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Domination game on G

For a graph G = (V ,E ), the domination number of G is the
minimum number, denoted γ(G ), of vertices in a subset A of
V such that V = N[A] = ∪x∈AN[x ].

Two players, Dominator (D) and Staller (S), take turns choosing a
vertex in G .

If C denotes the set of vertices chosen at some point in a
game and D or S chooses vertex w , then N[w ]− N[C ] 6= ∅.
D uses a strategy to end the game in as few moves as
possible; S uses a strategy that will require the most moves
before the game ends.
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Game domination number

The game domination number of G is the number of moves,
γg (G ), when D moves first and both players use an optimal
strategy. (Game 1)

d1, s1, d2, s2, . . . denotes the sequence of moves.

The staller-start game domination number of G is the number
of moves, γ′g (G ), when S moves first and both players use an
optimal strategy. (Game 2)

s ′1, d
′
1, s

′
2, d

′
2, . . . denotes the sequence of moves.
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The game on P5
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The game on P5 cont’d

s1d1

γg (P5) = 3 = γ′g (P5)
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The game on a tree
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Relations between invariants
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γg versus γ

Suppose D and S play Game 1 on G .

Let C denote the total set of vertices chosen by D and S.
Then C is a dominating set of G .

If D employs a strategy of selecting vertices from a minimum
dominating set A of G , then Game 1 will have ended when D
has exhausted the vertices from A.

Theorem (Brešar, K., Rall, 2010)

If G is any graph, then γ(G ) ≤ γg (G ) ≤ 2γ(G )− 1. Moreover, for
any integer k ≥ 1 and any 0 ≤ r ≤ k − 1, there exists a graph G
with γ(G ) = k and γg (G ) = k + r .
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γg versus γ′g

Theorem (Brešar, K., Rall, 2010; Kinnersley, West, Zamani, 2013?)

For any graph G, |γg (G )− γ′g (G )| ≤ 1.

A partially dominated graph is a graph in which some vertices
have already been dominated in some turns of the game
already played.

If X is a partially dominated graph, then γg (X ) (γ′g (X )) is the
number of turns remaining if D (S) has the move.

Lemma (Kinnersley, West, Zamani, 2013?)

(Continuation Principle) Let G be a graph and A,B ⊆ V (G ). Let
GA and GB be partially dominated graphs in which the sets A and
B have already been dominated, respectively. If B ⊆ A, then
γg (GA) ≤ γg (GB) and γ′g (GA) ≤ γ′g (GB).
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Proof of Continuation Principle

D will play two games: Game A on GA (real game) and Game
B on GB (imagined game).

D will keep the rule: the set of vertices dominated in Game A
is a superset of vertices dominated in Game B.

Suppose Game B is not yet finished. If there are no
undominated vertices in Game A, then Game A has finished
before Game B and we are done.

It is D’s move: he selects an optimal move in game B. If it is
legal in Game A, he plays it there as well, otherwise he plays
any undominated vertex.
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Proof of Continuation Principle cont’d

It is S’s move: she plays in Game A. By the rule, this move is
legal in Game B and D can replicate it in Game B.

By the rule, Game A finishes no later than Game B.

D played optimally on Game B. Hence:

If D played first in Game B, the number of moves taken on
Game B was at most γg (GB) (indeed, if S did not play
optimally, it might be strictly less);
If S played first in Game B, the number of moves taken on
Game B was at most γ′g (GB).

Hence

If D played first in Game B, then γg (GA) ≤ γg (GB);
If S played first in Game B, then γ′g (GA) ≤ γ′g (GB).
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Proof of the theorem

Consider Game 1 and let v be the first move of D.

Let G ′ be the resulting partially dominated graph.

γg (G ) ≤ γ′g (G ′) + 1.

By Continuation Principle, γ′g (G ′) ≤ γ′g (G ).

Hence γg (G ) ≤ γ′g (G ′) + 1 ≤ γ′g (G ) + 1.

By a parallel argument, γ′g (G ) ≤ γg (G ) + 1.
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Realizable pairs

A pair (r , s) of integers is realizable if there exists a graph G such
that γg (G ) = r and γ′g (G ) = s.

By the theorem, only possible
realizable pairs are: (r , r), (r , r + 1), (r , r − 1).

Theorem (Košmrlj, 2014)

Pairs (r , r), r ≥ 2, (r , r + 1), r ≥ 1, and (2k , 2k − 1), k ≥ 2, are
realizable by 2-connected graphs. Pairs (2k + 1, 2k), k ≥ 2 are
realizable by connected graphs.

Theorem (Kinnerley, 2014?)

No pair of the form (r , r − 1) can be realized by a tree.
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Game on spanning trees

Theorem (Brešar, K., Rall, 2013)

For any integer ` ≥ 1, there exists a graph G and its spanning tree
T such that γg (G )− γg (T ) ≥ `.

G4:

Tk : in Gk remove all but the middle vertical edges.

γg (Gk) ≥ 5
2k − 1 and γg (Tk) ≤ 2k + 3.
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Theorem (Brešar, K., Rall, 2013)

For any integer ` ≥ 1, there exists a graph G and its spanning tree
T such that γg (G )− γg (T ) ≥ `.

G4:

Tk : in Gk remove all but the middle vertical edges.

γg (Gk) ≥ 5
2k − 1 and γg (Tk) ≤ 2k + 3.

Domination Game



Game on spanning trees
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Game on spanning subgraphs

Theorem (Brešar, K., Rall, 2013)

For any m ≥ 3 there exists a 3-connected graph Gm and its
2-connected spanning subgraph Hm such that γg (Gm) ≥ 2m − 2
and γg (Hm) = m.
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Game on spanning subgraphs cont’d

K8

K6 K6 K6 K6

x1 y1 x2 y2 x3 y3 x4 y4

a1,1

a1,2

a1,3

a1,4

G4:

Hm is obtained from Gm by removing all the edges ai ,jaj+1,i .
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Open problems
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3/5-conjectures

Conjecture (Kinnersley, West, Zamani, 2013?)

For an n-vertex forest T without isolated vertices,

γg (T ) ≤ 3n

5
and γ′g (T ) ≤ 3n + 2

5
.

Conjecture (Kinnersley, West, Zamani, 2013?)

For an n-vertex connected graph G,

γg (G ) ≤ 3n

5
and γ′g (G ) ≤ 3n + 2

5
.

Domination Game



3/5-conjectures

Conjecture (Kinnersley, West, Zamani, 2013?)
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γg (T ) ≤ 3n
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and γ′g (T ) ≤ 3n + 2
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Conjecture (Kinnersley, West, Zamani, 2013?)
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3/5-trees on 20 vertices
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3/5-trees on 20 vertices cont’d
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3/5-conjectures con’t

Theorem (Bujtás, 2014?)

The 3/5-conjecture holds true for forests in which no two leaves
are at distance 4.
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Computational complexity

Problem

What is the computational complexity of the game domination
number?

Problem

What is the computational complexity of the game domination
number on trees?

Problem

Can we say anything about the computational complexity of the
domination game?
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Computational complexity

Problem

What is the computational complexity of the game domination
number?

Problem

What is the computational complexity of the game domination
number on trees?

Problem

Can we say anything about the computational complexity of the
domination game?
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Game Over!
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