# Polynomial graph invariants from graph homomorphisms

## Delia Garijo<sup>1</sup> Andrew Goodall<sup>2</sup> Jarik Nešetřil<sup>2</sup>

<sup>1</sup>University of Seville, Spain

<sup>2</sup>Charles University, Prague

Midsummer Combinatorial Workshop XIX 29 July - 2 August 2013, Prague

イロン イヨン イヨン イヨン





- 2 Sequences giving graph polynomials
- 3 Constructions
- A new construction

#### 5 Open problems

イロン イヨン イヨン イヨン

## Graph polynomials with a name for themselves...

• chromatic polynomial,  $P(G; k) = P(G \setminus uv; k) - P(G / uv; k)$ 

イロン イヨン イヨン イヨン

## Graph polynomials with a name for themselves...

- chromatic polynomial,  $P(G; k) = P(G \setminus uv; k) P(G / uv; k)$
- Tutte polynomial (universal for recurrence in  $\langle uv \rangle$  and  $\langle uv \rangle$

## Graph polynomials with a name for themselves...

- chromatic polynomial,  $P(G; k) = P(G \setminus uv; k) P(G / uv; k)$
- Tutte polynomial (universal for recurrence in  $\langle uv \rangle$  and  $\langle uv \rangle$
- Averbouch–Godlin–Makowsky polynomial (recurrence in  $\langle uv, /uv \rangle$  and -u-v), includes matching polynomial

## Graph polynomials with a name for themselves...

- chromatic polynomial,  $P(G; k) = P(G \setminus uv; k) P(G / uv; k)$
- Tutte polynomial (universal for recurrence in uv and uv)
- Averbouch–Godlin–Makowsky polynomial (recurrence in  $\langle uv, /uv \rangle$  and -u-v), includes matching polynomial
- Tittmann–Averbouch–Makowsky polynomial (recurrence in  $\langle v, /v \rangle$  and -N[v]), includes independence polynomial

## Graph polynomials with a name for themselves...

- chromatic polynomial,  $P(G; k) = P(G \setminus uv; k) P(G / uv; k)$
- Tutte polynomial (universal for recurrence in  $\langle uv \rangle$  and  $\langle uv \rangle$
- Averbouch–Godlin–Makowsky polynomial (recurrence in  $\langle uv, /uv \rangle$  and -u-v), includes matching polynomial
- Tittmann–Averbouch–Makowsky polynomial (recurrence in v, v and -N[v]), includes independence polynomial

... polynomials determined by counting  $H_k$ -colourings of a graph for a sequence of (multi)graphs ( $H_k : k = 1, 2, ...$ ) e.g. for  $k \in \mathbb{N}$ , P(G; k) counts  $K_k$ -colourings

#### Definition

Graphs G, H.  $f: V(G) \rightarrow V(H)$  is a homomorphism from G to H if  $uv \in E(G) \Rightarrow f(u)f(v) \in E(H)$ .

・ロン ・四マ ・ヨマ ・ヨマ

#### Definition

Graphs G, H.  $f: V(G) \rightarrow V(H)$  is a homomorphism from G to H if  $uv \in E(G) \Rightarrow f(u)f(v) \in E(H)$ .

#### Definition

H with adjacency matrix  $(a_{s,t})$ ,  $a_{s,t}$  weight on  $st \in E(H)$ ,

$$\hom(G,H) = \sum_{f:V(G)\to V(H)} \prod_{uv\in E(G)} a_{f(u),f(v)}.$$

(日) (同) (E) (E) (E)

#### Definition

Graphs G, H.  $f: V(G) \rightarrow V(H)$  is a homomorphism from G to H if  $uv \in E(G) \Rightarrow f(u)f(v) \in E(H)$ .

#### Definition

H with adjacency matrix  $(a_{s,t})$ ,  $a_{s,t}$  weight on  $st \in E(H)$ ,

$$\hom(G,H) = \sum_{f:V(G) \to V(H)} \prod_{uv \in E(G)} a_{f(u),f(v)}.$$

 $hom(G, H) = \#\{homomorphisms \text{ from } G \text{ to } H\}$  $= \#\{H\text{-colourings of } G\}$ 

when H simple  $(a_{s,t} \in \{0,1\})$  or multigraph  $(a_{s,t} \in \mathbb{N})$ 

#### The main question

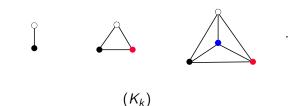
For sequence  $(H_{k,\ell,...})$ , when is, for all graphs G,

$$\hom(G, H_{k,\ell,\dots}) = p(G; k, \ell, \dots)$$

for polynomial p(G)?

・ロン ・四マ ・ヨマ ・ヨマ





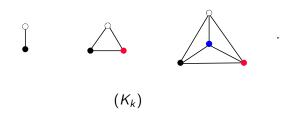
.

æ

・ロト ・回 ト ・ヨト ・ヨト

Delia Garijo, Andrew Goodall, Jarik Nešetřil Polynomial graph invariants from graph homomorphisms





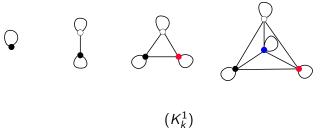
## $\hom(G, K_k) = P(G; k)$

#### chromatic polynomial

イロン イヨン イヨン イヨン

æ





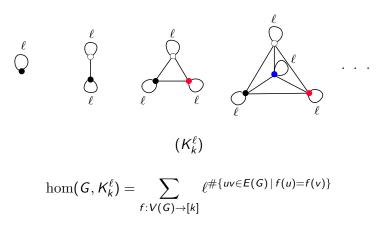
 $\hom(G, K_k^1) = k^{|V(G)|}$ 

Delia Garijo, Andrew Goodall, Jarik Nešetřil Polynomial graph invariants from graph homomorphisms

・ロト ・回ト ・ヨト ・ヨト

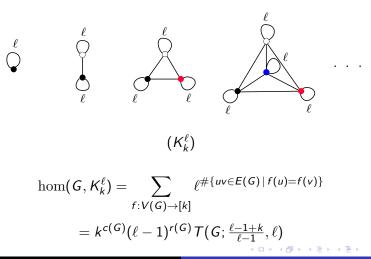
æ

## Examples



< ロ > < 回 > < 回 > < 回 > < 回 > <





Delia Garijo, Andrew Goodall, Jarik Nešetřil Polynomial graph invariants from graph homomorphisms

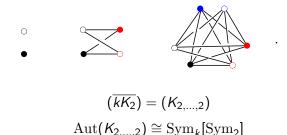
## It has something to do with automorphisms...

Examples of strongly polynomial  $(H_k)$  so far have  $Aut(H_k) = Sym_k$ .

イロン 不同と 不同と 不同と

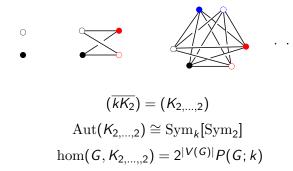
## It has something to do with automorphisms...

Examples of strongly polynomial  $(H_k)$  so far have  $Aut(H_k) = Sym_k$ .

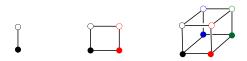


## It has something to do with automorphisms...

Examples of strongly polynomial  $(H_k)$  so far have  $Aut(H_k) = Sym_k$ .



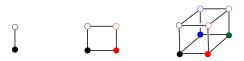
## ... but what precisely?



 $(\mathcal{K}_2^{\Box k}) = (\mathcal{Q}_k) \text{ (hypercubes)}$  $\operatorname{Aut}(\mathcal{Q}_k) \cong \operatorname{Sym}_k[\operatorname{Sym}_2]$ 

・ロン ・回と ・ヨン・

## ... but what precisely?



 $(\mathcal{K}_2^{\Box k}) = (\mathcal{Q}_k) \ (hypercubes)$  $\operatorname{Aut}(\mathcal{Q}_k) \cong \operatorname{Sym}_k[\operatorname{Sym}_2]$ 

#### Proposition (Garijo, G., Nešetřil, 2013+)

 $hom(G, Q_k) = p(G; k, 2^k)$  for bivariate polynomial p(G)

(日) (同) (E) (E) (E)

#### Definition

 $(H_k)$  is strongly polynomial (in k) if  $\forall G \exists$  polynomial p(G) such that  $\hom(G, H_k) = p(G; k)$  for all  $k \in \mathbb{N}$ .

・ロン ・回 と ・ ヨ と ・ ヨ と

#### Definition

 $(H_k)$  is strongly polynomial (in k) if  $\forall G \exists$  polynomial p(G) such that hom $(G, H_k) = p(G; k)$  for all  $k \in \mathbb{N}$ .  $(H_k)$  is polynomial (in k) if  $\forall G \exists$  polynomial p(G) such that hom $(G, H_k) = p(G; k)$  for sufficiently large k ( $k \ge k_0(G)$ )

(日) (同) (E) (E) (E)

#### Definition

 $(H_k)$  is strongly polynomial (in k) if  $\forall G \exists$  polynomial p(G) such that hom $(G, H_k) = p(G; k)$  for all  $k \in \mathbb{N}$ .  $(H_k)$  is polynomial (in k) if  $\forall G \exists$  polynomial p(G) such that hom $(G, H_k) = p(G; k)$  for sufficiently large k ( $k \ge k_0(G)$ )

Since  $\hom(G_1 \cup G_2, H) = \hom(G_1, H) \hom(G_2, H)$ , suffices to consider *connected* G.

(日) (同) (E) (E) (E)

#### Definition

 $(H_k)$  is strongly polynomial (in k) if  $\forall G \exists$  polynomial p(G) such that hom $(G, H_k) = p(G; k)$  for all  $k \in \mathbb{N}$ .  $(H_k)$  is polynomial (in k) if  $\forall G \exists$  polynomial p(G) such that hom $(G, H_k) = p(G; k)$  for sufficiently large k ( $k \ge k_0(G)$ )

Since  $\hom(G_1 \cup G_2, H) = \hom(G_1, H) \hom(G_2, H)$ , suffices to consider *connected* G.

#### Example

- $(K_k)$ ,  $(K_k^1)$ .  $(\overline{kK_2})$  strongly polynomial in k
- $(K_k^{\ell})$  strongly polynomial in  $k, \ell$

#### Definition

 $(H_k)$  is strongly polynomial (in k) if  $\forall G \exists$  polynomial p(G) such that hom $(G, H_k) = p(G; k)$  for all  $k \in \mathbb{N}$ .  $(H_k)$  is polynomial (in k) if  $\forall G \exists$  polynomial p(G) such that hom $(G, H_k) = p(G; k)$  for sufficiently large k ( $k \ge k_0(G)$ )

Since  $\hom(G_1 \cup G_2, H) = \hom(G_1, H) \hom(G_2, H)$ , suffices to consider *connected* G.

#### Example

- $(K_k)$ ,  $(K_k^1)$ .  $(\overline{kK_2})$  strongly polynomial in k
- $(K_k^{\ell})$  strongly polynomial in  $k, \ell$
- $(C_k)$ ,  $(P_k)$  polynomial in k
- $(Q_k)$  not polynomial in k (but in k and  $2^k$ )

## Subgraph criterion for strongly polynomial

$$\begin{split} &\hom(G,H_k) = \sum_{\substack{S \subseteq H_k \\ |V(S)| \leq |V(G)|}} \operatorname{sur}_{V,\mathsf{E}}(G,S) \\ &= \sum_{S/\cong} \operatorname{sur}_{V,\mathsf{E}}(G,S) \, \#\{\text{copies of } S \text{ in } H_k\} \end{split}$$

Assuming G connected, homomorphic image S also connected

## Subgraph criterion for strongly polynomial

$$\begin{split} &\hom(G,H_k) = \sum_{\substack{S \subseteq H_k \\ |V(S)| \leq |V(G)|}} \operatorname{sur}_{\mathsf{V},\mathsf{E}}(G,S) \\ &= \sum_{S/\cong} \operatorname{sur}_{\mathsf{V},\mathsf{E}}(G,S) \ \#\{\text{copies of } S \text{ in } H_k\} \end{split}$$

Assuming G connected, homomorphic image S also connected

#### Proposition (De la Harpe & Jaeger, 1995)

(H<sub>k</sub>) strongly polynomial in k ⇔
 ∀connected S #{subgraphs ≅ S in H<sub>k</sub>} is polynomial in k

(日) (同) (E) (E) (E)

## Subgraph criterion for strongly polynomial

$$\begin{split} &\hom(G,H_k) = \sum_{\substack{S \subseteq_{\mathrm{ind}} H_k \\ |V(S)| \leq |V(G)|}} \mathrm{sur}_V(G,S) \\ &= \sum_{S/\cong} \mathrm{sur}_V(G,S) \ \#\{\mathrm{induced \ copies \ of} \ S \ \mathrm{in} \ H_k\} \end{split}$$

when  $H_k$  simple.

#### Proposition (De la Harpe & Jaeger 1995)

- (H<sub>k</sub>) strongly polynomial in k ⇔
  ∀connected S #{subgraphs ≅ S in H<sub>k</sub>} polynomial in k for all k ∈ N
- can replace subgraphs  $\cong S$  by induced subgraphs  $\cong S$  when  $(H_k)$  simple graphs

Delia Garijo, Andrew Goodall, Jarik Nešetřil Polynomial graph invariants from graph homomorphisms

## Subgraph criterion for strongly polynomial

$$\begin{aligned} &\hom(G, H_k) = \sum_{\substack{S \subseteq_{\mathrm{ind}} H_k \\ |V(S)| \leq |V(G)|}} \operatorname{sur}_V(G, S) \\ &= \sum_{S/\cong} \operatorname{sur}_V(G, S) \, \#\{\mathrm{induced \ copies \ of} \ S \ \mathrm{in} \ H_k\} \end{aligned}$$

when  $H_k$  simple.

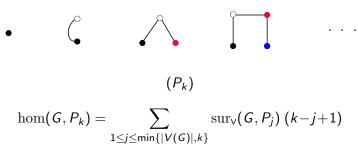
(for each S want this polynomial in k)

#### Proposition (De la Harpe & Jaeger 1995)

- (H<sub>k</sub>) strongly polynomial in k ⇔
  ∀connected S #{subgraphs ≅ S in H<sub>k</sub>} polynomial in k for all k ∈ N
- can replace subgraphs  $\cong S$  by induced subgraphs  $\cong S$  when  $(H_k)$  simple graphs

Delia Garijo, Andrew Goodall, Jarik Nešetřil Polynomial graph invariants from graph homomorphisms

## Polynomial but not strongly polynomial



 $hom(P_4, P_2) = 2$ , and  $hom(P_4, P_k) = 8k - 16$  for  $k \ge 3$ 

(日) (同) (E) (E) (E)

#### Proposition (de la Harpe & Jaeger, 1995; Garijo, G., Nešetřil, 2013+)

If  $(H_k)$  strongly polynomial,  $H_k$  simple, then

- $(\overline{H_k})$
- $(L(H_k))$

strongly polynomial. Also,  $(\ell H_k)$  strongly polynomial in  $k, \ell$ .

(日) (同) (E) (E) (E)

### Proposition (de la Harpe & Jaeger, 1995; Garijo, G., Nešetřil, 2013+)

If  $(H_k)$  strongly polynomial,  $H_k$  simple, then

- $(\overline{H_k})$
- $(L(H_k))$

strongly polynomial. Also,  $(\ell H_k)$  strongly polynomial in  $k, \ell$ .

## Proposition (Garijo, G., Nešetřil, 2013+)

If  $(H_k)$  strongly polynomial, at most one loop each vertex of  $H_k$ , then

- $(H_k^0)$  (remove all loops)
- $(H_k^1)$  (add loops to make 1 loop each vertex)

strongly polynomial.

More generally,  $(H_k^{\ell})$  strongly polynomial in  $k, \ell$ .

#### Proposition

If  $(F_j)$ ,  $(H_k)$  strongly polynomial, then

- $(F_j \cup H_k)$
- $(F_j + H_k)$

strongly polynomial in j, k.

・ロン ・回 と ・ 回 と ・ 回 と

#### Example

Beginning with trivial strongly polynomial sequence  $(K_1)$ , following strongly polynomial:

イロト イヨト イヨト イヨト

#### Example

Beginning with trivial strongly polynomial sequence  $(K_1)$ , following strongly polynomial:

• multiple: 
$$(kK_1) = (\overline{K_k})$$

イロト イヨト イヨト イヨト

#### Example

Beginning with trivial strongly polynomial sequence  $(K_1)$ , following strongly polynomial:

- multiple:  $(kK_1) = (\overline{K_k})$
- complement: (K<sub>k</sub>) (chromatic polynomial)

イロト イヨト イヨト イヨト

### Example

Beginning with trivial strongly polynomial sequence  $(K_1)$ , following strongly polynomial:

- multiple:  $(kK_1) = (\overline{K_k})$
- complement: (K<sub>k</sub>) (chromatic polynomial)
- loop-addition:  $(K_k^{\ell})$  (Tutte polynomial)

#### Example

Beginning with trivial strongly polynomial sequence  $(K_1)$ , following strongly polynomial:

- multiple:  $(kK_1) = (\overline{K_k})$
- complement: (K<sub>k</sub>) (chromatic polynomial)
- loop-addition:  $(K_k^{\ell})$  (Tutte polynomial)
- join:  $(K_{k-j}^1 + K_j^{\ell})$  (Averbouch–Godlin–Makowsky polynomial)

#### Example

Beginning with trivial strongly polynomial sequence  $(K_1)$ , following strongly polynomial:

- multiple:  $(kK_1) = (\overline{K_k})$
- complement: (K<sub>k</sub>) (chromatic polynomial)
- loop-addition:  $(K_k^{\ell})$  (Tutte polynomial)
- join:  $(K_{k-j}^1 + K_j^\ell)$  (Averbouch–Godlin–Makowsky polynomial)

$$\hom(G, K_{k-j}^{1} + K_{j}^{\ell}) = \xi(G; k, \ell-1, -j(\ell-1))$$

Three-term recurrence: for  $uv \in E(G)$ ,

$$\xi(G) = a\xi(G/uv) + b\xi(G\backslash uv) + c\xi(G-u-v)$$

#### Definition

Given simple graph H, set of graphs  $\{F_v : v \in V(H)\}$ , the *composition*  $H[\{F_v : v \in V(H)\}]$  is formed by

- disjoint union of  $\{F_v : v \in V(H)\}$ ,
- join  $F_u$  and  $F_v$  whenever  $uv \in E(H)$

(日) (同) (E) (E) (E)

## Definition

Given simple graph H, set of graphs  $\{F_v : v \in V(H)\}$ , the *composition*  $H[\{F_v : v \in V(H)\}]$  is formed by

- disjoint union of  $\{F_v : v \in V(H)\}$ ,
- join  $F_u$  and  $F_v$  whenever  $uv \in E(H)$

# Proposition (de la Harpe & Jaeger, 1995)

If  $(F_{v;k_v})$  strongly polynomial sequence in  $k_v$ , each  $v \in V(H)$ , then  $(H[\{F_{v;k_v}\}])$  strongly polynomial in  $(k_v : v \in V(H))$ .

イロト イポト イラト イラト 一日

## Definition

Given simple graph H, set of graphs  $\{F_v : v \in V(H)\}$ , the *composition*  $H[\{F_v : v \in V(H)\}]$  is formed by

- disjoint union of  $\{F_v : v \in V(H)\}$ ,
- join  $F_u$  and  $F_v$  whenever  $uv \in E(H)$

## Proposition (de la Harpe & Jaeger, 1995)

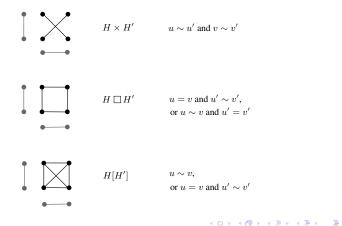
If  $(F_{v;k_v})$  strongly polynomial sequence in  $k_v$ , each  $v \in V(H)$ , then  $(H[\{F_{v;k_v}\}])$  strongly polynomial in  $(k_v : v \in V(H))$ .

#### Example

- $K_r[\{\overline{K_{k_1}}, \dots, \overline{K_{k_r}}\}] \cong K_{k_1,\dots,k_r}$  (complete r-partite graph)
- $F_{v;k_v} = F_k$  all  $v \in V(H)$  gives lexicographic product  $H[F_k]$

# Graph products: direct, cartesian, lexicographic

Graphs  $H, H', u, v \in V(H), u', v' \in V(H')$ 



## Proposition (Garijo, G., Nešetřil, 2013+)

If  $(F_j)$  and  $(H_k)$  strongly polynomial, then

- $(F_j \times H_k)$
- $(F_j[H_k])$

strongly polynomial in j, k.

< ロ > < 回 > < 回 > < 回 > < 回 > <

## Proposition (Garijo, G., Nešetřil, 2013+)

If  $(F_j)$  and  $(H_k)$  strongly polynomial, then

- $(F_j \times H_k)$
- $(F_j[H_k])$

strongly polynomial in j, k.

#### Question

Strongly polynomial:

$$\blacktriangleright (\overline{K_j} + \overline{K_k}) = (K_{j,k})$$

•  $(L(K_{j,k})) = (K_j \Box K_k)$  (Rook's graph)

## Proposition (Garijo, G., Nešetřil, 2013+)

If  $(F_j)$  and  $(H_k)$  strongly polynomial, then

- $(F_j \times H_k)$
- $(F_j[H_k])$

strongly polynomial in j, k.

#### Question

Strongly polynomial:

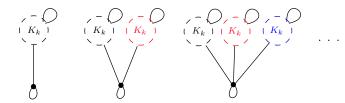
$$\bullet \ (\overline{K_j} + \overline{K_k}) = (K_{j,k})$$

•  $(L(K_{j,k})) = (K_j \Box K_k)$  (Rook's graph)

If  $(F_j)$ ,  $(H_k)$  strongly polynomial, is then  $(F_j \Box H_k)$  also?

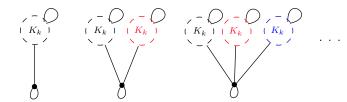
(ロ) (同) (E) (E) (E)

# A new type of strongly polynomial sequence



$$H_{j,k} = K_{1,j}[\{K_1^1\} \cup \{K_k^1 \text{ on leaves}\}]$$
$$\hom(G, H_{j,k}) = \sum_{U \subseteq V(G)} j^{c(G[U])} k^{|U|}$$

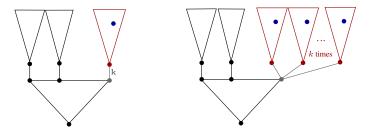
# A new type of strongly polynomial sequence



$$H_{j,k} = K_{1,j}[\{K_1^1\} \cup \{K_k^1 \text{ on leaves}\}]$$
$$\hom(G, H_{j,k}) = \sum_{U \subseteq V(G)} j^{c(G[U])} k^{|U|}$$

Tittmann-Averbouch-Godlin polynomial (includes independence polynomial, satisfies three-term recurrence)

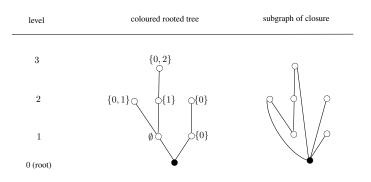
# Branching coloured rooted trees



"k-branching" at edge of coloured rooted tree

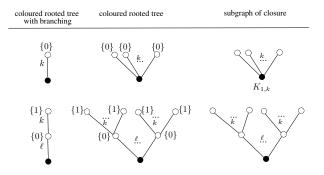
イロト イヨト イヨト イヨト

# Colours encoding subgraph of closure of rooted tree



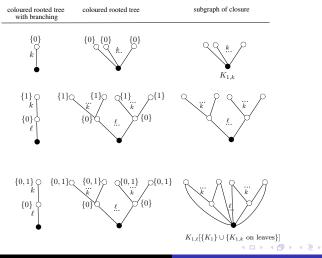
イロト イヨト イヨト イヨト

# (1) Branching rooted tree encoding subgraph of closure



I ∃ →

# (1) Branching rooted tree encoding subgraph of closure

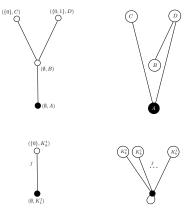


Delia Garijo, Andrew Goodall, Jarik Nešetřil Po

Polynomial graph invariants from graph homomorphisms

< E

# (2) Colours encoding subgraph along with ornaments



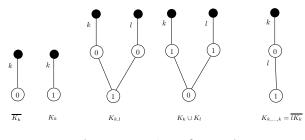
(Tittmann-Averbouch-Makowsky polynomial)

イロト イヨト イヨト イヨト

э

Delia Garijo, Andrew Goodall, Jarik Nešetřil Polynomial graph invariants from graph homomorphisms

# (3) Colours encoding cographs by cotrees



leaves = vertices of cograph 0 = disjoint union, 1 = join

・ロト ・日本 ・モート ・モート

# Theorem (Garijo, G., Nešetřil, 2013+)

- Coloured rooted tree T representing graph H
- $k, \ell, \ldots$  branching variables on edges of T
- after k-branching, l-branching, ..., obtain coloured rooted tree representing graph H<sub>k</sub>, l,...

(ロ) (同) (E) (E) (E)

# Theorem (Garijo, G., Nešetřil, 2013+)

- Coloured rooted tree T representing graph H
- $k, \ell, \ldots$  branching variables on edges of T
- after k-branching, l-branching, ..., obtain coloured rooted tree representing graph H<sub>k</sub>, l....

Then  $(H_{k,\ell,\ldots})$  strongly polynomial in  $k,\ell,\ldots$ .

# Theorem (Garijo, G., Nešetřil, 2013+)

- Coloured rooted tree T representing graph H
- $k, \ell, \ldots$  branching variables on edges of T
- after k-branching, ℓ-branching, ..., obtain coloured rooted tree representing graph H<sub>k</sub>, ℓ,....

Then  $(H_{k,\ell,\ldots})$  strongly polynomial in  $k,\ell,\ldots$ .

#### Example

(1) *H* as a subgraph of closure of *T*, colour  $s \in V(T) = V(H)$  subset of  $\{0, 1, \dots, \text{height}(T)\}$ 

# Theorem (Garijo, G., Nešetřil, 2013+)

- Coloured rooted tree T representing graph H
- $k, \ell, \ldots$  branching variables on edges of T
- after k-branching, l-branching, ..., obtain coloured rooted tree representing graph H<sub>k</sub>, l,...

Then  $(H_{k,\ell,\ldots})$  strongly polynomial in  $k,\ell,\ldots$ .

#### Example

- (1) *H* as a subgraph of closure of *T*, colour  $s \in V(T) = V(H)$  subset of  $\{0, 1, \dots, \text{height}(T)\}$
- (2) ornamented version of (1), strongly poly'l seq. ( $F_{s;j_s}$ ) each vertex  $s \in V(H)$ , colour as in (1) paired with  $F_{s;j_s}$

# Theorem (Garijo, G., Nešetřil, 2013+)

- Coloured rooted tree T representing graph H
- $k, \ell, \ldots$  branching variables on edges of T
- after k-branching, l-branching, ..., obtain coloured rooted tree representing graph H<sub>k</sub>, l,...

Then  $(H_{k,\ell,\ldots})$  strongly polynomial in  $k,\ell,\ldots$ .

#### Example

- (1) *H* as a subgraph of closure of *T*, colour  $s \in V(T) = V(H)$  subset of  $\{0, 1, \dots, \text{height}(T)\}$
- (2) ornamented version of (1), strongly poly'l seq. ( $F_{s;j_s}$ ) each vertex  $s \in V(H)$ , colour as in (1) paired with  $F_{s;j_s}$
- (3) cotree T encoding of cograph H, colour non-leaf of T from  $\{\cup, +\}$ , leaves of T = V(H)

coloured rooted tree encoding graph  $H_{j,k}$ 

(Closure of perfect *j*-ary tree)

$$\hom(G, H_{j,k}) = \sum_{\emptyset \subseteq W_1 \subseteq W_2 \subseteq \cdots \subseteq W_d \subseteq V} j^{|W_d|} k^{\sum_{1 \le \ell \le d} c(G[W_\ell])}$$

イロン イヨン イヨン イヨン

æ

coloured rooted tree encoding graph  $H_{j,k}$ 

(Closure of perfect *j*-ary tree)

$$\hom(G, H_{j,k}) = \sum_{\emptyset \subseteq W_1 \subseteq W_2 \subseteq \cdots \subseteq W_d \subseteq V} j^{|W_d|} k^{\sum_{1 \le \ell \le d} c(G[W_\ell])}$$

#### Question

This bivariate polynomial generalizes the Tittmann– Averbouch– Makowsky polynomial. Properties? Evaluations?

Delia Garijo, Andrew Goodall, Jarik Nešetřil Polynomial graph invariants from graph homomorphisms

### Definition

Generalized Johnson graph  $J_{k,\ell,D}$ ,  $D \subseteq \{0, 1, \dots, \ell\}$ vertices  $\binom{[k]}{\ell}$ , edge uv when  $|u \cap v| \in D$ 

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

## Definition

Generalized Johnson graph  $J_{k,\ell,D}$ ,  $D \subseteq \{0, 1, \dots, \ell\}$ vertices  $\binom{[k]}{\ell}$ , edge uv when  $|u \cap v| \in D$ 

- Johnson graphs  $D = \{k 1\}$
- Kneser graphs  $D = \{0\}$

## Definition

Generalized Johnson graph  $J_{k,\ell,D}$ ,  $D \subseteq \{0, 1, \dots, \ell\}$ vertices  $\binom{[k]}{\ell}$ , edge uv when  $|u \cap v| \in D$ 

- Johnson graphs  $D = \{k 1\}$
- Kneser graphs  $D = \{0\}$

# Proposition (de la Harpe & Jaeger, 1995; Garijo, G., Nešetřil, 2013+)

For every  $\ell$ , D, sequence  $(J_{k,\ell,D})$  is strongly polynomial in k.

## Definition

Generalized Johnson graph  $J_{k,\ell,D}$ ,  $D \subseteq \{0, 1, \dots, \ell\}$ vertices  $\binom{[k]}{\ell}$ , edge uv when  $|u \cap v| \in D$ 

- Johnson graphs  $D = \{k 1\}$
- Kneser graphs  $D = \{0\}$

## Proposition (de la Harpe & Jaeger, 1995; Garijo, G., Nešetřil, 2013+)

For every  $\ell$ , D, sequence  $(J_{k,\ell,D})$  is strongly polynomial in k.

#### Question

Can generalized Johnson graphs be generated from simpler sequences by branching coloured rooted trees?

#### Some further questions

► Is there a characterization of strongly polynomial sequences (H<sub>k</sub>) by the sequence of automorphism groups (Aut(H<sub>k</sub>))?

イロト イポト イヨト イヨト

#### Some further questions

- Is there a characterization of strongly polynomial sequences (H<sub>k</sub>) by the sequence of automorphism groups (Aut(H<sub>k</sub>))?
- ► Can (*H<sub>k</sub>*) be verified to be strongly polynomial by testing hom(*G*, *H<sub>k</sub>*) for *G* only in a restricted class of graphs? (yes, for connected graphs – but for a smaller class?)

イロト イポト イヨト イヨト

#### Some further questions

- Is there a characterization of strongly polynomial sequences (H<sub>k</sub>) by the sequence of automorphism groups (Aut(H<sub>k</sub>))?
- ► Can (*H<sub>k</sub>*) be verified to be strongly polynomial by testing hom(*G*, *H<sub>k</sub>*) for *G* only in a restricted class of graphs? (yes, for connected graphs – but for a smaller class?)
- Which graph polynomials defined by strongly polynomial sequences of graphs satisfy a reduction formula (size-decreasing recurrence) like the chromatic polynomial?

イロン イヨン イヨン イヨン

A work is never truly *completed*, but abandoned ... whether due to weariness or to a need to deliver it for publication.

- PAUL VALÉRY

A finished work is exactly that, requires resurrection.

— John Cage

イロト イポト イヨト イヨト

A work is never truly *completed*, but abandoned ... whether due to weariness or to a need to deliver it for publication.

- PAUL VALÉRY

A finished work is exactly that, requires resurrection.

— John Cage

・ロト ・日本 ・モート ・モート

# Konec