Boundary value problems
on a weighted path
Angeles Carmona, Andrés M. Encinas

and
Depart. Matematica Aplicada 3, UPC, Barcelona, SPAIN

Midsummer Combinatorial Workshop XIX

Prague, July 29th - August 3rd, 2013

MCW 2013, A. Carmona, A.M. Encinas and S.Gago Boundary value problems on a weighted path



Outline of the talk
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Introduction and basic concepts

Schrédinger equations
Definition of BVP

Weighted graphs

@ A weighted graph ' = (V/, E, c) is composed by:
o V is a set of elements called vertices.

o E is a set of elements called edges.

e c: VXV —[0,00) is an application named conductance
associated to the edges.
@ u, v are adjacent, u ~ v iff c(u,v) = ¢, # 0.

@ The degree of a vertex u is d, = Z Gy
veVv
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Introduction and basic concepts q
nger equations

on of BVP

Matrices associated with graphs

Definition

The weighted Laplacian matrix of a weighted graph I is defined as

- di if i=],
(£)i = —cj if i#].

dy  —cpp 0 0 0 0 0

—c12 3 0 0 0 —oy
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Introduction and basic concepts o q
Schradinger equations

Definition of BVP

Matrices associated with graphs

Now consider a weighted graph with weighted vertices

Definition
A Schrodinger matrix Lg on I' with potential @ is defined as the
generalization of the weighted Laplacian matrix, that is:

»Cq:[:"‘Qa

where Q = diag|[qo, - - -, gnr1] is called the

Boundary value problems on a weighted path
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Introduction and basic concepts Schradinger equations

Definition of BVP

Schrodinger equations

v" We call the Homogeneous Schrodinger equation on F to
[HSE] |Lqu=0
v The Wronskian of x and y € R"*2 is:

(W[X7Y])k = XkYk+1 — Xk+1Yk, for k = Oa"'an

(Wlx, yD)ns1 = (wlx, y])n.

v Two solutions x and y of the HSE are linearly independent iff

(wlx, ¥k # 0, k=0,....,n+1

v It is well-known that the product cixt1(wW[x, y])x = ¢ for any
k=1,...,n41is constant iff Ly is a symmetric matrix.
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Introduction and basic concepts

Schrédinger equations

Definition of BVP

Definition of BVP

v Considering a subset of vertices F C V/(I), its boundary is defined as
0(F)={ue V() : u~v,veF}
and its inner boundary is defined as 9(F) = 6(F) U §(F°).

Example:

uy

3

q1

F = {U2, us, us, Ue, U?}

6(F) = {u1, ua}
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Introduction and basic concepts

Schrédinger equations

Definition of BVP

Definition of BVP

v Considering a subset of vertices F C V/(I), its boundary is defined as
0(F)={ue V() : u~v,veF}

and its inner boundary is defined as 9(F) = 6(F) U §(F°).

Example:

F = {uo, us3, us, ug, ur}
6(F) = {u1, ua}

a(F) - {ula us, Ug, U3, U5}
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Introduction and basic concepts o q
Schrédinger equations

Definition of BVP

Definition of BVP

Definition

A boundary value problem on F consists in finding u € R"2 such that

Lou=fonF, Biu=g, ... ,Bpu=gp,

for a given f € R"*2 and Biu = > jcoF) bivj, g €R, i=1,....p.

Examples of application:

e Chip-firing games [Chung, Lovéasz]: Lf = ¢; — c. on F.
e Hitting-time [Markov chains]: LHi = d; on V — {k}.
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Introduction and basic concepts

Schradinger equations
Definition of BVP

Open questions:
@ Which kind of Schrodinger equations can we solve?
@ Which kind of boundary value problems can we solve?

@ In which kind of graphs can we solve them?
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Paths with constant potential

Orthogonal Polynomials

Schrédinger matrix of the weighted path associated to orthogonal polynomials
Two-side boundary value problems in weighted paths

BVP on weighted paths

Paths with constant potential

In a preliminar work E. Bendito, A. Carmona, A.M. Encinas, Eigenvalues,
Eigenfunctions and Green's Functions on a Path via Chebyshev Polynomials,
Appl. Anal. Discrete Math., 3, (2009), 182-302, study BVP in a path P, with
constant potential 2q — 2

to 1 U 1 [ 1 us Un 1 Unt1
2qg —2 2qg — 2 2g —2 2qg —2 2qg — 2 2qg —2
2¢g -1 0 ... 0
F:{ul,...,u,,} —1 2q -1 ... 0
5(F) = {Uo7 Un+1} [ = 0 -1 2q 0
O(F) = {uo, u1, un, uns1} : : 0

A linear boundary condition of F in the path is given by

n+2
Biu = ¢iiuo + i1t + Cioalin + Cinp1tnt, for any u € R™.
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Paths with constant potential

BVP on weighted paths i atri ed pa ociated to orthogonal polynomials
od paths

Paths with constant potential

So the BVP with two-side conditions is given by:

Lqu=f,
Ciolp + C11U1 + Ci1plUn + Cipy1lnt1 = &1,
Coolp + Co1U1 + Copln + Copy1lnt1 = 82-

@ A base of independent solutions of the HSE is {u, v}, where
Xk = Uk-1(9), Yk =Uk—2(q), 1 < k < n.

@ They obtain the solution of the two-side BVP problem in terms of
linear combinations of the second-order Chebyshev polynomials

{U}
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BVP in weighted paths

GOAL: To generalize this result for a path with non-constant potential

A. Carmon Encinas and S
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BVP on weighted paths

Families of Orthogonal Polynomials

e Given {A,}2, a real positive sequence and {B,}52, a real sequence
of numbers, consider {R,(x)}52, a sequence of real orthogonal
polynomials satisfying the recurrence relation

Ra(x) = (Apx + B))Ro—1(x) = CaRp—2(x), n > 2. (1)

with Cn = An/-An—l-

@ Choosing a pair of initial polynomials Ro(x) and R1(x) we obtain a
family of orthogonal polynomials satisfying the recurrence relation.

@ If we consider the two families such that:

e First kind OP: {P,}720 with Po(x) =1, Pi(x) = ax + b,
e Second kind OP: {Qn}520, with Qo(x) =1, Q1(x) = AOX(JAl P1(x).
they verify that P_;(x) = Pi1(x) and Q_1(x) = 0.
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Schrodinger equations on weighted Paths

Now consider the weighted path

Ao Ay Ay Ay
o AL [ Az L A3z u3 up Ant1 Unt1
q0 a1 92 q3 An dn+1
. Ao(A B = (g .
With g, = %j{k“) — %2 , k=1,...,n and Schrédinger matrix:
Ao(Aix+B1) _ Ao
T 1 A1 O DRI 0
" AASEB) A 9
Al Ao A e
ro— 0 _ A Ao(Asx+Bs) _ A
q = Az As Ant1
: . 0
0 0 _ Ao Ao(Anr2x+Bpi2—1)
T Ant1 Ant2

Boundary value problems on a weighted path
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Paths with constant potential
: Orthogonal Polynomials
BVP on weighted paths Schrédinger matrix of the weighted path associated to orthogonal polynomials
Two-side boundary value problems in weighted paths

Green matrix of the Homogeneous Schrodinger Equation

Definition

The Green matrix of the Schrodinger equation is the matrix

8q € M2 nyo defined as the unique solution of the initial value problem
with conditions

1

, seF.
Cs,s+1

Ly- (gq)-,s =eson F, (gq)S,s =0, (gq)5+1,s = =

| A

Lema
If x, y are two linearly independent solutions of the HSE on F, then

1

—  (aVe—Xw), 0<ks<n+l
e s

(89)k,s =

Proposition

| \

Given f € R™?2, the vector y such that yo = 0,and yx = > % (gq)k,sfs, for
0 < k,s < n+ 1 is the unique solution of the semi-homogeneous BVP.
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Homogeneous Schrodinger Equation

Lemma

The vectors x, y € R such that xx = Px(x) and yx = Qk(x) for any k € V,
form a basis {u, v} of the solution space of the HSE on F, as

A
(wlx, yD« = :\Zl Pi(x), for any k € V, Pi(x) #0.

Moreover, the Green matrix of the HSE is
1
(8a(x¥))ks = 57 [Pu(x)Qs(x) — Ps(x)Qu(x)], k,s€ V.
P1(x)

Therefore, the general solution of the Schrédinger equation on F with data
f € C is determined by

ux = aPr(x) + BOk(x) + Z(gq(x))k,sfﬁ

s=1

where o, f € R.
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BVP on weighted paths

Homogeneous Schrodinger Equation

e A solution y € R™?2 is a solution of the HBVP iff y = au + Bv, where
a, € R and {u, v} is a basis of the HSE on V, satisfies

Biu Biv a) (0
B2U BQV ,8 - 0 ’
e Thus the BVP is regular iff P,(x) = BiuBav — BouBBiv # 0 and hence

iff for any data f € R"*2, g1, g» € R it has a unique solution.

e For ux = Pi(x) and vk = Qk(x), k € V,

Ps(x) = X2; jeor dijuiv; = Pi(x) 3 dij(gq(x))i |

i<j
i,jedF

where djj = c1icpj — ojcyj for all i, j € OF and gq(x) is the Green matrix
of the HSE.
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Semi-homogeneous BVP

The two side boundary problems can be restricted to the study of the
semi-homogeneous ones:

Lemma

Consider o, 8,v,6 € R such that cjya + ¢jo8 + ¢y + ¢jad = gj, for
j=1,2, thenu € R™2 verifies the general BVP, iff the vector
vV =u—agy— ey — Yep — 0Epy1 Verifies

A A A A
Lyv = f+ (A? A—Z(Azx + Bz)ﬁ) €1+ A—Zﬁsz + A*:’anfl

Ao Ao
6 — An B, n
ar <An+1 An+1( +1X + +1)’Y) €

on F and Biu = Bou = 0.
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BVP on weighted paths

Two-side boundary value problems

The solution of any regular semi-homogeneous BVP can be obtained
through the so-called Green matrix:

Definition

The Green matrix for the two-side boundary problem is G € M1 ni2
such that

(Gq).s =eson F, Bi1(Gq).s = B2(Gq).s =0, s F.

| h
Q

Lema

For any f € R"*2 the unique solution of the semi-homogeneous BVP
with data f is the vector

Uk = Zgzl(gq)k,sfs-

\

MCW 2013, A. Carmona, A.M. Encinas and S.Gago Boundary value problems on a weighted path



Paths with constant potential
: Orthogonal Polynomials
BVP on weighted paths Schrédinger matrix of the weighted path
Two- slde boundary value prohlems in we hted paths

gonal polynomial:

Green matrix of the BVP

The BVP is regular iff P,(x) # 0. In this case, the Green matrix is given,
forany1<s<nand 0< k<n+1, by

1 n+1
G = P | dnmis 52 )es + 2 E a0y
i=0 j=n
N { 0, k<s
(&g(x))k,s, k=>s.

Boundary value problems on a weighted path
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Paths with constant potential

: Orthogonal Polynomials
BVP on weighted paths gonal Folyn i . : : .
Schrodinger matrix of the weighted path associated to orthogonal polynomial
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Two-side boundary value problems

Typical two-side boundary value problems:

@ Unilateral BVP
o Initial value problem: ¢;j =0 for j € B={0,1,n,n+ 1}
o Final value problem ¢;; =0 fori € B={0,1,n,n+ 1}

@ Sturm-Liouville BVP
Lq(u)="f on F,

Ci,0lp + C1,1U1 = &1,
C.nlp + C pr1lnr1 = 82-

o Dirichlet Problem ci0c1,1 = @,nC2,n4+1 = 0.
o Neumann Problem ci10+ c1,1 = @0+ 2,041 = 0.
o Dirichlet-Neumann Problem c10c1,1 =0, c2,n = —C2,n41 # 0.

Boundary value problems on a weighted path
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Unilateral BVP

Initial value problem: ¢, ; =0 Final value problem ¢; ; =0

Corollary 1

The boundary polynomial for both problems is:

P1(x
PB (X) = /14(0 )(Aldo,l i An+1d,7’n+1).

The Green matrix for the initial boundary value problem is given by

0, k <s,
@““:{(&wmm k>

Whereas the Green function for the final boundary value problem is

J— (g (X))k,sa k S 57
Ge={ (& Kse

forany 1<s<n 0< k<n+1.

Boundary value problems on a weighted path
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Sturm-Liouville BVP

auo + bur = g1, cup + dusi1 = g if (Ja + |b])(|c| + |d]|) > 0

Corollary

The boundary polynomial for the Sturm-Liouville BVP is

Ps(x) = a[d(Qn+1(X) — Pat1(x)) + ¢ (Qn(x) — PH(X))]JF
B[P1(3) (dQni1(x) + €Qn(x)) — Qu(x) (dPai1(x) + cPa(x)) ]

and the Green matrix for the Sturm-Liouville boundary value problem is

1
~ Pi(x)Pg(x)
X [C(pS(X)Qn(X) - Pn(X)QS(X)) + d(PS(X)QnH(X) - an(X)QS(X)]

(ga()k.s [2(Pux) = Qu(x)) + b(Q1()Pu(x) = Qu(x)Pa(x)) ]

for any 0 < k < s < nand1<s; whereas

(8a()is B [2(Po) = ©:00) + B(QUIPH () = Qu(xIPi(x)]

T PPy (x
X [e(Pu()Qn(x) = Palx)Qu(x)) + d(Pulx)Quria(x) = Prra () Qu(x)]

foranyn+1>k>s>1and s <n.
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Thanks for your attention
Dékuji za pozornost

Gracias por su atencién
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