Katětov expanders

Wiesław Kubiś

Academy of Sciences of the Czech Republic
http://www.math.cas.cz/kubis/

XIX Midsummer Combinatorial Workshop

July 29 – August 2, 2013, Prague
Joint project with
Antonio Avilés (Murcia) and Dragan Mašulović (Novi Sad)
Motivation

Definition (Katětov 1986)

Let \((X, \varrho)\) be a metric space. A **Katětov function** on \(X\) is a map \(f : X \to \mathbb{R}\) satisfying

1. \(|f(x) - f(y)| \leq \varrho(x, y)\)
2. \(\varrho(x, y) \leq f(x) + f(y)\)

for every \(x, y \in X\).

Denote by \(K(X)\) the space of all Katětov functions on \(X\), endowed with the sup metric.

Claim

The construction above extends to a self-functor on the category of metric spaces with nonexpansive maps.
Motivation

Definition (Katětov 1986)

Let \((X, \rho)\) be a metric space. A Katětov function on \(X\) is a map \(f : X \to \mathbb{R}\) satisfying

1. \(|f(x) - f(y)| \leq \rho(x, y)\)
2. \(\rho(x, y) \leq f(x) + f(y)\)

for every \(x, y \in X\).

Denote by \(K(X)\) the space of all Katětov functions on \(X\), endowed with the sup metric.

Claim

The construction above extends to a self-functor on the category of metric spaces with nonexpansive maps.
\[\begin{array}{ccc}
X & \xrightarrow{\eta_X} & K(X) \\
\downarrow f & & \downarrow K(f) \\
Y & \xrightarrow{\eta_Y} & K(Y)
\end{array} \]
General assumptions:

We fix a class \mathcal{I} of *small* models of a fixed type. We assume:

- \mathcal{I} has the joint embedding property
- \mathcal{I} has the amalgamation property
- \mathcal{I} is closed under isomorphisms

Notation:

$\sigma \mathcal{I}$ will denote the class of all structures isomorphic to unions of countable chains in \mathcal{I}.
General assumptions:

We fix a class \mathcal{I} of *small* models of a fixed type. We assume:

- \mathcal{I} has the joint embedding property
- \mathcal{I} has the amalgamation property
- \mathcal{I} is closed under isomorphisms

Notation:

$\sigma \mathcal{I}$ will denote the class of all structures isomorphic to unions of countable chains in \mathcal{I}.
Theorem (Fraïssé 1954)

Assume \mathcal{S} is countable. Then there exists a unique \mathcal{S}-homogeneous structure $U \in \sigma \mathcal{S}$.

U is often called the Fraïssé limit of \mathcal{S}.

\mathcal{S} is called a Fraïssé class.
Problem ((?) Jaligot, 2007)

Let \mathcal{I} be a Fraïssé class with the Fraïssé limit U. Is it always true that $\text{Aut}(U)$ is universal for the class $\{\text{Aut}(X) : X \in \sigma\mathcal{I}\}$?
Some references

Let $\mathcal{I} \subseteq \sigma \mathcal{I}$ be as before, now treated as categories.

Definition

An expander on $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ is a pair $\langle F, \eta \rangle$, where $F: \mathcal{I} \to \sigma \mathcal{I}$ is a covariant functor and η is a natural transformation from $\text{id}_\mathcal{I}$ to F.

\[
\begin{array}{ccc}
A & \xrightarrow{\eta_A} & F(A) \\
\downarrow f & & \downarrow F(f) \\
B & \xrightarrow{\eta_B} & F(B)
\end{array}
\]
Let $\mathcal{I} \subseteq \sigma\mathcal{I}$ be as before, now treated as categories.

Definition

An expander on $\langle \mathcal{I}, \sigma\mathcal{I} \rangle$ is a pair $\langle F, \eta \rangle$, where $F: \mathcal{I} \to \sigma\mathcal{I}$ is a covariant functor and η is a natural transformation from $\text{id}_{\mathcal{I}}$ to F.
Let \(\mathcal{I} \subseteq \sigma \mathcal{I} \) be as before, now treated as categories.

Definition

An **expander** on \(\langle \mathcal{I}, \sigma \mathcal{I} \rangle \) is a pair \(\langle F, \eta \rangle \), where \(F : \mathcal{I} \to \sigma \mathcal{I} \) is a covariant functor and \(\eta \) is a natural transformation from id\(\mathcal{J} \) to \(F \).

![Diagram](http://www.math.cas.cz/kubis/)

W. Kubiš (http://www.math.cas.cz/kubis/)

Katětov expanders

August 1, 2013
Lemma

Every expander on $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$ extends to a continuous expander on $\langle \sigma \mathcal{I}, \sigma \mathcal{I} \rangle$.

Continuity means that

$$ F(\lim_{n \to \infty} X_n) = \lim_{n \to \infty} F(X_n) $$

whenever $X_0 \subseteq X_1 \subseteq \ldots$ is a tower of $\sigma \mathcal{I}$-structures.
Lemma

Every expander on \(\langle \mathcal{I}, \sigma \mathcal{I} \rangle \) extends to a continuous expander on \(\langle \sigma \mathcal{I}, \sigma \mathcal{I} \rangle \).

Continuity means that

\[
F(\lim_{n \to \infty} X_n) = \lim_{n \to \infty} F(X_n)
\]

whenever \(X_0 \subseteq X_1 \subseteq \ldots \) is a tower of \(\sigma \mathcal{I} \)-structures.
Katětov expanders

Fix a family \mathcal{F} of embeddings between \mathcal{I}-objects so that every embedding $j: A \to B$ with $A, B \in \mathcal{I}$ is of the form

$$j = e_1 \circ \ldots \circ e_n$$

for some $e_1, \ldots, e_n \in \mathcal{F}$.

Definition

An expander $\langle K, \eta \rangle$ is Katětov with respect to \mathcal{F} if for every $X \in \mathcal{L}$, for every embeddings $f: A \to X$, $e: A \to B$ with $A, B \in \mathcal{I}$ and $e \in \mathcal{F}$, there exists an embedding $\bar{f}: B \to K(X)$ such that $\bar{f} \circ e = \eta_X \circ f$. In other words, the following diagram is commutative:
Fix a family \mathcal{F} of embeddings between \mathcal{I}-objects so that every embedding $j: A \to B$ with $A, B \in \mathcal{I}$ is of the form

$$j = e_1 \circ \ldots \circ e_n$$

for some $e_1, \ldots, e_n \in \mathcal{F}$.

Definition

An expander $\langle K, \eta \rangle$ is Katětov with respect to \mathcal{F} if for every $X \in \mathcal{L}$, for every embeddings $f: A \to X$, $e: A \to B$ with $A, B \in \mathcal{I}$ and $e \in \mathcal{F}$, there exists an embedding $\bar{f}: B \to K(X)$ such that $\bar{f} \circ e = \eta_X \circ f$. In other words, the following diagram is commutative:

$$
\begin{array}{c}
X \\
\downarrow f
\end{array} \quad \xymatrix{ X & \ar[l]^{\eta_X} K(X) \\
A & \ar[l]^{e} B \ar[u]_{\bar{f}}}
$$
Fact

Let K be a Katětov expander on \mathcal{I}. Then $K^\omega(X)$ is the Fraïssé limit of \mathcal{I} for every $X \in \sigma \mathcal{I}$.

Here,

- $K^\omega(X) = \lim_{n \to \infty} K^n(X)$,
- $K^n(X) = K(K^{n-1}(X))$, $K^0(X) = X$.

W.Kubiš (http://www.math.cas.cz/kubis/)
Katětov expanders
August 1, 2013 12 / 21
Fact

Let K be a Katětov expander on \mathcal{I}. Then $K^\omega(X)$ is the Fraïssé limit of \mathcal{I} for every $X \in \sigma \mathcal{I}$.

Here,

- $K^\omega(X) = \lim_{n \to \infty} K^n(X)$,
- $K^n(X) = K(K^{n-1}(X))$, $K^0(X) = X$.
Automorphism groups

Theorem

Assume K is a Katětov expander on \mathcal{I} and let U be the Fraïssé limit of \mathcal{I}. Then for every $X \in \sigma \mathcal{I}$ the natural embedding

$$X \hookrightarrow K(X)$$

induces an embedding $\text{Aut}(X) \hookrightarrow \text{Aut}(U)$.

If K is an expander on homomorphisms, then the same holds for the endomorphism semigroups.
Theorem

Assume K is a Katětov expander on \mathcal{I} and let U be the Fraïssé limit of \mathcal{I}. Then for every $X \in \sigma\mathcal{I}$ the natural embedding

$$X \hookrightarrow K(X)$$

induces an embedding $\text{Aut}(X) \hookrightarrow \text{Aut}(U)$. If K is an expander on homomorphisms, then the same holds for the endomorphism semigroups.
Pushouts

Definition

A class of structures \mathcal{S} admits pushouts if for every embeddings $i: C \to A$, $j: C \to B$ in \mathcal{S}, there exist embeddings $i': A \to D$, $j': B \to D$ satisfying $i' \circ i = j' \circ j$ and

- for every homomorphisms $f: A \to X$, $g: B \to X$ with $f \circ i = g \circ j$, there exists a unique homomorphism $h: D \to X$ such that $h \circ i' = f$ and $h \circ j' = g$.

W.Kubiš (http://www.math.cas.cz/kubis/)
Katětov expanders
August 1, 2013 14 / 21
The pushout of $\langle i, j \rangle$
The pushout of $\langle i, j \rangle$
The pushout of $\langle i, j \rangle$
Existence result

Theorem

Assume \mathcal{I} admits pushouts. Then there exists a Katětov expander in $\langle \mathcal{I}, \sigma \mathcal{I} \rangle$.

Remark

If, additionally, \mathcal{I} has mixed pushouts then there exists a Katětov expander for all homomorphisms. Consequently, denoting by U the Fraïssé limit of \mathcal{I}, the semigroup $\text{End}(U)$ is universal for $\{ \text{End}(X) : X \in \sigma \mathcal{I} \}$.
Existence result

Theorem

Assume \mathcal{I} admits pushouts. Then there exists a Katětov expander in $\langle \mathcal{I}, \sigma\mathcal{I} \rangle$.

Remark

If, additionally, \mathcal{I} has mixed pushouts then there exists a Katětov expander for all homomorphisms. Consequently, denoting by U the Fraïssé limit of \mathcal{I}, the semigroup $\text{End}(U)$ is universal for $\{\text{End}(X) : X \in \sigma\mathcal{I}\}$.
Corollary

The following Fraïssé classes of finite structures admit Katětov expanders:

- graphs
- directed graphs
- K_n-free graphs
- posets
- semilattices

Remark

The class of K_n-free graphs ($n > 2$) does not admit a Katětov expander for homomorphisms. This follows from a result of Mudrinski (2010): The K_n-free Henson graph is retract-rigid (identity is the only retraction).
Corollary

The following Fraïssé classes of finite structures admit Katětov expanders:

- graphs
- directed graphs
- K_n-free graphs
- posets
- semilattices

Remark

The class of K_n-free graphs ($n > 2$) does not admit a Katětov expander for homomorphisms. This follows from a result of Mudrinski (2010): The K_n-free Henson graph is retract-rigid (identity is the only retraction).
Other examples of Katětov expanders

Example

Let \mathcal{I} be the class of finite linearly ordered sets. Given $S \in \mathcal{I}$, define

$$K(S) = S \cup \text{hom}(S, \{0, 1\}),$$

with the natural linear ordering.

Example

Let \mathcal{I} be the class of all finite groups. Given $G \in \mathcal{I}$ let $F(G)$ be the group of all permutations of the set G. Identifying G with the subgroup of $F(G)$, we can extend F to an expander.

Claim

F^ω is a Katětov expander.
Other examples of Katětov expanders

Example

Let \mathcal{I} be the class of finite linearly ordered sets. Given $S \in \mathcal{I}$, define

$$K(S) = S \cup \text{hom}(S, \{0, 1\}),$$

with the natural linear ordering.

Example

Let \mathcal{I} be the class of all finite groups. Given $G \in \mathcal{I}$ let $F(G)$ be the group of all permutations of the set G. Identifying G with the subgroup of $F(G)$, we can extend F to an expander.

Claim

F^ω is a Katětov expander.
Other examples of Katětov expanders

Example

Let \mathcal{I} be the class of finite linearly ordered sets. Given $S \in \mathcal{I}$, define

$$K(S) = S \cup \text{hom}(S, \{0, 1\}),$$

with the natural linear ordering.

Example

Let \mathcal{I} be the class of all finite groups. Given $G \in \mathcal{I}$ let $F(G)$ be the group of all permutations of the set G. Identifying G with the subgroup of $F(G)$, we can extend F to an expander.

Claim

F^ω is a Katětov expander.
Proposition

There exists a Katětov expander in the class of finite tournaments.

Proof.

Given a finite tournament T, let $K(T)$ be the set of one-to-one sequences in T, agreeing that the empty sequence dominates everything.

Identify T with sequences of length 1.

Endow $K(T)$ with the lexicographic tournament structure.
Proposition

There exists a Katětov expander in the class of finite tournaments.

Proof.

Given a finite tournament T, let $K(T)$ be the set of one-to-one sequences in T, agreeing that the empty sequence dominates everything. Identify T with sequences of length 1. Endow $K(T)$ with the lexicographic tournament structure.
Problem

Does there exist a Fraïssé class \mathcal{F} with no Katětov expander?

Problem

When does there exist a Katětov expander for homomorphisms?
Problem

Does there exist a Fraïssé class \mathcal{F} with no Katětov expander?

Problem

When does there exist a Katětov expander for homomorphisms?