Splittability of Permutation Classes MCW, 2. 8. 2013

<u>Vít Jelínek</u> Pavel Valtr

MFF UK, Prague

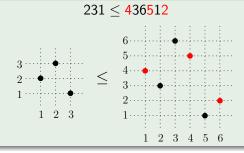
Permutation Containment

Definition

A permutation $\pi=\pi_1\pi_2\cdots\pi_n$ contains a permutation $\sigma=\sigma_1\cdots\sigma_m$, denoted $\sigma\leq\pi$, if π has a subsequence $\pi_{i_1}\pi_{i_2}\cdots\pi_{i_m}$ such that for all $1\leq j< k\leq m$

$$\sigma_j < \sigma_k \iff \pi_{i_j} < \pi_{i_k}.$$

Example



Permutation Classes

Definition

- A permutation class is a set of permutations $\mathcal C$ such that for every $\pi \in \mathcal C$ and $\sigma \leq \pi$, we have $\sigma \in \mathcal C$.
- Av(σ) is the class of all permutations avoiding σ .
- A principal permutation class is the class of the form $Av(\sigma)$ for some σ .

Permutation Classes

Definition

- A permutation class is a set of permutations $\mathcal C$ such that for every $\pi \in \mathcal C$ and $\sigma \leq \pi$, we have $\sigma \in \mathcal C$.
- Av(σ) is the class of all permutations avoiding σ .
- A principal permutation class is the class of the form $Av(\sigma)$ for some σ .

Permutation Classes

Definition

- A permutation class is a set of permutations $\mathcal C$ such that for every $\pi \in \mathcal C$ and $\sigma \leq \pi$, we have $\sigma \in \mathcal C$.
- Av(σ) is the class of all permutations avoiding σ .
- A principal permutation class is the class of the form $Av(\sigma)$ for some σ .

Merging Permutations

Definition

Permutation π is a merge of permutations σ and τ if the symbols of π can be colored red and blue, so that the red symbols are a copy of σ and the blue ones of τ .

Example

3175624 is a merge of 231 and 1342.

Definition

For two sets P and Q of permutations, let $P \odot Q$ be the set of permutations obtained by merging a $\sigma \in P$ with a $\tau \in Q$.

Merging Permutations

Definition

Permutation π is a merge of permutations σ and τ if the symbols of π can be colored red and blue, so that the red symbols are a copy of σ and the blue ones of τ .

Example

3175624 is a merge of 231 and 1342.

Definition

For two sets P and Q of permutations, let $P \odot Q$ be the set of permutations obtained by merging a $\sigma \in P$ with a $\tau \in Q$.

Definition

A permutation class $\mathcal C$ is splittable if it has two proper subclasses $\mathcal A$ and $\mathcal B$ such that $\mathcal C\subseteq\mathcal A\odot\mathcal B$. (We then say that $\mathcal C$ is split into $\mathcal A$ and $\mathcal B$.)

Example

Every permutation avoiding 123 is a union of two decreasing subsequences, i.e., $Av(123) \subseteq Av(12) \odot Av(12)$. Therefore, Av(123) is splittable.

Example

Av(12) is not splittable, since all its proper subclasses are finite.

Definition

A permutation class $\mathcal C$ is splittable if it has two proper subclasses $\mathcal A$ and $\mathcal B$ such that $\mathcal C\subseteq\mathcal A\odot\mathcal B$. (We then say that $\mathcal C$ is split into $\mathcal A$ and $\mathcal B$.)

Example

Every permutation avoiding 123 is a union of two decreasing subsequences, i.e., $Av(123) \subseteq Av(12) \odot Av(12)$. Therefore, Av(123) is splittable.

Example

Av(12) is not splittable, since all its proper subclasses are finite.

Definition

A permutation class $\mathcal C$ is splittable if it has two proper subclasses $\mathcal A$ and $\mathcal B$ such that $\mathcal C\subseteq\mathcal A\odot\mathcal B$. (We then say that $\mathcal C$ is split into $\mathcal A$ and $\mathcal B$.)

Example

Every permutation avoiding 123 is a union of two decreasing subsequences, i.e., $Av(123) \subseteq Av(12) \odot Av(12)$. Therefore, Av(123) is splittable.

Example

Av(12) is not splittable, since all its proper subclasses are finite.

Definition

A permutation class $\mathcal C$ is splittable if it has two proper subclasses $\mathcal A$ and $\mathcal B$ such that $\mathcal C\subseteq\mathcal A\odot\mathcal B$. (We then say that $\mathcal C$ is split into $\mathcal A$ and $\mathcal B$.)

Simple Lemma

The following are equivalent:

- C is splittable.
- For some k, C has k proper subclasses A_1, \ldots, A_k such that $C \subseteq A_1 \odot \cdots \odot A_k$.
- There are two permutations $\sigma, \pi \in \mathcal{C}$ such that $\mathcal{C} \subseteq Av(\sigma) \odot Av(\pi)$.

Corollary

 \mathcal{C} is unsplittable \iff for every $\sigma, \pi \in \mathcal{C}$ there is $\rho \in \mathcal{C}$ such that any red-blue coloring of ρ has a red copy of σ or a blue copy of π .

Definition

A permutation class $\mathcal C$ is splittable if it has two proper subclasses $\mathcal A$ and $\mathcal B$ such that $\mathcal C\subseteq\mathcal A\odot\mathcal B$. (We then say that $\mathcal C$ is split into $\mathcal A$ and $\mathcal B$.)

Simple Lemma

The following are equivalent:

- C is splittable.
- For some k, C has k proper subclasses A_1, \ldots, A_k such that $C \subseteq A_1 \odot \cdots \odot A_k$.
- There are two permutations $\sigma, \pi \in \mathcal{C}$ such that $\mathcal{C} \subseteq Av(\sigma) \odot Av(\pi)$.

Corollary

 \mathcal{C} is unsplittable \iff for every $\sigma, \pi \in \mathcal{C}$ there is $\rho \in \mathcal{C}$ such that any red-blue coloring of ρ has a red copy of σ or a blue copy of π .

Definition

A permutation class $\mathcal C$ is splittable if it has two proper subclasses $\mathcal A$ and $\mathcal B$ such that $\mathcal C\subseteq\mathcal A\odot\mathcal B$. (We then say that $\mathcal C$ is split into $\mathcal A$ and $\mathcal B$.)

Simple Lemma

The following are equivalent:

- C is splittable.
- For some k, C has k proper subclasses A_1, \ldots, A_k such that $C \subseteq A_1 \odot \cdots \odot A_k$.
- There are two permutations $\sigma, \pi \in \mathcal{C}$ such that $\mathcal{C} \subseteq Av(\sigma) \odot Av(\pi)$.

Corollary

 $\mathcal C$ is unsplittable \iff for every $\sigma,\pi\in\mathcal C$ there is $\rho\in\mathcal C$ such that any red-blue coloring of ρ has a red copy of σ or a blue copy of π .

Definition

A permutation class $\mathcal C$ is splittable if it has two proper subclasses $\mathcal A$ and $\mathcal B$ such that $\mathcal C\subseteq\mathcal A\odot\mathcal B$. (We then say that $\mathcal C$ is split into $\mathcal A$ and $\mathcal B$.)

Simple Lemma

The following are equivalent:

- C is splittable.
- For some k, C has k proper subclasses A_1, \ldots, A_k such that $C \subseteq A_1 \odot \cdots \odot A_k$.
- There are two permutations $\sigma, \pi \in \mathcal{C}$ such that $\mathcal{C} \subseteq Av(\sigma) \odot Av(\pi)$.

Corollary

 $\mathcal C$ is unsplittable \iff for every $\sigma,\pi\in\mathcal C$ there is $\rho\in\mathcal C$ such that any red-blue coloring of ρ has a red copy of σ or a blue copy of π .

Definition

A permutation class $\mathcal C$ is splittable if it has two proper subclasses $\mathcal A$ and $\mathcal B$ such that $\mathcal C\subseteq\mathcal A\odot\mathcal B$. (We then say that $\mathcal C$ is split into $\mathcal A$ and $\mathcal B$.)

Simple Lemma

The following are equivalent:

- C is splittable.
- For some k, C has k proper subclasses A_1, \ldots, A_k such that $C \subseteq A_1 \odot \cdots \odot A_k$.
- There are two permutations $\sigma, \pi \in \mathcal{C}$ such that $\mathcal{C} \subseteq Av(\sigma) \odot Av(\pi)$.

Corollary

 $\mathcal C$ is unsplittable \iff for every $\sigma,\pi\in\mathcal C$ there is $\rho\in\mathcal C$ such that any red-blue coloring of ρ has a red copy of σ or a blue copy of π .

The Plan

Outline of the talk:

- Part I: Which (principal) classes are splittable?
- Part II: Relation to other Ramsey-type properties
- ullet (Optional part III: Relation to χ -boundedness of circle graphs)

The Plan

Outline of the talk:

- Part I: Which (principal) classes are splittable?
- Part II: Relation to other Ramsey-type properties
- ullet (Optional part III: Relation to χ -boundedness of circle graphs)

The Plan

Outline of the talk:

- Part I: Which (principal) classes are splittable?
- Part II: Relation to other Ramsey-type properties
- (Optional part III: Relation to χ -boundedness of circle graphs)

Direct Sums

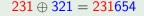
Definition

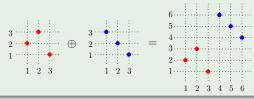
Given two permutations $\pi = \pi_1, \dots, \pi_k$ and $\sigma = \sigma_1, \dots, \sigma_m$, define the direct sum $\pi \oplus \sigma$ as

$$\pi \oplus \sigma = \pi_1, \ldots, \pi_k, \sigma_1 + k, \ldots, \sigma_m + k.$$

A permutation is \oplus -decomposable if it is a direct sum of two nonempty permutations.

Example

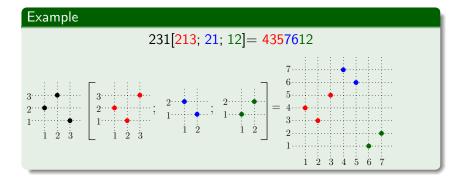




Inflations

Definition

Let $\pi = \pi_1 \pi_2 \cdots \pi_n$ be a permutation and $\sigma_1, \ldots, \sigma_n$ a sequence of n permutations. The inflation of π by $\sigma_1, \ldots, \sigma_n$, denoted by $\pi[\sigma_1; \ldots; \sigma_n]$ is the permutation obtained by replacing each π_i by a copy $\overline{\sigma_i}$ of σ_i , so that if $\pi_i < \pi_j$, then all elements of $\overline{\sigma_i}$ are smaller than those of $\overline{\sigma_i}$.



Inflations and Simple Permutations

Definition

A class of permutations $\mathcal C$ is closed under inflations if $\pi[\sigma_1;\ldots;\sigma_n]$ belongs to $\mathcal C$ whenever all the permutations $\pi,\sigma_1,\ldots,\sigma_n$ belong to $\mathcal C$.

Definition

A permutation is simple if it cannot be obtained from smaller permutations by inflation.

Fact

 $Av(\sigma)$ is closed under inflations $\iff \sigma$ is simple

Inflations and Simple Permutations

Definition

A class of permutations $\mathcal C$ is closed under inflations if $\pi[\sigma_1;\ldots;\sigma_n]$ belongs to $\mathcal C$ whenever all the permutations $\pi,\sigma_1,\ldots,\sigma_n$ belong to $\mathcal C$.

Definition

A permutation is simple if it cannot be obtained from smaller permutations by inflation.

Fact

 $Av(\sigma)$ is closed under inflations $\iff \sigma$ is simple

Inflations and Simple Permutations

Definition

A class of permutations $\mathcal C$ is closed under inflations if $\pi[\sigma_1;\ldots;\sigma_n]$ belongs to $\mathcal C$ whenever all the permutations $\pi,\sigma_1,\ldots,\sigma_n$ belong to $\mathcal C$.

Definition

A permutation is simple if it cannot be obtained from smaller permutations by inflation.

Fact

 $Av(\sigma)$ is closed under inflations $\iff \sigma$ is simple.

These classes are unsplittable:

- Av(σ) for a simple permutation σ
- ullet more generally, any ${\mathcal C}$ closed under inflations
- Av(213)

These classes are splittable:

• Av(σ) for a \oplus -decomposable σ of size at least 4

Open problem

These classes are unsplittable:

- Av(σ) for a simple permutation σ
- ullet more generally, any ${\mathcal C}$ closed under inflations
- Av(213)

These classes are splittable:

• Av(σ) for a \oplus -decomposable σ of size at least 4

Open problem

These classes are unsplittable:

- Av(σ) for a simple permutation σ
- ullet more generally, any ${\mathcal C}$ closed under inflations
- Av(213)

These classes are splittable:

• Av(σ) for a \oplus -decomposable σ of size at least 4

Open problem

These classes are unsplittable:

- Av(σ) for a simple permutation σ
- ullet more generally, any ${\mathcal C}$ closed under inflations
- Av(213)

These classes are splittable:

• Av(σ) for a \oplus -decomposable σ of size at least 4

Open problem

These classes are unsplittable:

- Av(σ) for a simple permutation σ
- ullet more generally, any ${\mathcal C}$ closed under inflations
- Av(213)

These classes are splittable:

• Av(σ) for a \oplus -decomposable σ of size at least 4

Open problem

These classes are unsplittable:

- Av(σ) for a simple permutation σ
- ullet more generally, any ${\mathcal C}$ closed under inflations
- Av(213)

These classes are splittable:

• Av(σ) for a \oplus -decomposable σ of size at least 4

Open problem

Theorem

If σ is \oplus -decomposable of size at least 4, then $Av(\sigma)$ is splittable.

- Proof of the theorem is difficult, splittings have a complicated structure.
- ullet Some special cases are easier: for all α, β, γ , we have
- $Av(\alpha \oplus \beta \oplus \gamma) \subseteq Av(\alpha \oplus \beta) \odot Av(\beta \oplus \gamma).$
- Corollary: $Av(\alpha \oplus \beta) \subseteq Av(\alpha \oplus 1) \odot Av(1 \oplus \beta)$
- The hard part: show that Av(α ⊕ 1) is splittable for α of size ≥ 3

Open problem

Theorem

If σ is \oplus -decomposable of size at least 4, then $Av(\sigma)$ is splittable.

- Proof of the theorem is difficult, splittings have a complicated structure.
- Some special cases are easier: for all α, β, γ , we have $Av(\alpha \oplus \beta \oplus \gamma) \subseteq Av(\alpha \oplus \beta) \odot Av(\beta \oplus \gamma)$.
- Corollary: $Av(\alpha \oplus \beta) \subseteq Av(\alpha \oplus 1) \odot Av(1 \oplus \beta)$
- The hard part: show that $Av(\alpha \oplus 1)$ is splittable for α of size ≥ 3 .

Open problem

Theorem

If σ is \oplus -decomposable of size at least 4, then $Av(\sigma)$ is splittable.

- Proof of the theorem is difficult, splittings have a complicated structure.
- Some special cases are easier: for all α, β, γ , we have $\mathsf{Av}(\alpha \oplus \beta \oplus \gamma) \subseteq \mathsf{Av}(\alpha \oplus \beta) \odot \mathsf{Av}(\beta \oplus \gamma)$.
- Corollary: $Av(\alpha \oplus \beta) \subseteq Av(\alpha \oplus 1) \odot Av(1 \oplus \beta)$
- The hard part: show that $Av(\alpha \oplus 1)$ is splittable for α of size ≥ 3 .

Open problem

Theorem

If σ is \oplus -decomposable of size at least 4, then $Av(\sigma)$ is splittable.

- Proof of the theorem is difficult, splittings have a complicated structure.
- Some special cases are easier: for all α, β, γ , we have $\mathsf{Av}(\alpha \oplus \beta \oplus \gamma) \subseteq \mathsf{Av}(\alpha \oplus \beta) \odot \mathsf{Av}(\beta \oplus \gamma)$.
- Corollary: $Av(\alpha \oplus \beta) \subseteq Av(\alpha \oplus 1) \odot Av(1 \oplus \beta)$.
- The hard part: show that $Av(\alpha \oplus 1)$ is splittable for α of size ≥ 3 .

Open problem

Theorem

If σ is \oplus -decomposable of size at least 4, then $Av(\sigma)$ is splittable.

- Proof of the theorem is difficult, splittings have a complicated structure.
- Some special cases are easier: for all α, β, γ , we have $\mathsf{Av}(\alpha \oplus \beta \oplus \gamma) \subseteq \mathsf{Av}(\alpha \oplus \beta) \odot \mathsf{Av}(\beta \oplus \gamma)$.
- Corollary: $Av(\alpha \oplus \beta) \subseteq Av(\alpha \oplus 1) \odot Av(1 \oplus \beta)$.
- The hard part: show that $Av(\alpha \oplus 1)$ is splittable for α of size ≥ 3 .

Open problem

Theorem

If σ is \oplus -decomposable of size at least 4, then $Av(\sigma)$ is splittable.

- Proof of the theorem is difficult, splittings have a complicated structure.
- Some special cases are easier: for all α, β, γ , we have $\mathsf{Av}(\alpha \oplus \beta \oplus \gamma) \subseteq \mathsf{Av}(\alpha \oplus \beta) \odot \mathsf{Av}(\beta \oplus \gamma)$.
- Corollary: $Av(\alpha \oplus \beta) \subseteq Av(\alpha \oplus 1) \odot Av(1 \oplus \beta)$.
- The hard part: show that $Av(\alpha \oplus 1)$ is splittable for α of size ≥ 3 .

Open problem

Theorem

If σ is \oplus -decomposable of size at least 4, then $Av(\sigma)$ is splittable.

- Proof of the theorem is difficult, splittings have a complicated structure.
- Some special cases are easier: for all α, β, γ , we have $\mathsf{Av}(\alpha \oplus \beta \oplus \gamma) \subseteq \mathsf{Av}(\alpha \oplus \beta) \odot \mathsf{Av}(\beta \oplus \gamma)$.
- Corollary: $Av(\alpha \oplus \beta) \subseteq Av(\alpha \oplus 1) \odot Av(1 \oplus \beta)$.
- The hard part: show that $Av(\alpha \oplus 1)$ is splittable for α of size > 3.

Open problem

Definition

A permutation class $\mathcal C$ is atomic if for every $\sigma,\pi\in\mathcal C$, there is a $\rho\in\mathcal C$ which contains both σ and π .

- © C is atomic ← C cannot be expressed as a union of two of two
- A non-atomic class is trivially solittable
- A non-atomic class is trivially splittable...

Definition

A permutation class $\mathcal C$ is atomic if for every $\sigma,\pi\in\mathcal C$, there is a $\rho\in\mathcal C$ which contains both σ and π .

- $\mathcal C$ is atomic $\iff \mathcal C$ cannot be expressed as a union of two of its proper subclasses.
- A non-atomic class is trivially splittable.
- All principal classes are atomic.

Definition

A permutation class $\mathcal C$ is atomic if for every $\sigma,\pi\in\mathcal C$, there is a $\rho\in\mathcal C$ which contains both σ and π .

- C is atomic $\iff C$ cannot be expressed as a union of two of its proper subclasses.
- A non-atomic class is trivially splittable.
- All principal classes are atomic.

Definition

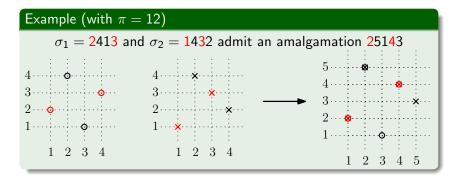
A permutation class $\mathcal C$ is atomic if for every $\sigma,\pi\in\mathcal C$, there is a $\rho\in\mathcal C$ which contains both σ and π .

- C is atomic ←⇒ C cannot be expressed as a union of two of its proper subclasses.
- A non-atomic class is trivially splittable.
- All principal classes are atomic.

Amalgamations

Definition

Let σ_1 and σ_2 be two permutations, each having a prescribed occurrence of a permutation π . An amalgamation of σ_1 and σ_2 is a permutation obtained from σ_1 and σ_2 by identifying the two prescribed occurrences of π (and possibly identifying some more elements as well).



Amalgamable classes

Definition

A permutation class $\mathcal C$ is . . .

- π -amalgamable if for any σ_1 and σ_2 in $\mathcal C$ and any prescribed occurrences of π in σ_1 and σ_2 , there is an amalgamation of σ_1 and σ_2 in $\mathcal C$.
- lacktriangle amalgamable for every $\pi \in \mathcal{C}.$
- k-amalgamable for $k \in \mathbb{N}$, if it is π -amalgamable for every $\pi \in \mathcal{C}$ of size at most k.

Amalgamable classes

Definition

A permutation class $\mathcal C$ is . . .

- π -amalgamable if for any σ_1 and σ_2 in $\mathcal C$ and any prescribed occurrences of π in σ_1 and σ_2 , there is an amalgamation of σ_1 and σ_2 in $\mathcal C$.
- amalgamable if it is π -amalgamable for every $\pi \in \mathcal{C}$.
- k-amalgamable for $k \in \mathbb{N}$, if it is π -amalgamable for every $\pi \in \mathcal{C}$ of size at most k.

Amalgamable classes

Definition

A permutation class $\mathcal C$ is . . .

- π -amalgamable if for any σ_1 and σ_2 in \mathcal{C} and any prescribed occurrences of π in σ_1 and σ_2 , there is an amalgamation of σ_1 and σ_2 in \mathcal{C} .
- amalgamable if it is π -amalgamable for every $\pi \in \mathcal{C}$.
- k-amalgamable for $k \in \mathbb{N}$, if it is π -amalgamable for every $\pi \in \mathcal{C}$ of size at most k.

Theorem (Cameron, 2002)

There are five nontrivial amalgamable permutation classes: Av(12), Av(21), Av(231,312), Av(132,213), and the class of all permutations.

Fact

Theorem (Cameron, 2002)

There are five nontrivial amalgamable permutation classes: Av(12), Av(21), Av(231,312), Av(132,213), and the class of all permutations.

Fact

- All 3-amalgamable permutation classes are amalgamable.
- Each unsplittable class is 1-amalgamable.

Open problems

Which classes are 2-amalgamable? Are there infinitely many?Is there a splittable 1-amalgamable class?

Theorem (Cameron, 2002)

There are five nontrivial amalgamable permutation classes: Av(12), Av(21), Av(231,312), Av(132,213), and the class of all permutations.

Fact

- All 3-amalgamable permutation classes are amalgamable.
- Each unsplittable class is 1-amalgamable.

Theorem (Cameron, 2002)

There are five nontrivial amalgamable permutation classes: Av(12), Av(21), Av(231,312), Av(132,213), and the class of all permutations.

Fact

- All 3-amalgamable permutation classes are amalgamable.
- Each unsplittable class is 1-amalgamable.

Theorem (Cameron, 2002)

There are five nontrivial amalgamable permutation classes: Av(12), Av(21), Av(231,312), Av(132,213), and the class of all permutations.

Fact

- All 3-amalgamable permutation classes are amalgamable.
- Each unsplittable class is 1-amalgamable.

- Which classes are 2-amalgamable? Are there infinitely many?
- Is there a splittable 1-amalgamable class?

Theorem (Cameron, 2002)

There are five nontrivial amalgamable permutation classes: Av(12), Av(21), Av(231,312), Av(132,213), and the class of all permutations.

Fact

- All 3-amalgamable permutation classes are amalgamable.
- Each unsplittable class is 1-amalgamable.

- Which classes are 2-amalgamable? Are there infinitely many?
- Is there a splittable 1-amalgamable class?

Ramseyness

Notation: $\binom{\sigma}{\pi}$ is the set of all occurrences of π in σ .

Definition

- A class \mathcal{C} is π -Ramsey if for $\sigma \in \mathcal{C}$ there is a $\rho \in \mathcal{C}$ such that any 2-coloring of $\binom{\rho}{\pi}$ has a monochromatic copy of σ .
- A class C is Ramsey if it is π -Ramsey for every $\pi \in C$.
- A class $\mathcal C$ is k-Ramsey if it is $\pi\text{-Ramsey}$ for every $\pi\in\mathcal C$ of size at most k.

Fact

Suppose $\mathcal C$ is an atomic permutation class

If C is π-Ramsey, then it is π-amalgamable [Nešetřil]
C is 1-Ramsey C is unsolittable

Ramseyness

Notation: $\binom{\sigma}{\pi}$ is the set of all occurrences of π in σ .

Definition

- A class $\mathcal C$ is π -Ramsey if for $\sigma \in \mathcal C$ there is a $\rho \in \mathcal C$ such that any 2-coloring of $\binom{\rho}{\pi}$ has a monochromatic copy of σ .
- A class C is Ramsey if it is π -Ramsey for every $\pi \in C$.
- A class $\mathcal C$ is k-Ramsey if it is $\pi\text{-Ramsey}$ for every $\pi\in\mathcal C$ of size at most k.

Fact

Suppose C is an atomic permutation class.

- If C is π -Ramsey, then it is π -amalgamable [Nešetřil].
- C is 1-Ramsey $\iff C$ is unsplittable.

Ramseyness

Notation: $\binom{\sigma}{\pi}$ is the set of all occurrences of π in σ .

Definition

- A class \mathcal{C} is π -Ramsey if for $\sigma \in \mathcal{C}$ there is a $\rho \in \mathcal{C}$ such that any 2-coloring of $\binom{\rho}{\pi}$ has a monochromatic copy of σ .
- A class C is Ramsey if it is π -Ramsey for every $\pi \in C$.
- A class $\mathcal C$ is k-Ramsey if it is $\pi\text{-Ramsey}$ for every $\pi\in\mathcal C$ of size at most k.

Fact

Suppose C is an atomic permutation class.

- If C is π -Ramsey, then it is π -amalgamable [Nešetřil].
- C is 1-Ramsey $\iff C$ is unsplittable.

Ramseyness (continued)

Theorem (Böttcher & Foniok, 2013)

All amalgamable permutation classes are Ramsey.

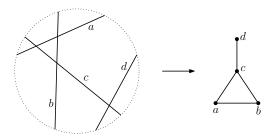
Open problem

Is there a permutation class that is k-amalgamable but not k-Ramsey? (The answer is NO if $k \ge 3$.)

Circle Graphs

Definition

A graph G is a circle graph if it is the intersection graph of a collection of chords on a circle.



Theorem (Gyárfás, 1985)

For every k there is a c such that every circle graph with no clique of size k can be colored by c colors.

Let c(k) be the smallest c with the above property.

Theorem

Let λ_k be the permutation $k(k-1)\cdots 1(k+1)$. The class $Av(\lambda_k)$ can be split into c(k) copies of Av(213), and this is optimal.

Open problem

Theorem (Gyárfás, 1985)

For every k there is a c such that every circle graph with no clique of size k can be colored by c colors.

Let c(k) be the smallest c with the above property.

Theorem

Let λ_k be the permutation $k(k-1)\cdots 1(k+1)$. The class $Av(\lambda_k)$ can be split into c(k) copies of Av(213), and this is optimal.

- $c(k) \le 2^{O(k)}$ [Gyárfás; Kostochka & Kratochvíl; Černý]
- $c(k) \ge \Omega(k \log k)$ [Kostochka]
- c(3) = 5 [Ageev; Kostochka] and $c(4) \le 30$ [Nenashev

Open problem

Theorem (Gyárfás, 1985)

For every k there is a c such that every circle graph with no clique of size k can be colored by c colors.

Let c(k) be the smallest c with the above property.

Theorem

Let λ_k be the permutation $k(k-1)\cdots 1(k+1)$. The class $Av(\lambda_k)$ can be split into c(k) copies of Av(213), and this is optimal.

- $c(k) \le 2^{O(k)}$ [Gyárfás; Kostochka & Kratochvíl; Černý]
- $c(k) \ge \Omega(k \log k)$ [Kostochka]
- c(3) = 5 [Ageev; Kostochka] and $c(4) \le 30$ [Nenashev]

Open problem

Theorem (Gyárfás, 1985)

For every k there is a c such that every circle graph with no clique of size k can be colored by c colors.

Let c(k) be the smallest c with the above property.

Theorem

Let λ_k be the permutation $k(k-1)\cdots 1(k+1)$. The class $Av(\lambda_k)$ can be split into c(k) copies of Av(213), and this is optimal.

- $c(k) \le 2^{O(k)}$ [Gyárfás; Kostochka & Kratochvíl; Černý]
- $c(k) \ge \Omega(k \log k)$ [Kostochka]
- c(3) = 5 [Ageev; Kostochka] and $c(4) \le 30$ [Nenashev]

Open problen

Theorem (Gyárfás, 1985)

For every k there is a c such that every circle graph with no clique of size k can be colored by c colors.

Let c(k) be the smallest c with the above property.

Theorem

Let λ_k be the permutation $k(k-1)\cdots 1(k+1)$. The class $Av(\lambda_k)$ can be split into c(k) copies of Av(213), and this is optimal.

- $c(k) \le 2^{O(k)}$ [Gyárfás; Kostochka & Kratochvíl; Černý]
- $c(k) \ge \Omega(k \log k)$ [Kostochka]
- c(3) = 5 [Ageev; Kostochka] and $c(4) \le 30$ [Nenashev]

Open problen

Theorem (Gyárfás, 1985)

For every k there is a c such that every circle graph with no clique of size k can be colored by c colors.

Let c(k) be the smallest c with the above property.

Theorem

Let λ_k be the permutation $k(k-1)\cdots 1(k+1)$. The class $Av(\lambda_k)$ can be split into c(k) copies of Av(213), and this is optimal.

- $c(k) \le 2^{O(k)}$ [Gyárfás; Kostochka & Kratochvíl; Černý]
- $c(k) \ge \Omega(k \log k)$ [Kostochka]
- c(3) = 5 [Ageev; Kostochka] and $c(4) \le 30$ [Nenashev]

Open problem

The End

Thank you for your attention!