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Weighted graphs

A weighted graph Γ = (V ,E , c) is composed by:

V is a set of elements called vertices.

E is a set of elements called edges.

c : V × V −→ [0,∞) is an application named conductance
associated to the edges.

u, v are adjacent, u ∼ v iff c(u, v) = cuv 6= 0.

The degree of a vertex u is du =
∑
v∈V

cuv .
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Matrices associated with graphs

Definition

The weighted Laplacian matrix of a weighted graph Γ is defined as

(L)ij =

{
di if i = j ,
−cij if i 6= j .

u1 u2 u3
u4

u5

u6u7

c12 c23

c34

c35
c45

c56
c67

c27 L =



d1 −c12 0 0 0 0 0
−c12 d2 −c23 0 0 0 −c27

0 −c23 d3 −c34 −c35 0 0
0 0 −c34 d4 −c45 0 0
0 0 −c35 −c45 d5 −c56 0
0 0 0 0 −c56 d6 −c67
0 −c27 0 0 0 −c67 d7
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Matrices associated with graphs

Now consider a weighted graph with weighted vertices
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Definition

A Schrödinger matrix LQ on Γ with potential Q is defined as the
generalization of the weighted Laplacian matrix, that is:

Lq = L+ Q,

where Q = diag [q0, . . . , qn+1] is called the potential matrix.
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Schrödinger equations

X We call the Homogeneous Schrödinger equation on F to

[HSE ] Lqu = 0

X The Wronskian of x and y ∈ Rn+2 is:

(w [x , y ])k = xkyk+1 − xk+1yk , for k = 0, . . . , n

(w [x , y ])n+1 = (w [x , y ])n.

X Two solutions x and y of the HSE are linearly independent iff

(w [x , y ])k 6= 0, k = 0, . . . , n + 1

X It is well-known that the product ckk+1(w [x , y ])k = c for any
k = 1, . . . , n + 1 is constant iff Lq is a symmetric matrix.
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Definition of BVP

X Considering a subset of vertices F ⊂ V (Γ), its boundary is defined as

δ(F ) = {u ∈ V (Γ) : u ∼ v , v ∈ F},

and its inner boundary is defined as ∂(F ) = δ(F ) ∪ δ(F c).

Example:
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F = {u2, u3, u5, u6, u7}

δ(F ) = {u1, u4}
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Definition of BVP

X Considering a subset of vertices F ⊂ V (Γ), its boundary is defined as

δ(F ) = {u ∈ V (Γ) : u ∼ v , v ∈ F},

and its inner boundary is defined as ∂(F ) = δ(F ) ∪ δ(F c).

Example:

u1 u2 u3

u4

u5

u6u7

q1
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F = {u2, u3, u5, u6, u7}

δ(F ) = {u1, u4}

∂(F ) = {u1, u2, u4, u3, u5}
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Definition of BVP

Definition

A boundary value problem on F consists in finding u ∈ Rn+2 such that

Lqu = f on F , B1u = g1, . . . ,Bpu = gp,

for a given f ∈ Rn+2 and Biu =
∑

j∈∂(F ) bijuj , gi ∈ R, i = 1, . . . , p.

Examples of application:

Chip-firing games [Chung, Lovász]: Lf = ci − ce on F .

Hitting-time [Markov chains]: LHk = δj on V − {k}.
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Open questions:

Which kind of Schrödinger equations can we solve?

Which kind of boundary value problems can we solve?

In which kind of graphs can we solve them?
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Paths with constant potential

In a preliminar work E. Bendito, A. Carmona, A.M. Encinas, Eigenvalues,
Eigenfunctions and Green’s Functions on a Path via Chebyshev Polynomials,
Appl. Anal. Discrete Math., 3, (2009), 182-302, study BVP in a path Pn+2 with
constant potential 2q − 2

u0 u1 u2 u3 un un+1

2q − 2 2q − 2 2q − 2 2q − 2 2q − 2 2q − 2

1 1 1 1

F = {u1, . . . , un}
δ(F ) = {u0, un+1}

∂(F ) = {u0, u1, un, un+1}
Lq =


2q −1 0 . . . 0
−1 2q −1 . . . 0
0 −1 2q . . . 0
...

...
...

. . . 0
0 0 . . . 2q


A linear boundary condition of F in the path is given by

Biu = ci,1u0 + ci,1u1 + ci,nun + ci,n+1un+1, for any u ∈ Rn+2.
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Paths with constant potential

So the BVP with two-side conditions is given by: Lqu = f ,
c10u0 + c11u1 + c1nun + c1n+1un+1 = g1,
c20u0 + c21u1 + c2nun + c2n+1un+1 = g2.

A base of independent solutions of the HSE is {u, v}, where
xk = Uk−1(q), yk = Uk−2(q), 1 ≤ k ≤ n.

They obtain the solution of the two-side BVP problem in terms of
linear combinations of the second-order Chebyshev polynomials
{Uk}.
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BVP in weighted paths

GOAL: To generalize this result for a path with non-constant potential
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Families of Orthogonal Polynomials

Given {An}∞n=0 a real positive sequence and {Bn}∞n=0 a real sequence
of numbers, consider {Rn(x)}∞n=0 a sequence of real orthogonal
polynomials satisfying the recurrence relation

Rn(x) = (Anx + Bn)Rn−1(x)− CnRn−2(x), n ≥ 2. (1)

with Cn = An/An−1.

Choosing a pair of initial polynomials R0(x) and R1(x) we obtain a
family of orthogonal polynomials satisfying the recurrence relation.

If we consider the two families such that:

First kind OP: {Pn}∞n=0 with P0(x) = 1, P1(x) = ax + b,

Second kind OP: {Qn}∞n=0, with Q0(x) = 1, Q1(x) = A0+A1
A0
P1(x).

they verify that P−1(x) = P1(x) and Q−1(x) = 0.
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Schrödinger equations on weighted Paths

Now consider the weighted path

u0 u1 u2 u3 un un+1

q0 q1 q2 q3 qn qn+1

A0
A1

A0
A2

A0
A3

A0
An+1

With qk = A0(Ak+1x+Bk+1)
Ak+1

− A0

Ak
, k = 1, . . . , n and Schrödinger matrix:

Lq =



A0(A1x+B1)
A1

− 1 −A0

A1
0 . . . 0

−A0

A1

A0(A2x+B2)
A2

−A0

A2
. . . 0

0 −A0

A2

A0(A3x+B3)
A3

. . . − A0

An+1

...
...

...
. . . 0

0 0 . . . − A0

An+1

A0(An+2x+Bn+2−1)
An+2
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Green matrix of the Homogeneous Schrödinger Equation

Definition

The Green matrix of the Schrödinger equation is the matrix
gq ∈Mn+2,n+2 defined as the unique solution of the initial value problem
with conditions

Lq · (gq)·,s = εs on F , (gq)s,s = 0, (gq)s+1,s = − 1

cs,s+1
, s ∈ F .

Lema

If x , y are two linearly independent solutions of the HSE on F , then

(gq)k,s =
1

ck,k+1(ω(x , y))k
(xkys − xsyk), 0 ≤ k, s ≤ n + 1

Proposition

Given f ∈ Rn+2, the vector y such that y0 = 0,and yk =
∑k

s=1(gq)k,s fs , for
0 ≤ k, s ≤ n + 1 is the unique solution of the semi-homogeneous BVP.
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Homogeneous Schrödinger Equation

Lemma

The vectors x , y ∈ Rn+2 such that xk = Pk(x) and yk = Qk(x) for any k ∈ V ,
form a basis {u, v} of the solution space of the HSE on F , as

(w [x , y ])k =
Ak+1

A0
P1(x), for any k ∈ V , P1(x) 6= 0.

Moreover, the Green matrix of the HSE is

(gq(x))k,s =
1

P1(x)
[Pk(x)Qs(x)− Ps(x)Qk(x)], k, s ∈ V .

Therefore, the general solution of the Schrödinger equation on F with data
f ∈ C is determined by

uk = αPk(x) + βQk(x) +
k∑

s=1

(gq(x))k,s fs ,

where α, β ∈ R.
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Homogeneous Schrödinger Equation

• A solution y ∈ Rn+2 is a solution of the HBVP iff y = αu + βv , where
α, β ∈ R and {u, v} is a basis of the HSE on V , satisfies(

B1u B1v
B2u B2v

)(
α
β

)
=

(
0
0

)
.

• Thus the BVP is regular iff PB(x) = B1uB2v − B2uB1v 6= 0 and hence
iff for any data f ∈ Rn+2, g1, g2 ∈ R it has a unique solution.

• For uk = Pk(x) and vk = Qk(x), k ∈ V ,

PB(x) =
∑

i,j∈∂F dijuivj = P1(x)
∑
i<j

i,j∈∂F

di,j(gq(x))i,j ,

where dij = c1ic2j − c2ic1j for all i , j ∈ ∂F and gq(x) is the Green matrix
of the HSE.
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Semi-homogeneous BVP

The two side boundary problems can be restricted to the study of the
semi-homogeneous ones:

Lemma

Consider α, β, γ, δ ∈ R such that cj1α + cj2β + cj3γ + cj4δ = gj , for
j = 1, 2, then u ∈ Rn+2 verifies the general BVP, iff the vector
v = u − αε0 − βε1 − γεn − δεn+1 verifies

Lqv = f +

(
A0

A1
α− A0

A2
(A2x + B2)β

)
ε1 +

A0

A2
βε2 +

A0

An
γεn−1

+

(
A0

An+1
δ − A0

An+1
(An+1x + Bn+1)γ

)
εn

on F and B1u = B2u = 0.
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Two-side boundary value problems

The solution of any regular semi-homogeneous BVP can be obtained
through the so-called Green matrix:

Definition

The Green matrix for the two-side boundary problem is Gq ∈Mn+2,n+2

such that

Lq · (Gq)·,s = εs on F , B1(Gq)·,s = B2(Gq)·,s = 0, s ∈ F .

Lema

For any f ∈ Rn+2 the unique solution of the semi-homogeneous BVP
with data f is the vector

uk =
∑n

s=1(Gq)k,s fs .
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Green matrix of the BVP

Theorem

The BVP is regular iff PB(x) 6= 0. In this case, the Green matrix is given,
for any 1 ≤ s ≤ n and 0 ≤ k ≤ n + 1, by

(Gq)k,s = P1(x)
PB (x)

[
dn,n+1

An+1

A0
(gq(x))s,k +

1∑
i=0

n+1∑
j=n

di,j(gq(x))k,i (gq(x))j,s

]
+

{
0, k ≤ s
(gq(x))k,s , k ≥ s.
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Two-side boundary value problems

Typical two-side boundary value problems:

Unilateral BVP

Initial value problem: c2,j = 0 for j ∈ B = {0, 1, n, n + 1}
Final value problem c1,i = 0 for i ∈ B = {0, 1, n, n + 1}

Sturm-Liouville BVP

Lq(u) = f on F ,
c1,0u0 + c1,1u1 = g1,
c2,nun + c2,n+1un+1 = g2.

Dirichlet Problem c1,0c1,1 = c2,nc2,n+1 = 0.
Neumann Problem c1,0 + c1,1 = c2,n + c2,n+1 = 0.
Dirichlet-Neumann Problem c1,0c1,1 = 0, c2,n = −c2,n+1 6= 0.
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Unilateral BVP

Initial value problem: c2,j = 0 Final value problem c1,i = 0

Corollary 1

The boundary polynomial for both problems is:

PB(x) =
P1(x)

A0
(A1d0,1 + An+1dn,n+1).

The Green matrix for the initial boundary value problem is given by

(Gq)k,s =

{
0, k ≤ s,
(gq(x))k,s , k ≥ s.

Whereas the Green function for the final boundary value problem is

(Gq)k,s =

{
(gq(x))k,s , k ≤ s,
0, k ≥ s,

for any 1 ≤ s ≤ n, 0 ≤ k ≤ n + 1.
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Sturm-Liouville BVP

au0 + bu1 = g1, cun + dun+1 = g2 if (|a|+ |b|)(|c|+ |d |) > 0

Corollary

The boundary polynomial for the Sturm-Liouville BVP is

PB (x) = a
[
d
(
Qn+1(x)− Pn+1(x)

)
+ c
(
Qn(x)− Pn(x)

)]
+

b
[
P1(x)

(
dQn+1(x) + cQn(x)

)
−Q1(x)

(
dPn+1(x) + cPn(x)

)]
and the Green matrix for the Sturm-Liouville boundary value problem is

(gq(x))k,s =
1

P1(x)PB (x)

[
a
(
Pk (x)−Qk (x)

)
+ b
(
Q1(x)Pk (x)−Qk (x)P1(x)

)]
×

[
c
(
Ps (x)Qn(x)− Pn(x)Qs (x)

)
+ d
(
Ps (x)Qn+1(x)− Pn+1(x)Qs (x)

]
for any 0 ≤ k ≤ s ≤ n and 1 ≤ s; whereas

(gq(x))k,s =
1

P1(x)PB (x)

[
a
(
Ps (x)−Qs (x)

)
+ b
(
Q1(x)Ps (x)−Qs (x)P1(x)

)]
×

[
c
(
Pk (x)Qn(x)− Pn(x)Qk (x)

)
+ d
(
Pk (x)Qn+1(x)− Pn+1(x)Qk (x)

]
for any n + 1 ≥ k ≥ s ≥ 1 and s ≤ n.
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Thanks for your attention

Dĕkuji za pozornost

Gracias por su atención
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