Cubic vertices in minimal bricks

Andrea Jiménez

Instituto de Matemática e Estatística, Universidade de São Paulo

Joint work with Maya Stein
A graph G is a **brick** if G is 3-connected and bicritical.
A graph G is a brick if G is 3-connected and bicritical.

for every pair $u, v \in V(G)$ with $u \neq v$
the graph $G \setminus \{u, v\}$ has a perfect matching
A graph G is a brick if G is 3-connected and bicritical.

for every pair $u, v \in V(G)$ with $u \neq v$
the graph $G \setminus \{u, v\}$ has a perfect matching
Bricks

A graph G is a **brick** if G is 3-connected and bicritical.

for every pair $u, v \in V(G)$ with $u \neq v$
the graph $G \setminus \{u, v\}$ has a perfect matching
A graph G is a **brick** if G is 3-connected and bicritical.

for every pair $u, v \in V(G)$ with $u \neq v$
the graph $G \setminus \{u, v\}$ has a perfect matching
Tight Cut Decomposition - Motivation

- $\mathcal{M}(G) := \text{all perfect matchings of } G$, $\mathcal{M}(G) \neq \emptyset$ [Tutte 1947]

 matching-covered
Tight Cut Decomposition - Motivation

- $\mathcal{M}(G) := \text{all perfect matchings of } G, \quad \mathcal{M}(G) \neq \emptyset$ [Tutte 1947]
 - matching-covered

- Perfect matching polytope of G [Edmonds 1965]

Tight cut decomposition procedure [Kotzig 59, and Lovász & Plummer 72]
- Output: A list of graphs without non-trivial tight cuts.
Tight Cut Decomposition - Motivation

- $\mathcal{M}(G) := \text{all perfect matchings of } G$, $\mathcal{M}(G) \neq \emptyset$ [Tutte 1947]

 matching-covered

- Perfect matching polytope of G [Edmonds 1965]

- Linear hull of $\mathcal{M}(G)$ [Naddef 1982], Lattice of $\mathcal{M}(G)$ [Lovász 1986]
Tight Cut Decomposition - Motivation

- $\mathcal{M}(G) := \text{all perfect matchings of } G$, $\mathcal{M}(G) \neq \emptyset$ [Tutte 1947]

 matching-covered

- Perfect matching polytope of G [Edmonds 1965]

- Linear hull of $\mathcal{M}(G)$ [Naddef 1982], Lattice of $\mathcal{M}(G)$ [Lovász 1986]

Tight cuts

A cut C of G is **tight** if every perfect matching of G has exactly one edge in C.
Tight Cut Decomposition - Motivation

- $\mathcal{M}(G) := \text{all perfect matchings of } G$, $\mathcal{M}(G) \neq \emptyset$ [Tutte 1947]

 - matching-covered

- Perfect matching polytope of G [Edmonds 1965]

- Linear hull of $\mathcal{M}(G)$ [Naddef 1982], Lattice of $\mathcal{M}(G)$ [Lovász 1986]

Tight cuts

A cut C of G is **tight** if every perfect matching of G has exactly one edge in C.

- **Tight Cut Decomposition Procedure** [Kotzig 59, and Lovász & Plummer 72]
Tight Cut Decomposition - Motivation

- $\mathcal{M}(G) := \text{all perfect matchings of } G$, $\mathcal{M}(G) \neq \emptyset$ [Tutte 1947]
- Matching-covered

- Perfect matching polytope of G [Edmonds 1965]

- Linear hull of $\mathcal{M}(G)$ [Naddef 1982], Lattice of $\mathcal{M}(G)$ [Lovász 1986]

Tight cuts

A cut C of G is **tight** if every perfect matching of G has exactly one edge in C.

- Tight Cut Decomposition Procedure [Kotzig 59, and Lovász & Plummer 72]
Tight Cut Decomposition - Motivation

- $\mathcal{M}(G) := \text{all perfect matchings of } G, \quad \mathcal{M}(G) \neq \emptyset$ [Tutte 1947]

- Perfect matching polytope of G [Edmonds 1965]

- Linear hull of $\mathcal{M}(G)$ [Naddef 1982], Lattice of $\mathcal{M}(G)$ [Lovász 1986]

Tight cuts

A cut C of G is **tight** if every perfect matching of G has exactly one edge in C.

- Tight Cut Decomposition Procedure [Kotzig 59, and Lovász & Plummer 72]
Tight Cut Decomposition - Motivation

- $\mathcal{M}(G) := \text{all perfect matchings of } G$, $\mathcal{M}(G) \neq \emptyset$ [Tutte 1947]
 - matching-covered

- Perfect matching polytope of G [Edmonds 1965]

- Linear hull of $\mathcal{M}(G)$ [Naddef 1982], Lattice of $\mathcal{M}(G)$ [Lovász 1986]

Tight cuts

A cut C of G is **tight** if every perfect matching of G has exactly one edge in C.

- Tight Cut Decomposition Procedure [Kotzig 59, and Lovász & Plummer 72]

- Output: A list of graphs without non-trivial tight cuts.
Theorem [Edmonds, Lovász & Pulleyblank and Lovász 80’s]

G does not have non-trivial tight cuts if and only if G is a \textit{brick} or a \textit{brace}.

Theorem [Lovász 1986]
The list of bricks and braces is unique.
Theorem [Edmonds, Lovász & Pulleyblank and Lovász 80’s]

G does not have non-trivial tight cuts if and only if G is a brick or a brace.

Theorem [Edmonds, Lovász & Pulleyblank 1982]

G matching-covered graph, $b :=$ number of bricks and

$$\dim(\operatorname{conv}(\mathcal{M}(G))) = \dim(\operatorname{lin}(\mathcal{M}(G))) - 1 = |E(G)| - |V(G)| + 1 - b$$
Theorem [Edmonds, Lovász & Pulleyblank and Lovász 80’s]

G does not have non-trivial tight cuts if and only if G is a brick or a brace.

Theorem [Edmonds, Lovász & Pulleyblank 1982]

G matching-covered graph, $b :=$ number of bricks and

$$\dim(\text{conv}(\mathcal{M}(G))) = \dim(\text{lin}(\mathcal{M}(G))) - 1 = |E(G)| - |V(G)| + 1 - b$$

Theorem [Lovász 1986]

The list of bricks and braces is unique.
Pfaffian Orientations

An orientation of a graph G is Pfaffian if for every perfect matching M of G each even cycle of $G \setminus M$ has an odd number of edges directed in either direction.
Pfaffian Orientations

An orientation of a graph G is Pfaffian if for every perfect matching M of G each even cycle of $G \setminus M$ has an odd number of edges directed in either direction.

Theorem [Kasteleyn 1967]

If G is a Pfaffian graph, then $|\mathcal{M}(G)|$ can be computed in polynomial time.
Pfaffian Orientations

An orientation of a graph G is Pfaffian if for every perfect matching M of G each even cycle of $G \setminus M$ has an odd number of edges directed in either direction.

Theorem [Kasteleyn 1967]

If G is a Pfaffian graph, then $|\mathcal{M}(G)|$ can be computed in polynomial time.

Theorem [Vazirani & Yannakakis 1989, and Little & Rendl 1991]

A graph is Pfaffian if and only if all bricks and braces of its tight cut decomposition are Pfaffian.
Pfaffian Orientations

An orientation of a graph G is Pfaffian if for every perfect matching M of G each even cycle of $G \setminus M$ has an odd number of edges directed in either direction.

Theorem [Kasteleyn 1967]

If G is a Pfaffian graph, then $|\mathcal{M}(G)|$ can be computed in polynomial time.

Theorem [Vazirani & Yannakakis 1989, and Little & Rendl 1991]

A graph is Pfaffian if and only if all bricks and braces of its tight cut decomposition are Pfaffian.

- Polynomial-time algorithm: Pfaffian bipartite graphs; using Pfaffian braces—Robertson, Seymour & Thomas 1999
Pfaffian Orientations

An orientation of a graph G is Pfaffian if for every perfect matching M of G each even cycle of $G \setminus M$ has an odd number of edges directed in either direction.

Theorem [Kasteleyn 1967]

If G is a Pfaffian graph, then $|\mathcal{M}(G)|$ can be computed in polynomial time.

Theorem [Vazirani & Yannakakis 1989, and Little & Rendl 1991]

A graph is Pfaffian if and only if all bricks and braces of its tight cut decomposition are Pfaffian.

- Polynomial-time algorithm: Pfaffian bipartite graphs; using Pfaffian braces—Robertson, Seymour & Thomas 1999
- Pfaffian bricks — Norine (Ph.D. Thesis) 2005
Theorem [Carvalho, Lucchesi & Murty 2004]

Every brick can be obtained from one of the basic bricks by a sequence of applications of the following four operations (expansions):

1.
2.
3.
4.
Theorem [Carvalho, Lucchesi & Murty 2004]

Every brick can be obtained from one of the basic bricks by a sequence of applications of the following four operations (expansions):

Corollary (Lovász’s Conjecture)

Every minimal brick has a vertex of degree 3.
Theorem [Carvalho, Lucchesi & Murty 2004]

Every brick can be obtained from one of the basic bricks by a sequence of applications of the following four operations (expansions):

\[\text{(1) } \quad \text{(2) } \quad \text{(3) } \quad \text{(4)} \]

Corollary (Lovász’s Conjecture)

Every minimal brick has a vertex of degree 3.

- More about brick generation — Norine & Thomas
Every minimal brick other than the Petersen graph can be obtained from K_4 or $	ilde{C}_6$ by a sequence of applications of **strict extensions**.

Theorem [Norine & Thomas 2005]

<table>
<thead>
<tr>
<th>strict linear 1</th>
<th>strict linear 2</th>
<th>strict linear 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>strict linear 2</th>
<th>strict linear 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>quasiquadratic: type 1, type 2</th>
<th>quasiquartic: type 1, type 2, type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bilinear</th>
<th>pseudolinear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Theorem [Norine & Thomas 2005]
Every minimal brick has at least 3 vertices of degree 3.
Theorem [Norine & Thomas 2005]
Every minimal brick has at least 3 vertices of degree 3.

Conjecture [Norine & Thomas]
Every minimal brick has linearly many vertices of degree 3.
Theorem [Norine & Thomas 2005]
Every minimal brick has at least 3 vertices of degree 3.

Conjecture [Norine & Thomas]
Every minimal brick has linearly many vertices of degree 3.

Theorem [Lin, Lu & Zhang 2013]
Every minimal brick has at least 4 vertices of degree 3.
Theorem [Norine & Thomas 2005]
Every minimal brick has at least 3 vertices of degree 3.

Conjecture [Norine & Thomas]
Every minimal brick has linearly many vertices of degree 3.

Theorem [Lin, Lu & Zhang 2013]
Every minimal brick has at least 4 vertices of degree 3.

Theorem [Bruhn & Stein 2012]
Every minimal brick G has at least $\frac{|V(G)|}{9}$ vertices of degree 4.
Theorem [Norine & Thomas 2005]
Every minimal brick has at least 3 vertices of degree 3.

Conjecture [Norine & Thomas]
Every minimal brick has linearly many vertices of degree 3.

Theorem [Lin, Lu & Zhang 2013]
Every minimal brick has at least 4 vertices of degree 3.

Theorem [Bruhn & Stein 2012]
Every minimal brick G has at least $\frac{|V(G)|}{9}$ vertices of degree 4.

Theorem [J. & Stein 2013]
Every minimal brick G has at least $\frac{1}{52} \sqrt{|V(G)|}$ vertices of degree 3.
Proof’s Ideas

- $G_0 \xleftarrow{\psi_1} G_1 \xleftarrow{\psi_2} \ldots \xleftarrow{\psi_k} G_k := \text{min-brick sequence} \ [\text{Norine} \& \text{Thomas}]$

- $\{\psi_1, \psi_2, \ldots, \psi_k\}$ strict extensions, $G = G_k$
Proof’s Ideas

- $G_0 \xrightarrow{\psi_1} G_1 \xrightarrow{\psi_2} \ldots \xrightarrow{\psi_k} G_k := \text{min-brick sequence [Norine & Thomas]}
- \{\psi_1, \psi_2, \ldots, \psi_k\} \text{ strict extensions, } G = G_k
- |G_i|_3 := \text{number of cubic vertices in } G_i$

Generous, neutral and selfish operations

$i \in \{1, \ldots, k\}, \quad p = p(i) = |G_i|_3 - |G_{i-1}|_3$
- **Generous** if $p > 0$, **Neutral** if $p = 0$, **Selfish** if $p < 0$
- $G_0 \xrightarrow{\psi_1} G_1 \xrightarrow{\psi_2} \ldots \xrightarrow{\psi_k} G_k := \text{min-brick sequence [Norine & Thomas]}
- \{\psi_1, \psi_2, \ldots, \psi_k\} \text{ strict extensions, } G = G_k
- |G_i|_3 := \text{number of cubic vertices in } G_i

Generous, neutral and selfish operations

\[i \in \{1, \ldots, k\}, \quad p = p(i) = |G_i|_3 - |G_{i-1}|_3 \]
- **Generous** if $p > 0$, **Neutral** if $p = 0$, **Selfish** if $p < 0

- Selfish
Proof’s Ideas

- $G_0 \xrightarrow{\psi_1} G_1 \xrightarrow{\psi_2} \ldots \xrightarrow{\psi_k} G_k := \text{min-brick sequence [Norine & Thomas]}
- \{\psi_1, \psi_2, \ldots, \psi_k\} \text{ strict extensions, } G = G_k
- |G_i|_3 := \text{number of cubic vertices in } G_i

Generous, neutral and selfish operations

\[i \in \{1, \ldots, k\}, \quad p = p(i) = |G_i|_3 - |G_{i-1}|_3 \]

- **Generous** if $p > 0$, **Neutral** if $p = 0$, **Selfish** if $p < 0

- **Selfish**

- **Neutral**
Proof’s Ideas

- $G_0 \xrightarrow{\psi_1} G_1 \xrightarrow{\psi_2} \ldots \xrightarrow{\psi_k} G_k := \text{min-brick sequence [Norine & Thomas]}
- \{\psi_1, \psi_2, \ldots, \psi_k\} \text{ strict extensions, } G = G_k
- |G|_3 := \text{number of cubic vertices in } G
- If G is such that $d(G) \leq 4 - \gamma$ and $\delta \geq 3$, then $|G|_3 \geq \gamma|V(G)|$.

Other details:

- $d(i) = 5$
- $d(i) = 4$
Proof’s Ideas

- $G_0 \xrightarrow{\psi_1} G_1 \xrightarrow{\psi_2} \ldots \xrightarrow{\psi_k} G_k := \text{min-brick sequence [Norine & Thomas]}
- \{\psi_1, \psi_2, \ldots, \psi_k\} \text{ strict extensions, } G = G_k
- |G|_3 := \text{number of cubic vertices in } G
- If G is such that $d(G) \leq 4 - \gamma$ and $\delta \geq 3$, then $|G|_3 \geq \gamma|V(G)|$.

Average degree

$i \in \{1, \ldots, k\}$ we define

\[n(i) := |V(G_i)| - |V(G_{i-1})| \quad e(i) := |E(G_i)| - |E(G_{i-1})| \quad d(i) := 2 \frac{e(i)}{n(i)} \]
Proof’s Ideas

- $G_0 \xrightarrow{\psi_1} G_1 \xrightarrow{\psi_2} \ldots \xrightarrow{\psi_k} G_k := \text{min-brick sequence [Norine & Thomas]}
- \{\psi_1, \psi_2, \ldots, \psi_k\} \text{ strict extensions, } G = G_k
- |G|_3 := \text{number of cubic vertices in } G
- If G is such that $d(G) \leq 4 - \gamma$ and $\delta \geq 3$, then $|G|_3 \geq \gamma|V(G)|$.

Average degree

$i \in \{1, \ldots, k\}$ we define

$$n(i) := |V(G_i)| - |V(G_{i-1})| \quad e(i) := |E(G_i)| - |E(G_{i-1})| \quad d(i) := 2\frac{e(i)}{n(i)}$$

- $d(i) = 5$
Proof’s Ideas

- $G_0 \xrightleftharpoons[\psi_1]{} G_1 \xrightleftharpoons[\psi_2]{} \cdots \xrightleftharpoons[\psi_k]{} G_k := \text{min-brick sequence [Norine & Thomas]}
- \{\psi_1, \psi_2, \ldots, \psi_k\} \text{ strict extensions, } G = G_k
- |G|_3 := \text{number of cubic vertices in } G
- If G is such that $d(G) \leq 4 - \gamma$ and $\delta \geq 3$, then $|G|_3 \geq \gamma|V(G)|$.

Average degree

$i \in \{1, \ldots, k\}$ we define

$$n(i) := |V(G_i)| - |V(G_{i-1})| \quad e(i) := |E(G_i)| - |E(G_{i-1})| \quad d(i) := 2 \frac{e(i)}{n(i)}$$

- $d(i) = 5$
- $d(i) = 4$
Proof’s Ideas

- \(G_0 \xrightarrow{\psi_1} G_1 \xrightarrow{\psi_2} \ldots \xrightarrow{\psi_k} G_k := \) nice min-brick sequence

- \(I_s \subset \{1, 2, \ldots, k\} \), with \(i \in I_s \) for \(\psi_i \) selfish
- $G_0 \xrightarrow{\psi_1} G_1 \xrightarrow{\psi_2} \ldots \xrightarrow{\psi_k} G_k := \text{nice min-brick sequence}$

- $I_s \subset \{1, 2, \ldots, k\}$, with $i \in I_s$ for ψ_i selfish

Case 1: $|I_s| \geq \frac{1}{2} \sqrt{k}$
Proof’s Ideas

- $G_0 \xrightarrow{\psi_1} G_1 \xrightarrow{\psi_2} \ldots \xrightarrow{\psi_k} G_k := \text{nice min-brick sequence}$
- $I_s \subset \{1, 2, \ldots, k\}$, with $i \in I_s$ for ψ_i selfish

Case 1: $|I_s| \geq \frac{1}{2} \sqrt{k}$

Lemma

There exists a partition I_s^a, I_s^b of I_s such that

(a) for each $i \in I_s^a$ there is a vertex v_i that has degree 3 in G and the v_i's are distinct for distinct $i \in I_s^a$, and

(b) there is $\tilde{I}_s^b \subset \{1, \ldots, k\}$ such that $I_s^b \subseteq \tilde{I}_s^b$ and

$$\sum_{j \in \tilde{I}_s^b} (|G_j|_3 - |G_{j-1}|_3) \geq \frac{1}{4} |I_s^b|.$$
Case 2: \(|I_s| < \frac{1}{2} \sqrt{k} \)
Case 2: \(|I_s| < \frac{1}{2} \sqrt{k}\)

- \(I_n \subset \{1, 2, \ldots, k\}\), with \(j \in I_n\) for \(\psi_j\) neutral and \(d(j) = 4\)
Case 2: $|I_s| < \frac{1}{2} \sqrt{k}$

- $I_n \subset \{1, 2, \ldots, k\}$, with $j \in I_n$ for ψ_j neutral and $d(j) = 4$

Case 2.1: $|I_n| \geq k - \frac{27}{26} \sqrt{k}$
Proof’s Ideas

Case 2: $|I_s| < \frac{1}{2} \sqrt{k}$

- $I_n \subset \{1, 2, \ldots, k\}$, with $j \in I_n$ for ψ_j neutral and $d(j) = 4$

Case 2.1: $|I_n| \geq k - \frac{27}{26} \sqrt{k}$

- (i) there exist a bad subsequence of length at least $\frac{27}{52} \sqrt{k}$
 - (ii) subcase (i) does not happen.
Proof’s Ideas

Case 2: \(|I_s| < \frac{1}{2} \sqrt{k} \)

\(- I_n \subset \{1, 2, \ldots, k\}, \text{ with } j \in I_n \text{ for } \psi_j \text{ neutral and } d(j) = 4 \)

Case 2.1: \(|I_n| \geq k - \frac{27}{26} \sqrt{k} \)

\(- (i) \text{ there exist a bad subsequence of length at least } \frac{27}{52} \sqrt{k} \)

(ii) subcase (i) does not happen.

(i) A bad subsequence of length at least \(\frac{27}{52} \sqrt{k} \) gives at least \(\frac{27}{52} \sqrt{k} - 2|I_s| \geq \frac{1}{26} \sqrt{k} \) vertices of degree 3 in \(G \).
Case 2: \(|I_s| < \frac{1}{2} \sqrt{k}\)

- \(I_n \subset \{1, 2, \ldots, k\}\), with \(j \in I_n\) for \(\psi_j\) neutral and \(d(j) = 4\)

Case 2.1: \(|I_n| \geq k - \frac{27}{26} \sqrt{k}\)

- (i) there exist a bad subsequence of length at least \(\frac{27}{52} \sqrt{k}\)

- (ii) subcase (i) does not happen.

 (i) A bad subsequence of length at least \(\frac{27}{52} \sqrt{k}\) gives at least \(\frac{27}{52} \sqrt{k} - 2|I_s| \geq \frac{1}{26} \sqrt{k}\) vertices of degree 3 in \(G\).

 (ii) \(\sim\) Case 1; taking bad subsequences instead of isolated operations.
Proof’s Ideas

Case 2: \(|I_s| < \frac{1}{2}\sqrt{k}\)

- \(I_n \subset \{1, 2, \ldots, k\}\), with \(j \in I_n\) for \(\psi_j\) neutral and \(d(j) = 4\)

Case 2.1: \(|I_n| \geq k - \frac{27}{26}\sqrt{k}\)

- (i) there exist a bad subsequence of length at least \(\frac{27}{52}\sqrt{k}\)
- (ii) subcase (i) does not happen.

(i) A bad subsequence of length at least \(\frac{27}{52}\sqrt{k}\) gives at least \(\frac{27}{52}\sqrt{k} - 2|I_s| \geq \frac{1}{26}\sqrt{k}\) vertices of degree 3 in \(G\).

(ii) \(\sim\) Case 1; taking bad subsequences instead of isolated operations.

Case 2.2: \(|\{1, \ldots, k\} - I_s - I_n| \geq \frac{7}{13}\sqrt{k}\)
Case 2: \(|I_s| < \frac{1}{2} \sqrt{k} \)

- \(I_n \subset \{1, 2, \ldots, k\} \), with \(j \in I_n \) for \(\psi_j \) neutral and \(d(j) = 4 \)

Case 2.1: \(|I_n| \geq k - \frac{27}{26} \sqrt{k} \)

- (i) there exist a **bad subsequence** of length at least \(\frac{27}{52} \sqrt{k} \)
 (ii) subcase (i) does not happen.

 (i) A bad subsequence of length at least \(\frac{27}{52} \sqrt{k} \) gives at least
 \(\frac{27}{52} \sqrt{k} - 2|I_s| \geq \frac{1}{26} \sqrt{k} \) vertices of degree 3 in \(G \).

 (ii) \(\sim \) Case 1; taking bad subsequences instead of isolated operations.

Case 2.2: \(|\{1, \ldots, k\} - I_s - I_n| \geq \frac{7}{13} \sqrt{k} \)

- \(i \in |\{1, \ldots, k\} - I_s - I_n| \), then \(d(i) \leq 3.5 \)
Gracias :-}