Boundary value problems

 on a weighted pathAngeles Carmona, Andrés M. Encinas and Silvia Gago
Depart. Matemàtica Aplicada 3, UPC, Barcelona, SPAIN

Midsummer Combinatorial Workshop XIX

Prague, July 29th - August 3rd, 2013

Outline of the talk

- Notations and definitions
- Weighted graphs and matrices
- Schrödinger equations
- Boundary value problems on weighted graphs
- Green matrix of the BVP
- Boundary Value Problems on paths
- Paths with constant potential
- Orthogonal polynomials
- Schrödinger matrix of the weighted path associated to orthogonal polynomials
- Two-side Boundary Value Problems in weighted paths

Weighted graphs

- A weighted graph $\Gamma=(V, E, c)$ is composed by:
- V is a set of elements called vertices.
- E is a set of elements called edges.
- c: $V \times V \longrightarrow[0, \infty)$ is an application named conductance associated to the edges.
- u, v are adjacent, $u \sim v$ iff $c(u, v)=c_{u v} \neq 0$.
- The degree of a vertex u is $d_{u}=\sum_{v \in V} c_{u v}$.

Matrices associated with graphs

Definition

The weighted Laplacian matrix of a weighted graph Γ is defined as

$$
(\mathcal{L})_{i j}=\left\{\begin{array}{rll}
d_{i} & \text { if } & i=j, \\
-c_{i j} & \text { if } & i \neq j .
\end{array}\right.
$$

$$
\mathcal{L}=\left(\begin{array}{rrrrrr}
d_{1} & -c_{12} & 0 & 0 & 0 & 0 \\
-c_{12} & d_{2} & -c_{23} & 0 & 0 & 0 \\
0 & -c_{23} & d_{3} & -c_{34} & -c_{35} & 0 \\
0 & 0 & -c_{34} & d_{4} & -c_{45} & 0 \\
0 & 0 & -c_{35} & -c_{45} & d_{5} & -c_{56}
\end{array}\right.
$$

Matrices associated with graphs

Now consider a weighted graph with weighted vertices

Definition

A Schrödinger matrix \mathcal{L}_{Q} on Γ with potential Q is defined as the generalization of the weighted Laplacian matrix, that is:

$$
\mathcal{L}_{q}=\mathcal{L}+Q,
$$

where $Q=\operatorname{diag}\left[q_{0}, \ldots, q_{n+1}\right]$ is called the potential matrix.

Schrödinger equations

\checkmark We call the Homogeneous Schrödinger equation on F to

$$
[H S E] \quad \mathcal{L}_{q} u=0
$$

\checkmark The Wronskian of x and $y \in \mathbb{R}^{n+2}$ is:

$$
\begin{aligned}
& (w[x, y])_{k}=x_{k} y_{k+1}-x_{k+1} y_{k}, \text { for } k=0, \ldots, n \\
& (w[x, y])_{n+1}=(w[x, y])_{n} .
\end{aligned}
$$

\checkmark Two solutions x and y of the HSE are linearly independent iff

$$
(w[x, y])_{k} \neq 0, \quad k=0, \ldots, n+1
$$

\checkmark It is well-known that the product $c_{k k+1}(w[x, y])_{k}=c$ for any $k=1, \ldots, n+1$ is constant iff \mathcal{L}_{q} is a symmetric matrix.

Definition of BVP

\checkmark Considering a subset of vertices $F \subset V(\Gamma)$, its boundary is defined as

$$
\delta(F)=\{u \in V(\Gamma): u \sim v, v \in F\},
$$

and its inner boundary is defined as $\partial(F)=\delta(F) \cup \delta\left(F^{c}\right)$.

Example:

$$
\begin{aligned}
& F=\left\{u_{2}, u_{3}, u_{5}, u_{6}, u_{7}\right\} \\
& \delta(F)=\left\{u_{1}, u_{4}\right\}
\end{aligned}
$$

Definition of BVP

\checkmark Considering a subset of vertices $F \subset V(\Gamma)$, its boundary is defined as

$$
\delta(F)=\{u \in V(\Gamma): u \sim v, v \in F\},
$$

and its inner boundary is defined as $\partial(F)=\delta(F) \cup \delta\left(F^{c}\right)$.

Example:

$$
\begin{aligned}
& F=\left\{u_{2}, u_{3}, u_{5}, u_{6}, u_{7}\right\} \\
& \delta(F)=\left\{u_{1}, u_{4}\right\} \\
& \partial(F)=\left\{u_{1}, u_{2}, u_{4}, u_{3}, u_{5}\right\}
\end{aligned}
$$

Definition of BVP

Definition

A boundary value problem on F consists in finding $u \in \mathbb{R}^{n+2}$ such that

$$
\mathcal{L}_{q} u=f \text { on } F, \quad \mathcal{B}_{1} u=g_{1}, \quad \ldots \quad, \mathcal{B}_{p} u=g_{p},
$$

for a given $f \in \mathbb{R}^{n+2}$ and $\mathcal{B}_{i} u=\sum_{j \in \partial(F)} b_{i j} u_{j}, g_{i} \in \mathbb{R}, i=1, \ldots, p$.

Examples of application:

- Chip-firing games [Chung, Lovász]: $\mathcal{L} f=c_{i}-c_{e}$ on F.
- Hitting-time [Markov chains]: $\mathcal{L} H_{k}=\delta_{j}$ on $V-\{k\}$.

Open questions:

- Which kind of Schrödinger equations can we solve?
- Which kind of boundary value problems can we solve?
- In which kind of graphs can we solve them?

Paths with constant potential

In a preliminar work E. Bendito, A. Carmona, A.M. Encinas, Eigenvalues, Eigenfunctions and Green's Functions on a Path via Chebyshev Polynomials, Appl. Anal. Discrete Math., 3, (2009), 182-302, study BVP in a path P_{n+2} with constant potential $2 q-2$

A linear boundary condition of F in the path is given by

$$
\mathcal{B}_{i} u=c_{i, 1} u_{0}+c_{i, 1} u_{1}+c_{i, n} u_{n}+c_{i, n+1} u_{n+1}, \text { for any } u \in \mathbb{R}^{n+2} .
$$

Paths with constant potential

So the BVP with two-side conditions is given by:

$$
\left\{\begin{array}{l}
\mathcal{L}_{q} u=f \\
c_{10} u_{0}+c_{11} u_{1}+c_{1 n} u_{n}+c_{1 n+1} u_{n+1}=g_{1} \\
c_{20} u_{0}+c_{21} u_{1}+c_{2 n} u_{n}+c_{2 n+1} u_{n+1}=g_{2}
\end{array}\right.
$$

- A base of independent solutions of the HSE is $\{u, v\}$, where $x_{k}=\mathcal{U}_{k-1}(q), y_{k}=\mathcal{U}_{k-2}(q), 1 \leq k \leq n$.
- They obtain the solution of the two-side BVP problem in terms of linear combinations of the second-order Chebyshev polynomials $\left\{\mathcal{U}_{k}\right\}$.

BVP in weighted paths

GOAL: To generalize this result for a path with non-constant potential

Families of Orthogonal Polynomials

- Given $\left\{\mathcal{A}_{n}\right\}_{n=0}^{\infty}$ a real positive sequence and $\left\{\mathcal{B}_{n}\right\}_{n=0}^{\infty}$ a real sequence of numbers, consider $\left\{\mathcal{R}_{n}(x)\right\}_{n=0}^{\infty}$ a sequence of real orthogonal polynomials satisfying the recurrence relation

$$
\begin{equation*}
\mathcal{R}_{n}(x)=\left(\mathcal{A}_{n} x+\mathcal{B}_{n}\right) \mathcal{R}_{n-1}(x)-\mathcal{C}_{n} \mathcal{R}_{n-2}(x), n \geq 2 \tag{1}
\end{equation*}
$$

with $\mathcal{C}_{n}=\mathcal{A}_{n} / \mathcal{A}_{n-1}$.

- Choosing a pair of initial polynomials $\mathcal{R}_{0}(x)$ and $\mathcal{R}_{1}(x)$ we obtain a family of orthogonal polynomials satisfying the recurrence relation.
- If we consider the two families such that:
- First kind OP: $\left\{\mathcal{P}_{n}\right\}_{n=0}^{\infty}$ with $\mathcal{P}_{0}(x)=1, \mathcal{P}_{1}(x)=a x+b$,
- Second kind OP: $\left\{\mathcal{Q}_{n}\right\}_{n=0}^{\infty}$, with $\mathcal{Q}_{0}(x)=1, \mathcal{Q}_{1}(x)=\frac{A_{0}+A_{1}}{A_{0}} \mathcal{P}_{1}(x)$. they verify that $\mathcal{P}_{-1}(x)=\mathcal{P}_{1}(x)$ and $\mathcal{Q}_{-1}(x)=0$.

Schrödinger equations on weighted Paths

Now consider the weighted path

With $q_{k}=\frac{A_{0}\left(A_{k+1} x+B_{k+1}\right)}{A_{k+1}}-\frac{A_{0}}{A_{k}}, k=1, \ldots, n$ and Schrödinger matrix:

$$
\mathcal{L}_{q}=\left(\begin{array}{ccccc}
\frac{A_{0}\left(A_{1} x+B_{1}\right)}{A_{1}}-1 & -\frac{A_{0}}{A_{1}} & 0 & \cdots & 0 \\
-\frac{A_{0}}{A_{1}} & \frac{A_{0}\left(A_{2} x+B_{2}\right)}{A_{2}} & -\frac{A_{0}}{A_{2}} & \cdots & 0 \\
0 & -\frac{A_{0}}{A_{2}} & \frac{A_{0}\left(A_{3} \times+B_{3}\right)}{A_{3}} & \cdots & -\frac{A_{0}}{A_{n+1}} \\
\vdots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & -\frac{A_{0}}{A_{n+1}} & \frac{A_{0}\left(A_{n+2} \times+B_{n+2}-1\right)}{A_{n+2}}
\end{array}\right)
$$

Green matrix of the Homogeneous Schrödinger Equation

Definition

The Green matrix of the Schrödinger equation is the matrix $g_{q} \in \mathcal{M}_{n+2, n+2}$ defined as the unique solution of the initial value problem with conditions

$$
\mathcal{L}_{q} \cdot\left(g_{q}\right)_{\cdot, s}=\varepsilon_{s} \text { on } F, \quad\left(g_{q}\right)_{s, s}=0, \quad\left(g_{q}\right)_{s+1, s}=-\frac{1}{c_{s, s+1}}, \quad s \in F
$$

Lema

If x, y are two linearly independent solutions of the HSE on F, then

$$
\left(g_{q}\right)_{k, s}=\frac{1}{c_{k, k+1}(\omega(x, y))_{k}}\left(x_{k} y_{s}-x_{s} y_{k}\right), \quad 0 \leq k, s \leq n+1
$$

Proposition

Given $f \in \mathbb{R}^{n+2}$, the vector y such that $y_{0}=0$, and $y_{k}=\sum_{s=1}^{k}\left(g_{q}\right)_{k, s} f_{s}$, for $0 \leq k, s \leq n+1$ is the unique solution of the semi-homogeneous BVP.

Homogeneous Schrödinger Equation

Lemma

The vectors $x, y \in \mathbb{R}^{n+2}$ such that $x_{k}=\mathcal{P}_{k}(x)$ and $y_{k}=\mathcal{Q}_{k}(x)$ for any $k \in V$, form a basis $\{u, v\}$ of the solution space of the HSE on F, as

$$
(w[x, y])_{k}=\frac{A_{k+1}}{A_{0}} P_{1}(x), \text { for any } k \in V, P_{1}(x) \neq 0
$$

Moreover, the Green matrix of the HSE is

$$
\left(g_{q}(x)\right)_{k, s}=\frac{1}{\mathcal{P}_{1}(x)}\left[\mathcal{P}_{k}(x) \mathcal{Q}_{s}(x)-\mathcal{P}_{s}(x) \mathcal{Q}_{k}(x)\right], \quad k, s \in V
$$

Therefore, the general solution of the Schrödinger equation on F with data $f \in \mathcal{C}$ is determined by

$$
u_{k}=\alpha \mathcal{P}_{k}(x)+\beta \mathcal{Q}_{k}(x)+\sum_{s=1}^{k}\left(g_{q}(x)\right)_{k, s} f_{s}
$$

where $\alpha, \beta \in \mathbb{R}$.

Homogeneous Schrödinger Equation

- A solution $y \in \mathbb{R}^{n+2}$ is a solution of the HBVP iff $y=\alpha u+\beta v$, where $\alpha, \beta \in \mathbb{R}$ and $\{u, v\}$ is a basis of the HSE on V, satisfies

$$
\left(\begin{array}{cc}
\mathcal{B}_{1} u & \mathcal{B}_{1} v \\
\mathcal{B}_{2} u & \mathcal{B}_{2} v
\end{array}\right)\binom{\alpha}{\beta}=\binom{0}{0} .
$$

- Thus the BVP is regular iff $P_{\mathcal{B}}(x)=\mathcal{B}_{1} u \mathcal{B}_{2} v-\mathcal{B}_{2} u \mathcal{B}_{1} v \neq 0$ and hence iff for any data $f \in \mathbb{R}^{n+2}, g_{1}, g_{2} \in \mathbb{R}$ it has a unique solution.
- For $u_{k}=\mathcal{P}_{k}(x)$ and $v_{k}=\mathcal{Q}_{k}(x), k \in V$,

$$
P_{\mathcal{B}}(x)=\sum_{i, j \in \partial F} d_{i j} u_{i} v_{j}=\mathcal{P}_{1}(x) \sum_{\substack{i, j \\ i, j \in \partial F}} d_{i, j}\left(g_{q}(x)\right)_{i, j},
$$

where $d_{i j}=c_{1 i} c_{2 j}-c_{2 i} c_{1 j}$ for all $i, j \in \partial F$ and $g_{q}(x)$ is the Green matrix of the HSE.

Semi-homogeneous BVP

The two side boundary problems can be restricted to the study of the semi-homogeneous ones:

Lemma

Consider $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that $c_{j 1} \alpha+c_{j 2} \beta+c_{j 3} \gamma+c_{j 4} \delta=g_{j}$, for $j=1,2$, then $u \in \mathbb{R}^{n+2}$ verifies the general BVP, iff the vector $v=u-\alpha \varepsilon_{0}-\beta \varepsilon_{1}-\gamma \varepsilon_{n}-\delta \varepsilon_{n+1}$ verifies

$$
\begin{aligned}
\mathcal{L}_{q} \vee= & f+\left(\frac{A_{0}}{A_{1}} \alpha-\frac{A_{0}}{A_{2}}\left(A_{2} x+B_{2}\right) \beta\right) \varepsilon_{1}+\frac{A_{0}}{A_{2}} \beta \varepsilon_{2}+\frac{A_{0}}{A_{n}} \gamma \varepsilon_{n-1} \\
& +\left(\frac{A_{0}}{A_{n+1}} \delta-\frac{A_{0}}{A_{n+1}}\left(A_{n+1} x+B_{n+1}\right) \gamma\right) \varepsilon_{n}
\end{aligned}
$$

on F and $\mathcal{B}_{1} u=\mathcal{B}_{2} u=0$.

Two-side boundary value problems

The solution of any regular semi-homogeneous BVP can be obtained through the so-called Green matrix:

Definition

The Green matrix for the two-side boundary problem is $\mathcal{G}_{q} \in \mathcal{M}_{n+2, n+2}$ such that

$$
\mathcal{L}_{q} \cdot\left(\mathcal{G}_{q}\right)_{\cdot, s}=\varepsilon_{s} \text { on } F, \quad \mathcal{B}_{1}\left(\mathcal{G}_{q}\right)_{\cdot, s}=\mathcal{B}_{2}\left(\mathcal{G}_{q}\right)_{\cdot, s}=0, s \in F .
$$

Lema

For any $f \in \mathbb{R}^{n+2}$ the unique solution of the semi-homogeneous BVP with data f is the vector

$$
u_{k}=\sum_{s=1}^{n}\left(\mathcal{G}_{q}\right)_{k, s} f_{s}
$$

Green matrix of the BVP

Theorem

The BVP is regular iff $P_{\mathcal{B}}(x) \neq 0$. In this case, the Green matrix is given, for any $1 \leq s \leq n$ and $0 \leq k \leq n+1$, by

$$
\begin{aligned}
\left(\mathcal{G}_{q}\right)_{k, s} & =\frac{\mathcal{P}_{1}(x)}{P_{\mathcal{B}}(x)}\left[d_{n, n+1} \frac{A_{n+1}}{A_{0}}\left(g_{q}(x)\right)_{s, k}+\sum_{i=0}^{1} \sum_{j=n}^{n+1} d_{i, j}\left(g_{q}(x)\right)_{k, i}\left(g_{q}(x)\right)_{j, s}\right] \\
& + \begin{cases}0, & k \leq s \\
\left(g_{q}(x)\right)_{k, s}, & k \geq s .\end{cases}
\end{aligned}
$$

Two-side boundary value problems

Typical two-side boundary value problems:

- Unilateral BVP
- Initial value problem: $c_{2, j}=0$ for $j \in B=\{0,1, n, n+1\}$
- Final value problem $c_{1, i}=0$ for $i \in B=\{0,1, n, n+1\}$
- Sturm-Liouville BVP

$$
\begin{aligned}
& \mathcal{L}_{q}(u)=f \text { on } F \\
& c_{1,0} u_{0}+c_{1,1} u_{1}=g_{1}, \\
& c_{2, n} u_{n}+c_{2, n+1} u_{n+1}=g_{2}
\end{aligned}
$$

- Dirichlet Problem $c_{1,0} c_{1,1}=c_{2, n} c_{2, n+1}=0$.
- Neumann Problem $c_{1,0}+c_{1,1}=c_{2, n}+c_{2, n+1}=0$.
- Dirichlet-Neumann Problem $c_{1,0} c_{1,1}=0, c_{2, n}=-c_{2, n+1} \neq 0$.

Unilateral BVP

Initial value problem: $c_{2, j}=0$
Final value problem $c_{1, i}=0$

Corollary 1

The boundary polynomial for both problems is:

$$
P_{\mathcal{B}}(x)=\frac{\mathcal{P}_{1}(x)}{A_{0}}\left(A_{1} d_{0,1}+A_{n+1} d_{n, n+1}\right) .
$$

The Green matrix for the initial boundary value problem is given by

$$
\left(\mathcal{G}_{q}\right)_{k, s}= \begin{cases}0, & k \leq s, \\ \left(g_{q}(x)\right)_{k, s}, & k \geq s\end{cases}
$$

Whereas the Green function for the final boundary value problem is

$$
\left(\mathcal{G}_{q}\right)_{k, s}= \begin{cases}\left(g_{q}(x)\right)_{k, s}, & k \leq s, \\ 0, & k \geq s,\end{cases}
$$

for any $1 \leq s \leq n, 0 \leq k \leq n+1$.

Sturm-Liouville BVP

$$
a u_{0}+b u_{1}=g_{1}, c u_{n}+d u_{n+1}=g_{2} \text { if }(|a|+|b|)(|c|+|d|)>0
$$

Corollary

The boundary polynomial for the Sturm-Liouville BVP is

$$
\begin{aligned}
P_{\mathcal{B}}(x)= & a\left[d\left(\mathcal{Q}_{n+1}(x)-\mathcal{P}_{n+1}(x)\right)+c\left(\mathcal{Q}_{n}(x)-\mathcal{P}_{n}(x)\right)\right]+ \\
& b\left[\mathcal{P}_{1}(x)\left(d \mathcal{Q}_{n+1}(x)+c \mathcal{Q}_{n}(x)\right)-\mathcal{Q}_{1}(x)\left(d \mathcal{P}_{n+1}(x)+c \mathcal{P}_{n}(x)\right)\right]
\end{aligned}
$$

and the Green matrix for the Sturm-Liouville boundary value problem is

$$
\begin{aligned}
\left(g_{q}(x)\right)_{k, s} & =\frac{1}{\mathcal{P}_{1}(x) P_{\mathcal{B}}(x)}\left[a\left(\mathcal{P}_{k}(x)-\mathcal{Q}_{k}(x)\right)+b\left(\mathcal{Q}_{1}(x) \mathcal{P}_{k}(x)-\mathcal{Q}_{k}(x) \mathcal{P}_{1}(x)\right)\right] \\
& \times\left[c\left(\mathcal{P}_{s}(x) \mathcal{Q}_{n}(x)-\mathcal{P}_{n}(x) \mathcal{Q}_{s}(x)\right)+d\left(\mathcal{P}_{s}(x) \mathcal{Q}_{n+1}(x)-\mathcal{P}_{n+1}(x) \mathcal{Q}_{s}(x)\right]\right.
\end{aligned}
$$

for any $0 \leq k \leq s \leq n$ and $1 \leq s$; whereas

$$
\begin{aligned}
\left(g_{q}(x)\right)_{k, s} & =\frac{1}{\mathcal{P}_{1}(x) P_{\mathcal{B}}(x)}\left[a\left(\mathcal{P}_{s}(x)-\mathcal{Q}_{s}(x)\right)+b\left(\mathcal{Q}_{1}(x) \mathcal{P}_{s}(x)-\mathcal{Q}_{s}(x) \mathcal{P}_{1}(x)\right)\right] \\
& \times \quad\left[c\left(\mathcal{P}_{k}(x) \mathcal{Q}_{n}(x)-\mathcal{P}_{n}(x) \mathcal{Q}_{k}(x)\right)+d\left(\mathcal{P}_{k}(x) \mathcal{Q}_{n+1}(x)-\mathcal{P}_{n+1}(x) \mathcal{Q}_{k}(x)\right]\right.
\end{aligned}
$$

for any $n+1 \geq k \geq s \geq 1$ and $s \leq n$.

Some References

- R.P. Agarwal, Difference equations and inequalities, Marcel Dekker, (2000).
- E. Bendito, A. Carmona, A.M. Encinas, Eigenvalues, Eigenfunctions and Green's Functions on a Path via Chebyshev Polynomials, Appl. Anal. Discrete Math., 3 (2009), 282-302.
- A. Carmona, A.M. Encinas, S. Gago, Jacobi Matrices and Boundary Value Problems on Distance-regular graphs, Electronic Journal of Linear Algebra, 24 (2012), 202-214.
- F. R. K. Chung, R. B. Ellis, A chip-firing game and Dirichlet eigenvalues, Discrete Math., 257 (2002), 341-355.
- F.R.K. Chung and S.T. Yau, Discrete Green's functions, J. Combin. Theory A, 91 (2000), 191-214.

Thanks for your attention Dĕkuji za pozornost

 Gracias por su atención