & (\{-1\} \mid \{0\}) \\ & (\{0\} \mid \{1\}) \end{aligned}$

 $\mathbf{0}:=(\varnothing\mid\varnothing)$

 $-1 := (\varnothing \mid \{0\}), \ (\{0\} \mid \varnothing) =: 1$

 $-2:=(\varnothing\mid\{-1\})\approx(\varnothing\mid\{-1,0\})\approx(\varnothing\mid\{-1,1\})\approx(\varnothing\mid\{-1,0,1\})$

 $\mathbf{2} := (\{1\} \mid \varnothing) \approx (\{0,1\} \mid \varnothing) \approx (\{-1,1\} \mid \varnothing) \approx (\{-1,0,1\} \mid \varnothing)$

 $-\tfrac{1}{2}:=(\{-1\}\mid\{0\})$

 $\tfrac{1}{2}:=(\{0\}\mid\{1\})$

 $\mathbf{0}:=(\varnothing\mid\varnothing)$

 $-1 := (\varnothing \mid \{0\}), \ (\{0\} \mid \varnothing) =: 1$

 $-2:=(\varnothing\mid\{-1\})\approx(\varnothing\mid\{-1,0\})\approx(\varnothing\mid\{-1,1\})\approx(\varnothing\mid\{-1,0,1\})$

 $\mathbf{2} := (\{1\} \mid \varnothing) \approx (\{0,1\} \mid \varnothing) \approx (\{-1,1\} \mid \varnothing) \approx (\{-1,0,1\} \mid \varnothing)$

$$-\frac{1}{2}:=(\{-1\}\mid\{0\})$$

 $\frac{1}{2} := (\{0\} \mid \{1\})$

 $(\{-1\} \mid \{1\})$

 $\mathbf{0}:=(\varnothing\mid \varnothing)$

 $-1 := (\varnothing \mid \{0\}), \ (\{0\} \mid \varnothing) =: 1$

 $-2:=(\varnothing\mid\{-1\})\approx(\varnothing\mid\{-1,0\})\approx(\varnothing\mid\{-1,1\})\approx(\varnothing\mid\{-1,0,1\})$

 $\mathbf{2} := (\{1\} \mid \varnothing) \approx (\{0,1\} \mid \varnothing) \approx (\{-1,1\} \mid \varnothing) \approx (\{-1,0,1\} \mid \varnothing)$

 $-\tfrac{1}{2}:=\big(\{-1\}\mid\{0\}\big)$

 $\tfrac{1}{2} := (\{0\} \mid \{1\})$

 $0 \; \approx \; (\{-1\} \; | \; \{1\})$

The following inductive definition formally introduces names of surreal numbers and a linear quasiorder $\leq_{\mathbb{S}}$ on names:

- (1) If *L* and *R* are sets of names such that $r \leq_{\mathbb{S}} l$ for no $l \in L$ and no $r \in R$ then $(L \mid R)$ is a name.
- (2) Let x = (L | R) and y = (U | V) be names. Then $x \leq_{\mathbb{S}} y$ if $y \leq_{\mathbb{S}} I$ for no $I \in L$ and $v \leq_{\mathbb{S}} x$ for no $v \in V$.

 $x \approx y$ if $x \leq_{\mathbb{S}} y$ and $y \leq_{\mathbb{S}} x$.

 $x <_{\mathbb{S}} y$ if $x \leq_{\mathbb{S}} y$ and $x \not\approx y$.

Thus we get the following hierarchy of names, indexed by ordinals:

$$\blacktriangleright \ \mathbb{S}_0 = \{ (\emptyset \mid \emptyset) \},\$$

- $\blacktriangleright \ \mathbb{S}_{\alpha+1} = \mathbb{S}_{\alpha} \cup \{ (L \mid R) : L, R \subseteq \mathbb{S}_{\alpha} \text{ and } L <_{\mathbb{S}} R \},\$
- $\mathbb{S}_{\lambda} = \bigcup_{\alpha < \lambda} \mathbb{S}_{\alpha}$, for a limit ordinal λ .

Then $\mathbb{S} = \bigcup_{\alpha} \mathbb{S}_{\alpha}$ is the class of names,

and $\mathbb{S}/\!\!\approx$ is the class of surreal numbers.

 $\mathbb S$ contains $\mathbb R$

 \mathbb{S} contains all ordinals e.g. $\omega = (\{1, 2, 3, \ldots\} \mid \emptyset)$

- \mathbb{S} contains all ordinals e.g. $\omega = (\{1, 2, 3, \ldots\} \mid \emptyset)$
- \mathbb{S} contains infinitesimals e.g. $\epsilon = (\{0\} \mid \{\frac{1}{n} : n \in \mathbb{N}\})$

- \mathbb{S} contains all ordinals e.g. $\omega = (\{1, 2, 3, \ldots\} \mid \emptyset)$
- \mathbb{S} contains infinitesimals e.g. $\epsilon = (\{0\} \mid \{\frac{1}{n} : n \in \mathbb{N}\})$
- \mathbb{S} contains peculiarities e.g. $\omega 1 = (\{1, 2, 3, \ldots\} \mid \{\omega\})$

- \mathbb{S} contains all ordinals e.g. $\omega = (\{1, 2, 3, \ldots\} \mid \emptyset)$
- \mathbb{S} contains infinitesimals e.g. $\epsilon = (\{0\} \mid \{\frac{1}{n} : n \in \mathbb{N}\})$
- \mathbb{S} contains peculiarities e.g. $\omega 1 = (\{1, 2, 3, \ldots\} \mid \{\omega\})$
- ... and much more e.g. $(\omega 1) + \epsilon$

 $\ensuremath{\mathbb{S}}$ is actually a field!

$$\begin{aligned} -x &= (-R_{x} \mid -L_{x}) \\ x + y &= ((L_{x} + y) \cup (x + L_{y}) \mid (R_{x} + y) \cup (x + R_{y})) \\ x \cdot y &= (\mathcal{L}_{1} \cup \mathcal{L}_{2} \mid \mathcal{R}_{1} \cup \mathcal{R}_{2}), \text{ where} \\ \mathcal{L}_{1} &= \{ (x^{L} \cdot y) + (x \cdot y^{L}) - (x^{L} \cdot y^{L}) : x^{L} \in L_{x}, y^{L} \in L_{y} \}, \\ \mathcal{L}_{2} &= \{ (x^{R} \cdot y) + (x \cdot y^{R}) - (x^{R} \cdot y^{R}) : x^{R} \in R_{x}, y^{R} \in R_{y} \}, \\ \mathcal{R}_{1} &= \{ (x^{L} \cdot y) + (x \cdot y^{R}) - (x^{L} \cdot y^{R}) : x^{L} \in L_{x}, y^{R} \in R_{y} \}, \\ \mathcal{R}_{2} &= \{ (x^{R} \cdot y) + (x \cdot y^{L}) - (x^{R} \cdot y^{L}) : x^{R} \in R_{x}, y^{L} \in L_{y} \}. \end{aligned}$$

 x^{-1} = (something quite awful)

1 Homogeneous structures and Fraïssé classes

2 Surreal numbers

3 The arithmetic of the random poset

The Hubička-Nešetřil presentation of the random poset

In their paper

J. Hubička, J. Nešetřil. Finite presentation of homogeneous graphs, posets and ramsey classes. Israel Journal of Mathematics 149 (2005), 21–44

J. Hubička and J. Nešetřil introduced an intriguing presentation $\mathcal{P}^{\mathbb{S}}$ of the random poset in \mathbb{S}_{ω} .

The Hubička-Nešetřil presentation of the random poset

For $a, b \in \mathbb{S}_{\omega}$ we write $a \preccurlyeq b$ if $(\{a\} \cup R_a) \cap (\{b\} \cup L_b) \neq \emptyset$.

Let $\mathcal{P}^{\mathbb{S}}$ be the set of all $m = (L_m \mid R_m) \in \mathbb{S}_{\omega}$ such that:

• L_m and R_m are finite subsets of $\mathcal{P}^{\mathbb{S}}$ such that $L_m \cap R_m = \emptyset$;

•
$$x \preccurlyeq y$$
 for all $x \in L_m$, $y \in R_m$;

► $L_x \subseteq L_m$ for all $x \in L_m$, and $R_x \subseteq R_m$ for all $x \in R_m$.

Theorem.

- 1 \preccurlyeq is a partial order on $\mathcal{P}^{\mathbb{S}}$.
- **2** $(\mathcal{P}^{\mathbb{S}}, \prec)$ is isomorphic to the random poset.
- 3 For all $a, b \in \mathcal{P}^{\mathbb{S}}$, if $a \prec b$ then $a <_{\mathbb{S}} b$.

Lemma. The following holds for all $a \in \mathcal{P}^{\mathbb{S}}$:

1
$$-(-a) = a;$$

2 $-a \in \mathcal{P}^{\mathbb{S}}.$

For $a, b \in \mathcal{P}^{\mathbb{S}}$ define a + b as follows: $a + b = ((L_a + b) \cup (a + L_b) \cup (L_a + L_b) \mid (R_a + b) \cup (a + R_b) \cup (R_a + R_b)).$

Theorem. $(\mathcal{P}^{\mathbb{S}}, +, -, 0, \preccurlyeq)$ is an ordered commutative monoid with involution. In other words, the following holds for all $a, b, c, d \in \mathcal{P}^{\mathbb{S}}$:

1 $a + b \in \mathcal{P}^{\mathbb{S}};$ 2 0 + a = a + 0 = a;3 a + b = b + a;

4
$$-(a+b) = (-a) + (-b);$$

5
$$(a+b) + c = a + (b+c);$$

- 6 if $a \preccurlyeq b$ and $c \preccurlyeq d$ then $a + c \preccurlyeq b + d$;
- 7 if $a \prec b$ and $c \preccurlyeq d$ then $a + c \prec b + d$.

Theorem. $(\mathcal{P}^{\mathbb{S}}, +, -, 0, \preccurlyeq)$ is an ordered commutative monoid with involution. In other words, the following holds for all $a, b, c, d \in \mathcal{P}^{\mathbb{S}}$:

 $a + b \in \mathcal{P}^{\mathbb{S}}$; 0 + a = a + 0 = a; a + b = b + a; -(a + b) = (-a) + (-b); (a + b) + c = a + (b + c); 6 if $a \leq b$ and $c \leq d$ then $a + c \leq b + d$; 7 if $a \prec b$ and $c \leq d$ then $a + c \prec b + d$.

Why not more than that?

Why not more than that?

Recall:
$$0 = (\emptyset \mid \emptyset), -1 = (\emptyset \mid \{0\}), 1 = (\{0\} \mid \emptyset).$$

An easy computation shows that $1 + (-1) = (\{-1\} \mid \{1\})$.

Clearly, $0 \neq (\{-1\} \mid \{1\}) \in \mathcal{P}^{\mathbb{S}}$.

Therefore, $x + (-x) \neq 0$ in general.

Let
$$\mathcal{N} = \{ \boldsymbol{x} \in \mathcal{P}^{\mathbb{S}} : \boldsymbol{x} \approx \boldsymbol{0} \}.$$

Lemma.

- 1 $0 \in \mathcal{N};$
- $2 \quad -\mathcal{N}=\mathcal{N};$
- 3 $\mathcal{N} + \mathcal{N} = \mathcal{N};$
- 4 $a + \mathcal{N} = b + \mathcal{N}$ if and only if $a + (-b) \in \mathcal{N}$, for all $a, b \in \mathcal{P}^{\mathbb{S}}$.

Theorem. $(\mathcal{P}^{\mathbb{S}}/\mathcal{N}, +, -, 0, \preccurlyeq)$ is an ordered abelian group.

Bad luck!

Conway's multiplication can be adapted, but it applies only to "integers" in $\ensuremath{\mathbb{S}}$:

Lemma. Assume that for some $x, y \in \mathcal{P}^{\mathbb{S}}$ we have $L_x = \emptyset$ or $R_x = \emptyset$, and $L_y = \emptyset$ or $R_y = \emptyset$. Then $x \cdot y \in \mathcal{P}^{\mathbb{S}}$.

Example. Recall: $\frac{1}{2} = (\{0\} \mid \{1\}) \in \mathcal{P}^{\mathbb{S}}$. One can show that $\frac{1}{2} \cdot \frac{1}{2} \notin \mathcal{P}^{\mathbb{S}}$.

Open Problems

- Is it possible to adapt Conway's multiplication so that it applies to the whole of *P*^S?
- 2 Is it possible to adapt Conway's inverse (x⁻¹) so that it applies to P^S?
- Is it possible to turn P^S into a field (so that it corresponds to the fact that Q is a field)?
- 4 There is a Hubička-Nešetřil presentation R^S of the random graph in terms of surreal numbers. Is it possible to adapt Conway's arithmetic operations to R^S?