Cubic vertices in minimal bricks

Andrea Jiménez

Instituto de Matemática e Estatística, Universidade de São Paulo

> Joint work with Maya Stein

Bricks - definition

Bricks

A graph G is a brick if G is 3 -connected and $\underbrace{\text { bicritical. }}$.

Bricks - definition

Bricks

A graph G is a brick if G is 3 -connected and $\underbrace{\text { bicritical. }}$.
for every pair $u, v \in V(G)$ with $u \neq v$ the graph $G \backslash\{u, v\}$ has a perfect matching

Bricks - definition

Bricks

A graph G is a brick if G is 3 -connected and $\underbrace{\text { bicritical. }}$.
for every pair $u, v \in V(G)$ with $u \neq v$ the graph $G \backslash\{u, v\}$ has a perfect matching

Bricks - definition

Bricks

A graph G is a brick if G is 3 -connected and $\underbrace{\text { bicritical. }}$.
for every pair $u, v \in V(G)$ with $u \neq v$ the graph $G \backslash\{u, v\}$ has a perfect matching

Bricks - definition

Bricks

A graph G is a brick if G is 3 -connected and $\underbrace{\text { bicritical. }}$.
for every pair $u, v \in V(G)$ with $u \neq v$ the graph $G \backslash\{u, v\}$ has a perfect matching

Tight Cut Decomposition - Motivation

- $\mathcal{M}(G):=$ all perfect matchings of $\underbrace{G}, \quad \mathcal{M}(G) \neq \emptyset$ [Tutte 1947] matching-covered

Tight Cut Decomposition - Motivation

- $\mathcal{M}(G):=$ all perfect matchings of $\underbrace{G}, \quad \mathcal{M}(G) \neq \emptyset$ [Tutte 1947] matching-covered
- Perfect matching polytope of G [Edmonds 1965]

Tight Cut Decomposition - Motivation

- $\mathcal{M}(G):=$ all perfect matchings of $\underbrace{G}, \quad \mathcal{M}(G) \neq \emptyset$ [Tutte 1947] matching-covered
- Perfect matching polytope of G [Edmonds 1965]
- Linear hull of $\mathcal{M}(G)$ [Naddef 1982], Lattice of $\mathcal{M}(G)$ [Lovász 1986]

Tight Cut Decomposition - Motivation

- $\mathcal{M}(G):=$ all perfect matchings of $\underbrace{G}, \quad \mathcal{M}(G) \neq \emptyset$ [Tutte 1947] matching-covered
- Perfect matching polytope of G [Edmonds 1965]
- Linear hull of $\mathcal{M}(G)$ [Naddef 1982], Lattice of $\mathcal{M}(G)$ [Lovász 1986]

Tight cuts

A cut C of G is tight if every perfect matching of G has exactly one edge in C.

Tight Cut Decomposition - Motivation

- $\mathcal{M}(G):=$ all perfect matchings of $\underbrace{G}, \quad \mathcal{M}(G) \neq \emptyset$ [Tutte 1947] matching-covered
- Perfect matching polytope of G [Edmonds 1965]
- Linear hull of $\mathcal{M}(G)$ [Naddef 1982], Lattice of $\mathcal{M}(G)$ [Lovász 1986]

Tight cuts

A cut C of G is tight if every perfect matching of G has exactly one edge in C.

- Tight Cut Decomposition Procedure [Kotzig 59, and Lovász \& Plummer 72]

Tight Cut Decomposition - Motivation

- $\mathcal{M}(G):=$ all perfect matchings of $\underbrace{G}, \quad \mathcal{M}(G) \neq \emptyset$ [Tutte 1947] matching-covered
- Perfect matching polytope of G [Edmonds 1965]
- Linear hull of $\mathcal{M}(G)$ [Naddef 1982], Lattice of $\mathcal{M}(G)$ [Lovász 1986]

Tight cuts

A cut C of G is tight if every perfect matching of G has exactly one edge in C.

- Tight Cut Decomposition Procedure [Kotzig 59, and Lovász \& Plummer 72]

Tight Cut Decomposition - Motivation

- $\mathcal{M}(G):=$ all perfect matchings of $\underbrace{G}, \quad \mathcal{M}(G) \neq \emptyset$ [Tutte 1947] matching-covered
- Perfect matching polytope of G [Edmonds 1965]
- Linear hull of $\mathcal{M}(G)$ [Naddef 1982], Lattice of $\mathcal{M}(G)$ [Lovász 1986]

Tight cuts

A cut C of G is tight if every perfect matching of G has exactly one edge in C.

- Tight Cut Decomposition Procedure [Kotzig 59, and Lovász \& Plummer 72]

Tight Cut Decomposition - Motivation

- $\mathcal{M}(G):=$ all perfect matchings of $\underbrace{G}, \quad \mathcal{M}(G) \neq \emptyset$ [Tutte 1947] matching-covered
- Perfect matching polytope of G [Edmonds 1965]
- Linear hull of $\mathcal{M}(G)$ [Naddef 1982], Lattice of $\mathcal{M}(G)$ [Lovász 1986]

Tight cuts

A cut C of G is tight if every perfect matching of G has exactly one edge in C.

- Tight Cut Decomposition Procedure [Kotzig 59, and Lovász \& Plummer 72]

- Output: A list of graphs without non-trivial tight cuts.

Tight Cut Decomposition - Motivation

Theorem [Edmonds, Lovász \& Pulleyblank and Lovász 80's]
G does not have non-trivial tight cuts if and only if G is a brick or a brace.

Tight Cut Decomposition - Motivation

Theorem [Edmonds, Lovász \& Pulleyblank and Lovász 80's]
G does not have non-trivial tight cuts if and only if G is a brick or a brace.

Theorem [Edmonds, Lovász \& Pulleyblank 1982]
G matching-covered graph, $b:=$ number of bricks and

$$
\operatorname{dim}(\operatorname{conv}(\mathcal{M}(G)))=\operatorname{dim}(\operatorname{lin}(\mathcal{M}(G)))-1=|E(G)|-|V(G)|+1-b
$$

Tight Cut Decomposition - Motivation

Theorem [Edmonds, Lovász \& Pulleyblank and Lovász 80's]
G does not have non-trivial tight cuts if and only if G is a brick or a brace.

Theorem [Edmonds, Lovász \& Pulleyblank 1982]
G matching-covered graph, $b:=$ number of bricks and

$$
\operatorname{dim}(\operatorname{conv}(\mathcal{M}(G)))=\operatorname{dim}(\operatorname{lin}(\mathcal{M}(G)))-1=|E(G)|-|V(G)|+1-b
$$

Theorem [Lovász 1986]
The list of bricks and braces is unique.

Pfaffian graphs - Motivation

Pfaffian Orientations

An orientation of a graph G is Pfaffian if for every perfect matching M of G each even cycle of $G \backslash M$ has an odd number of edges directed in either direction.

Pfaffian graphs - Motivation

Pfaffian Orientations

An orientation of a graph G is Pfaffian if for every perfect matching M of G each even cycle of $G \backslash M$ has an odd number of edges directed in either direction.

Theorem [Kasteleyn 1967]
If G is a Pfaffian graph, then $|\mathcal{M}(G)|$ can be computed in polynomial time.

Pfaffian graphs - Motivation

Pfaffian Orientations

An orientation of a graph G is Pfaffian if for every perfect matching M of G each even cycle of $G \backslash M$ has an odd number of edges directed in either direction.

Theorem [Kasteleyn 1967]
If G is a Pfaffian graph, then $|\mathcal{M}(G)|$ can be computed in polynomial time.

Theorem [Vazirani \& Yannakakis 1989, and Little \& Rendl 1991]
A graph is Pfaffian if and only if all bricks and braces of its tight cut decomposition are Pfaffian.

Pfaffian graphs - Motivation

Pfaffian Orientations

An orientation of a graph G is Pfaffian if for every perfect matching M of G each even cycle of $G \backslash M$ has an odd number of edges directed in either direction.

Theorem [Kasteleyn 1967]
If G is a Pfaffian graph, then $|\mathcal{M}(G)|$ can be computed in polynomial time.

Theorem [Vazirani \& Yannakakis 1989, and Little \& Rendl 1991]

A graph is Pfaffian if and only if all bricks and braces of its tight cut decomposition are Pfaffian.

- Polynomial-time algorithm: Pfaffian bipartite graphs; using Pfaffian bracesRobertson, Seymour \& Thomas 1999

Pfaffian graphs - Motivation

Pfaffian Orientations

An orientation of a graph G is Pfaffian if for every perfect matching M of G each even cycle of $G \backslash M$ has an odd number of edges directed in either direction.

Theorem [Kasteleyn 1967]
If G is a Pfaffian graph, then $|\mathcal{M}(G)|$ can be computed in polynomial time.

Theorem [Vazirani \& Yannakakis 1989, and Little \& Rendl 1991]

A graph is Pfaffian if and only if all bricks and braces of its tight cut decomposition are Pfaffian.

- Polynomial-time algorithm: Pfaffian bipartite graphs; using Pfaffian bracesRobertson, Seymour \& Thomas 1999
- Pfaffian bricks - Norine (Ph.D. Thesis) 2005

Brick Generation

Theorem [Carvalho, Lucchesi \& Murty 2004]

Every brick can be obtained from one of the basic bricks by a sequence of applications of the following four operations (expansions):

Brick Generation

Theorem [Carvalho, Lucchesi \& Murty 2004]

Every brick can be obtained from one of the basic bricks by a sequence of applications of the following four operations (expansions):

Corollary (Lovász's Conjecture)
Every minimal brick has a vertex of degree 3 .

Brick Generation

Theorem [Carvalho, Lucchesi \& Murty 2004]

Every brick can be obtained from one of the basic bricks by a sequence of applications of the following four operations (expansions):

Corollary (Lovász's Conjecture)
Every minimal brick has a vertex of degree 3.

- More about brick generation - Norine \& Thomas

Generation of minimal bricks

Theorem [Norine \& Thomas 2005]

Every minimal brick other than the Petersen graph can be obtained from K_{4} or \bar{C}_{6} by a sequence of applications of strict extensions.

Cubic vertices of minimal bricks

Theorem [Norine \& Thomas 2005]
Every minimal brick has at least 3 vertices of degree 3 .

Cubic vertices of minimal bricks

Theorem [Norine \& Thomas 2005]
Every minimal brick has at least 3 vertices of degree 3 .

Conjecture [Norine \& Thomas]
Every minimal brick has linearly many vertices of degree 3 .

Cubic vertices of minimal bricks

Theorem [Norine \& Thomas 2005]

Every minimal brick has at least 3 vertices of degree 3 .

Conjecture [Norine \& Thomas]
Every minimal brick has linearly many vertices of degree 3 .

Theorem [Lin, Lu \& Zhang 2013]
Every minimal brick has at least 4 vertices of degree 3 .

Cubic vertices of minimal bricks

Theorem [Norine \& Thomas 2005]

Every minimal brick has at least 3 vertices of degree 3 .

Conjecture [Norine \& Thomas]
Every minimal brick has linearly many vertices of degree 3 .

Theorem [Lin, Lu \& Zhang 2013]
Every minimal brick has at least 4 vertices of degree 3 .

Theorem [Bruhn \& Stein 2012]
Every minimal brick G has at least $\frac{|V(G)|}{9}$ vertices of degree 4 .

Cubic vertices of minimal bricks

Theorem [Norine \& Thomas 2005]

Every minimal brick has at least 3 vertices of degree 3 .

Conjecture [Norine \& Thomas]
Every minimal brick has linearly many vertices of degree 3 .

Theorem [Lin, Lu \& Zhang 2013]
Every minimal brick has at least 4 vertices of degree 3 .

Theorem [Bruhn \& Stein 2012]
Every minimal brick G has at least $\frac{|V(G)|}{9}$ vertices of degree 4 .

Theorem [J. \& Stein 2013]

Every minimal brick G has at least $\frac{1}{52} \sqrt{|V(G)|}$ vertices of degree 3 .

Proof's Ideas

- $G_{0} \stackrel{\psi_{1}}{\longrightarrow} G_{1} \stackrel{\psi_{2}}{\longrightarrow} \cdots \stackrel{\psi_{k}}{\longrightarrow} G_{k}:=$ min-brick sequence [Norine \& Thomas]
- $\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right\}$ strict extensions, $G=G_{k}$

Proof's Ideas

- $G_{0} \stackrel{\psi_{1}}{\longrightarrow} G_{1} \stackrel{\psi_{2}}{\longrightarrow} \ldots \stackrel{\psi_{k}}{\longrightarrow} G_{k}:=$ min-brick sequence [Norine \& Thomas]
- $\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right\}$ strict extensions, $G=G_{k}$
- $\left|G_{i}\right|_{3}:=$ number of cubic vertices in G_{i}

Generous, neutral and selfish operations
$i \in\{1, \ldots, k\}, \quad p=p(i)=\left|G_{i}\right|_{3}-\left|G_{i-1}\right|_{3}$

- Generous if $p>0, \quad$ Neutral if $p=0, \quad$ Selfish if $p<0$

Proof's Ideas

- $G_{0} \stackrel{\psi_{1}}{\longrightarrow} G_{1} \stackrel{\psi_{2}}{\longrightarrow} \cdots \stackrel{\psi_{k}}{\longrightarrow} G_{k}:=$ min-brick sequence [Norine \& Thomas]
- $\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right\}$ strict extensions, $G=G_{k}$
- $\left|G_{i}\right|_{3}:=$ number of cubic vertices in G_{i}

Generous, neutral and selfish operations
$i \in\{1, \ldots, k\}, \quad p=p(i)=\left|G_{i}\right|_{3}-\left|G_{i-1}\right|_{3}$

- Generous if $p>0, \quad$ Neutral if $p=0, \quad$ Selfish if $p<0$
- Selfish

Proof's Ideas

- $G_{0} \stackrel{\psi_{1}}{\longrightarrow} G_{1} \stackrel{\psi_{2}}{\longrightarrow} \cdots \stackrel{\psi_{k}}{\longrightarrow} G_{k}:=$ min-brick sequence [Norine \& Thomas]
- $\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right\}$ strict extensions, $G=G_{k}$
- $\left|G_{i}\right|_{3}:=$ number of cubic vertices in G_{i}

Generous, neutral and selfish operations
$i \in\{1, \ldots, k\}, \quad p=p(i)=\left|G_{i}\right|_{3}-\left|G_{i-1}\right|_{3}$

- Generous if $p>0, \quad$ Neutral if $p=0, \quad$ Selfish if $p<0$
- Selfish

- Neutral

Proof's Ideas

- $G_{0} \stackrel{\psi_{1}}{\longrightarrow} G_{1} \stackrel{\psi_{2}}{\longrightarrow} \ldots \stackrel{\psi_{k}}{\longrightarrow} G_{k}:=$ min-brick sequence [Norine \& Thomas]
- $\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right\}$ strict extensions, $G=G_{k}$
- $|G|_{3}:=$ number of cubic vertices in G
- If G is such that $d(G) \leq 4-\gamma$ and $\delta \geq 3$, then $|G|_{3} \geq \gamma|V(G)|$.

Proof's Ideas

- $G_{0} \stackrel{\psi_{1}}{\longrightarrow} G_{1} \stackrel{\psi_{2}}{\longrightarrow} \cdots \stackrel{\psi_{k}}{\longrightarrow} G_{k}:=$ min-brick sequence [Norine \& Thomas]
- $\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right\}$ strict extensions, $G=G_{k}$
- $|G|_{3}:=$ number of cubic vertices in G
- If G is such that $d(G) \leq 4-\gamma$ and $\delta \geq 3$, then $|G|_{3} \geq \gamma|V(G)|$.

Average degree

$i \in\{1, \ldots, k\}$ we define

$$
n(i):=\left|V\left(G_{i}\right)\right|-\left\lvert\, V\left(G _ { i - 1 } \left|\quad e(i):=\left|E\left(G_{i}\right)\right|-\left|E\left(G_{i-1}\right)\right| \quad d(i):=2 \frac{e(i)}{n(i)}\right.\right.\right.
$$

Proof's Ideas

- $G_{0} \stackrel{\psi_{1}}{\longrightarrow} G_{1} \stackrel{\psi_{2}}{\longrightarrow} \cdots \stackrel{\psi_{k}}{\longrightarrow} G_{k}:=$ min-brick sequence [Norine \& Thomas]
- $\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right\}$ strict extensions, $G=G_{k}$
- $|G|_{3}:=$ number of cubic vertices in G
- If G is such that $d(G) \leq 4-\gamma$ and $\delta \geq 3$, then $|G|_{3} \geq \gamma|V(G)|$.

Average degree

$i \in\{1, \ldots, k\}$ we define

$$
n(i):=\left|V\left(G_{i}\right)\right|-\left\lvert\, V\left(G _ { i - 1 } \left|\quad e(i):=\left|E\left(G_{i}\right)\right|-\left|E\left(G_{i-1}\right)\right| \quad d(i):=2 \frac{e(i)}{n(i)}\right.\right.\right.
$$

- $d(i)=5$

Proof's Ideas

- $G_{0} \stackrel{\psi_{1}}{\longrightarrow} G_{1} \stackrel{\psi_{2}}{\longrightarrow} \cdots \stackrel{\psi_{k}}{\longrightarrow} G_{k}:=$ min-brick sequence [Norine \& Thomas]
- $\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right\}$ strict extensions, $G=G_{k}$
- $|G|_{3}:=$ number of cubic vertices in G
- If G is such that $d(G) \leq 4-\gamma$ and $\delta \geq 3$, then $|G|_{3} \geq \gamma|V(G)|$.

Average degree

$i \in\{1, \ldots, k\}$ we define

$$
n(i):=\left|V\left(G_{i}\right)\right|-\left\lvert\, V\left(G _ { i - 1 } \left|\quad e(i):=\left|E\left(G_{i}\right)\right|-\left|E\left(G_{i-1}\right)\right| \quad d(i):=2 \frac{e(i)}{n(i)}\right.\right.\right.
$$

- $d(i)=5$

- $d(i)=4$

- $G_{0} \stackrel{\psi_{1}}{\longmapsto} G_{1} \stackrel{\psi_{2}}{\longmapsto} \ldots \stackrel{\psi_{k}}{\longmapsto} G_{k}:=$ nice min-brick sequence
- $I_{s} \subset\{1,2, \ldots, k\}$, with $i \in I_{s}$ for ψ_{i} selfish
- $G_{0} \stackrel{\psi_{1}}{\longmapsto} G_{1} \stackrel{\psi_{2}}{\longmapsto} \cdots \stackrel{\psi_{k}}{\longmapsto} G_{k}:=$ nice min-brick sequence
- $I_{s} \subset\{1,2, \ldots, k\}$, with $i \in I_{s}$ for ψ_{i} selfish

Case 1: $\quad\left|I_{s}\right| \geq \frac{1}{2} \sqrt{k}$

Proof's Ideas

- $G_{0} \stackrel{\psi_{1}}{\longmapsto} G_{1} \stackrel{\psi_{2}}{\longmapsto} \ldots \stackrel{\psi_{k}}{\longmapsto} G_{k}:=$ nice min-brick sequence
- $I_{s} \subset\{1,2, \ldots, k\}$, with $i \in I_{s}$ for ψ_{i} selfish

Case 1: $\left|I_{s}\right| \geq \frac{1}{2} \sqrt{k}$

Lemma

There exists a partition I_{s}^{a}, I_{s}^{b} of I_{s} such that
(a) for each $i \in I_{s}^{a}$ there is a vertex v_{i} that has degree 3 in G and the $v_{i}^{\prime} s$ are distinct for distinct $i \in I_{s}^{a}$, and
(b) there is $\tilde{I}_{s}^{b} \subseteq\{1, \ldots, k\}$ such that $I_{s}^{b} \subseteq \tilde{I}_{s}^{b}$ and

$$
\sum_{j \in \tilde{I}_{s}^{b}}\left(\left|G_{j}\right|_{3}-\left|G_{j-1}\right|_{3}\right) \geq \frac{1}{4}\left|I_{s}^{b}\right| .
$$

Proof's Ideas

Case 2: $\left|I_{s}\right|<\frac{1}{2} \sqrt{k}$

Case 2: $\quad\left|I_{s}\right|<\frac{1}{2} \sqrt{k}$

- $I_{n} \subset\{1,2, \ldots, k\}$, with $j \in I_{n}$ for ψ_{j} neutral and $d(j)=4$

Case 2: $\quad\left|I_{s}\right|<\frac{1}{2} \sqrt{k}$

- $I_{n} \subset\{1,2, \ldots, k\}$, with $j \in I_{n}$ for ψ_{j} neutral and $d(j)=4$

Case 2.1: $\left|I_{n}\right| \geq k-\frac{27}{26} \sqrt{k}$

Case 2: $\left|I_{s}\right|<\frac{1}{2} \sqrt{k}$

- $I_{n} \subset\{1,2, \ldots, k\}$, with $j \in I_{n}$ for ψ_{j} neutral and $d(j)=4$

Case 2.1: $\left|I_{n}\right| \geq k-\frac{27}{26} \sqrt{k}$

- (i) there exist a bad subsequence of lenght at least $\frac{27}{52} \sqrt{k}$
(ii) subcase (i) does not happen.

Proof's Ideas

Case 2: $\left|I_{s}\right|<\frac{1}{2} \sqrt{k}$

- $I_{n} \subset\{1,2, \ldots, k\}$, with $j \in I_{n}$ for ψ_{j} neutral and $d(j)=4$

Case 2.1: $\left|I_{n}\right| \geq k-\frac{27}{26} \sqrt{k}$

- (i) there exist a bad subsequence of lenght at least $\frac{27}{52} \sqrt{k}$
(ii) subcase (i) does not happen.
(i) A bad subsequence of lenght at least $\frac{27}{52} \sqrt{k}$ gives at least $\frac{27}{52} \sqrt{k}-2\left|I_{s}\right| \geq \frac{1}{26} \sqrt{k}$ vertices of degree 3 in G.

Proof's Ideas

Case 2: $\left|I_{s}\right|<\frac{1}{2} \sqrt{k}$

- $I_{n} \subset\{1,2, \ldots, k\}$, with $j \in I_{n}$ for ψ_{j} neutral and $d(j)=4$

Case 2.1: $\left|I_{n}\right| \geq k-\frac{27}{26} \sqrt{k}$

- (i) there exist a bad subsequence of lenght at least $\frac{27}{52} \sqrt{k}$
(ii) subcase (i) does not happen.
(i) A bad subsequence of lenght at least $\frac{27}{52} \sqrt{k}$ gives at least $\frac{27}{52} \sqrt{k}-2\left|I_{s}\right| \geq \frac{1}{26} \sqrt{k}$ vertices of degree 3 in G.
(ii) \sim Case 1; taking bad subsequences instead of isolated operations.

Proof's Ideas

Case 2: $\quad\left|I_{s}\right|<\frac{1}{2} \sqrt{k}$

- $I_{n} \subset\{1,2, \ldots, k\}$, with $j \in I_{n}$ for ψ_{j} neutral and $d(j)=4$

Case 2.1: $\left|I_{n}\right| \geq k-\frac{27}{26} \sqrt{k}$

- (i) there exist a bad subsequence of lenght at least $\frac{27}{52} \sqrt{k}$
(ii) subcase (i) does not happen.
(i) A bad subsequence of lenght at least $\frac{27}{52} \sqrt{k}$ gives at least $\frac{27}{52} \sqrt{k}-2\left|I_{s}\right| \geq \frac{1}{26} \sqrt{k}$ vertices of degree 3 in G.
(ii) \sim Case 1; taking bad subsequences instead of isolated operations.

Case 2.2: $\left|\{1, \ldots, k\}-I_{s}-I_{n}\right| \geq \frac{7}{13} \sqrt{k}$

Proof's Ideas

Case 2: $\left|I_{s}\right|<\frac{1}{2} \sqrt{k}$

- $I_{n} \subset\{1,2, \ldots, k\}$, with $j \in I_{n}$ for ψ_{j} neutral and $d(j)=4$

Case 2.1: $\left|I_{n}\right| \geq k-\frac{27}{26} \sqrt{k}$

- (i) there exist a bad subsequence of lenght at least $\frac{27}{52} \sqrt{k}$
(ii) subcase (i) does not happen.
(i) A bad subsequence of lenght at least $\frac{27}{52} \sqrt{k}$ gives at least $\frac{27}{52} \sqrt{k}-2\left|I_{s}\right| \geq \frac{1}{26} \sqrt{k}$ vertices of degree 3 in G.
(ii) \sim Case 1 ; taking bad subsequences instead of isolated operations.

Case 2.2: $\quad\left|\{1, \ldots, k\}-I_{s}-I_{n}\right| \geq \frac{7}{13} \sqrt{k}$

- $i \in\left|\{1, \ldots, k\}-I_{s}-I_{n}\right|$, then $d(i) \leq 3.5$

Gracias :-)

