

MCW 2013

P.L. Erdő

Background Restricted DS Applications

Restricted degree sequences

Péter L. Erdős

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences

Midsummer Combinatorial Workshop XIX, Prague, July 27 – August 2, 2013

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

MCW 2013

Background

Background 1

3 Application: counting realizations of $d^{\mathcal{F}}$

Ri	Social and biological networks
MCW 2013	
P.L. Erdős	
Background	
Restricted DS	
Applications	evenenential growth in network theory in last 15 years
	 exponential growth in network theory in last 15 years

Social and biological networks

Background Restricted DS Applications

- exponential growth in network theory in last 15 years

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- algorithmic construction with given parameters

Social and biological networks

MCW 2013

Background Restricted DS Applications

- exponential growth in network theory in last 15 years
- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

Social and biological networks

MCW 2013

Background Restricted DS Applications

- exponential growth in network theory in last 15 years
- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- (approximate) counting of all instances

MCW 2013

P.L. Erdős

Background

Restricted DS

Applications

$$G(V; E)$$
 simple graph; $V = \{v_1, v_2, \dots, v_n\}$ nodes positive integers $\mathbf{d} = (d_1, d_2, \dots, d_n)$.

MCW 2013 P.L. Erdős

Background Restricted DS

$$G(V; E)$$
 simple graph; $V = \{v_1, v_2, \dots, v_n\}$ nodes
positive integers $\mathbf{d} = (d_1, d_2, \dots, d_n)$.
If \exists simple graph $G(V, E)$ with $d(G) = \mathbf{d}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

MCW 2013

P.L. Erdős

Background Restricted DS G(V; E) simple graph; $V = \{v_1, v_2, \dots, v_n\}$ nodes positive integers $\mathbf{d} = (d_1, d_2, \dots, d_n)$. If \exists simple graph G(V, E) with $d(G) = \mathbf{d}$ \Rightarrow **d** is a graphical sequence

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

G realizes d.

MCW 2013 P.L. Erdős Background

Restricted DS Applications G(V; E) simple graph; $V = \{v_1, v_2, \dots, v_n\}$ nodes positive integers $\mathbf{d} = (d_1, d_2, \dots, d_n)$.

If \exists simple graph G(V, E) with $d(G) = \mathbf{d}$

 $\Rightarrow \quad \mathbf{d} \text{ is a graphical sequence} \\ G \text{ realizes } \mathbf{d}.$

Question: how to decide whether d is graphical?

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

MCW 2013 P.L. Erdős Background Restricted DS

G(V; E) simple graph; $V = \{v_1, v_2, \dots, v_n\}$ nodes positive integers $\mathbf{d} = (d_1, d_2, \dots, d_n)$. If \exists simple graph G(V, E) with $d(G) = \mathbf{d}$

 $\Rightarrow \quad \mathbf{d} \text{ is a graphical sequence} \\ G \text{ realizes } \mathbf{d}.$

Question: how to decide whether **d** is graphical? Tutte's *f*-factor theorem (1949-52) (slow - not construct all)

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

MCW 2013 P.L. Erdős Background

Restricted DS Applications G(V; E) simple graph; $V = \{v_1, v_2, \dots, v_n\}$ nodes positive integers $\mathbf{d} = (d_1, d_2, \dots, d_n)$.

If \exists simple graph G(V, E) with $d(G) = \mathbf{d}$

 $\Rightarrow \quad \mathbf{d} \text{ is a graphical sequence} \\ G \text{ realizes } \mathbf{d}.$

Question: how to decide whether **d** is graphical? Tutte's *f*-factor theorem (1949-52) (slow - not construct all)

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

— Havel (1957) - Hakimi (1963) lemma

MCW 2013 P.L. Erdős Background Restricted DS

positive integers $\mathbf{d} = (d_1, d_2, \dots, d_n)$. If \exists simple graph G(V, E) with $d(G) = \mathbf{d}$ \Rightarrow \mathbf{d} is a graphical sequence *G* realizes \mathbf{d} . **Question**: how to decide whether \mathbf{d} is graphical? Tutte's *f*-factor theorem (1949-52) (slow - not construct all) — Havel (1957) - Hakimi (1963) lemma Lemma: - any realization can be transformed by swaps into

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

G(V; E) simple graph; $V = \{v_1, v_2, \ldots, v_n\}$ nodes

a canonical one

MCW 2013 P.L. Erdős Background Restricted DS

G(V; E) simple graph; $V = \{v_1, v_2, \dots, v_n\}$ nodes positive integers $\mathbf{d} = (d_1, d_2, \dots, d_n)$.

If \exists simple graph G(V, E) with $d(G) = \mathbf{d}$

 $\Rightarrow \quad \mathbf{d} \text{ is a graphical sequence} \\ G \text{ realizes } \mathbf{d}.$

Question: how to decide whether **d** is graphical? Tutte's *f*-factor theorem (1949-52) (slow - not construct all)

Havel (1957) - Hakimi (1963) lemma

Lemma: - any realization can be transformed by swaps into a canonical one

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

• •

MCW 2013 P.L. Erdős Background Restricted DS

G(V; E) simple graph; $V = \{v_1, v_2, \dots, v_n\}$ nodes positive integers $\mathbf{d} = (d_1, d_2, \dots, d_n)$.

If \exists simple graph G(V, E) with $d(G) = \mathbf{d}$

 $\Rightarrow \quad \mathbf{d} \text{ is a graphical sequence} \\ G \text{ realizes } \mathbf{d}.$

Question: how to decide whether **d** is graphical? Tutte's *f*-factor theorem (1949-52) (slow - not construct all)

- Havel (1957) - Hakimi (1963) lemma

Lemma: - any realization can be transformed by swaps into a canonical one

MCW 2013 P.L. Erdős Background Restricted DS

G(V; E) simple graph; $V = \{v_1, v_2, \dots, v_n\}$ nodes positive integers $\mathbf{d} = (d_1, d_2, \dots, d_n)$.

If \exists simple graph G(V, E) with $d(G) = \mathbf{d}$

 $\Rightarrow \quad \mathbf{d} \text{ is a graphical sequence} \\ G \text{ realizes } \mathbf{d}.$

Question: how to decide whether **d** is graphical? Tutte's *f*-factor theorem (1949-52) (slow - not construct all)

- Havel (1957) - Hakimi (1963) lemma

Lemma: - any realization can be transformed by swaps into a canonical one

swap operation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

MCW 2013 P.L. Erdős Background Restricted DS

positive integers $\mathbf{d} = (d_1, d_2, \dots, d_n)$. If \exists simple graph G(V, E) with $d(G) = \mathbf{d}$ d is a graphical sequence \Rightarrow G realizes d. Question: how to decide whether d is graphical? Tutte's *f*-factor theorem (1949-52) (slow - not construct all) Havel (1957) - Hakimi (1963) lemma Lemma: - any realization can be transformed by swaps into a canonical one swap operation Algorithm: - a greedy way to construct one realization (if \exists) ◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

G(V; E) simple graph; $V = \{v_1, v_2, \ldots, v_n\}$ nodes

MCW 2013

P.L. Erdő

Background

Let G and H realizations of d Then

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

MCW 2013

P.L. Erdős

Background

Applications

Let *G* and *H* realizations of **d** Then by Havel's lemma and via canonical realizations

Theorem ()

Exists swap-sequence for $G \longrightarrow H$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

MCW 2013

P.L. Erdős

Background Restricted DS Let *G* and *H* realizations of **d** Then by Havel's lemma and via canonical realizations

Theorem ()

Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

MCW 2013

P.L. Erdős

Background Restricted DS Applications Let *G* and *H* realizations of **d** Then by Havel's lemma and via canonical realizations

Theorem (Petersen, 1891)

Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

MCW 2013

P.L. Erdős

Background Restricted DS Applications Let *G* and *H* realizations of **d** Then by Havel's lemma and via canonical realizations

Theorem (Petersen, 1891)

Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development
- the other direction is not trivial at all

MCW 2013

P.L. Erdős

Background Restricted DS Applications Let *G* and *H* realizations of **d** Then by Havel's lemma (1957) and via canonical realizations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Petersen, 1891)

Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development
- the other direction is not trivial at all

MCW 2013

P.L. Erdős

Background Restricted DS Applications Let *G* and *H* realizations of **d** Then by Havel's lemma (1957) and via canonical realizations

Theorem (Petersen, 1891)

Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development
- the other direction is not trivial at all

Problem A, B, C vertex classes with $\mathbf{d}_A, \mathbf{d}_B, \mathbf{d}_C$ degree sequences. Looking for tripartite realizations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

MCW 2013

P.L. Erdős

Background Restricted DS Applications Let *G* and *H* realizations of **d** Then by Havel's lemma (1957) and via canonical realizations

Theorem (Petersen, 1891)

Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development
- the other direction is not trivial at all
- Problem A, B, C vertex classes with $\mathbf{d}_A, \mathbf{d}_B, \mathbf{d}_C$ degree sequences. Looking for tripartite realizations existence through Tutte's theorem is known

MCW 2013

P.L. Erdős

Background Restricted DS Applications Let *G* and *H* realizations of **d** Then by Havel's lemma (1957) and via canonical realizations

Theorem (Petersen, 1891)

Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development
- the other direction is not trivial at all

Problem A, B, C vertex classes with $\mathbf{d}_A, \mathbf{d}_B, \mathbf{d}_C$ degree sequences. Looking for tripartite realizations

- existence through Tutte's theorem is known
- with reasonable definitions $G \longrightarrow H$ is known

MCW 2013

P.L. Erdős

Background Restricted DS Applications Let G and H realizations of **d** Then by Havel's lemma (1957) and via canonical realizations

Theorem (Petersen, 1891)

Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development
- the other direction is not trivial at all

Problem A, B, C vertex classes with $\mathbf{d}_A, \mathbf{d}_B, \mathbf{d}_C$ degree sequences. Looking for tripartite realizations

- existence through Tutte's theorem is known
- with reasonable definitions $G \longrightarrow H$ is known
- there is NOT known Havel type greedy algorithm

MCW 2013

P.L. Erdős

Background

Applications

$$G(U, W; E)$$
 simple bipartite graph, **bipartite d.s.**: $(\ell \le k)$
bd $(G) = ((a_1, \dots, a_k), (b_1, \dots, b_\ell)),$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MCW 2013

P.L. Erdős

G

Background Restricted D

Applications

$$(U, W; E)$$
 simple bipartite graph, **bipartite d.s.**: $(\ell \le k)$
bd $(G) = ((a_1, \dots, a_k), (b_1, \dots, b_\ell)),$

MCW 2013

P.L. Erdős

Background

Restricted DS

Applications

G(U, W; E) simple bipartite graph, **bipartite d.s.**: $(\ell \le k)$ **bd** $(G) = ((a_1, ..., a_k), (b_1, ..., b_\ell)),$

- Forbidden edges

MCW 2013

P.L. Erdős

Background

Restricted DS

Applications

G(U, W; E) simple bipartite graph, **bipartite d.s.**: $(\ell \le k)$ **bd** $(G) = ((a_1, \dots, a_k), (b_1, \dots, b_\ell)),$

- Forbidden edges
- ∃ swap operations (careful)

・ロト・西ト・西ト・西・・日・ シック

MCW 2013

P.L. Erdős

Background Restricted D

Applications

- G(U, W; E) simple bipartite graph, **bipartite d.s.**: $(\ell \le k)$ **bd** $(G) = ((a_1, \dots, a_k), (b_1, \dots, b_\ell)),$
 - Forbidden edges
 - ∃ swap operations (careful)
- Multigraphs Long and venerable history

MCW 2013

P.L. Erdős

Background Restricted DS G(U, W; E) simple bipartite graph, **bipartite d.s.**: $(\ell \le k)$ **bd** $(G) = ((a_1, \dots, a_k), (b_1, \dots, b_\ell)),$

- Forbidden edges
- ∃ swap operations (careful)
- Multigraphs Long and venerable history
- Simple graphs There is HH-lemma and algorithm
 D.B. West's book (2001) and
 Kim Toroczkai Erdős Miklós Szókoly (2000)

Kim - Toroczkai - Erdős - Miklós - Székely (2009)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Directed degree sequences

MCW 2013

P.L. Erdős

Background

$$\vec{G}(X; \vec{E})$$
 simple directed graph, $X = \{x_1, x_2, \dots, x_n\}$
 $\mathbf{dd}(\vec{G}) = \left(\left(d_1^+, d_2^+, \dots, d_n^+ \right), \left(d_1^-, d_2^-, \dots, d_n^- \right) \right)$

<ロ> < @> < @> < @> < @> < @> < @</p>

Directed degree sequences

MCW 2013

P.L. Erdős

Background

Restricted DS

- $\vec{G}(X; \vec{E})$ simple directed graph, $X = \{x_1, x_2, \dots, x_n\}$ $\mathbf{dd}(\vec{G}) = \left(\left(d_1^+, d_2^+, \dots, d_n^+ \right), \left(d_1^-, d_2^-, \dots, d_n^- \right) \right)$
- Directed multigraphs: ∃ HH lemma and algorithm

・ロト・日本・日本・日本・日本

Directed degree sequences

MCW 2013

P.L. Erdős

Background

Applications

 $\vec{G}(X; \vec{E})$ simple directed graph, $X = \{x_1, x_2, \dots, x_n\}$ $\mathbf{dd}(\vec{G}) = \left(\left(d_1^+, d_2^+, \dots, d_n^+ \right), \left(d_1^-, d_2^-, \dots, d_n^- \right) \right)$

- Directed multigraphs: ∃ HH lemma and algorithm Gale (1957), Ryser (1957), Hakimi (1963)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

MCW 2013

P.L. Erdő

Background Restricted DS

- $\vec{G}(X; \vec{E})$ simple directed graph, $X = \{x_1, x_2, \dots, x_n\}$ $\mathbf{dd}(\vec{G}) = \left(\left(d_1^+, d_2^+, \dots, d_n^+ \right), \left(d_1^-, d_2^-, \dots, d_n^- \right) \right)$
- Directed multigraphs: ∃ HH lemma and algorithm Gale (1957), Ryser (1957), Hakimi (1963)
- Simple directed graphs: ∃ HH lemma and algorithm Kleitman Wang (1973) & Erdős Miklós Toroczkai (2010)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

MCW 2013

P.L. Erdős

Background Restricted DS

- $\vec{G}(X; \vec{E})$ simple directed graph, $X = \{x_1, x_2, \dots, x_n\}$ $\mathbf{dd}(\vec{G}) = \left(\left(d_1^+, d_2^+, \dots, d_n^+ \right), \left(d_1^-, d_2^-, \dots, d_n^- \right) \right)$
- Directed multigraphs: ∃ HH lemma and algorithm Gale (1957), Ryser (1957), Hakimi (1963)
- Simple directed graphs: ∃ HH lemma and algorithm Kleitman Wang (1973) & Erdős Miklós Toroczkai (2010)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

MCW 2013

P.L. Erdős

Background Restricted DS Applications

- Directed multigraphs: ∃ HH lemma and algorithm Gale (1957), Ryser (1957), Hakimi (1963)
- Simple directed graphs: ∃ HH lemma and algorithm Kleitman Wang (1973) & Erdős Miklós Toroczkai (2010)

MCW 2013

P.L. Erdős

Background Restricted DS Applications

- Directed multigraphs: ∃ HH lemma and algorithm Gale (1957), Ryser (1957), Hakimi (1963)
- Simple directed graphs: ∃ HH lemma and algorithm Kleitman Wang (1973) & Erdős Miklós Toroczkai (2010)

(日) (日) (日) (日) (日) (日) (日) (日)

MCW 2013

Background Restricted DS Applications

- Directed multigraphs: ∃ HH lemma and algorithm Gale (1957), Ryser (1957), Hakimi (1963)
- Simple directed graphs: ∃ HH lemma and algorithm Kleitman Wang (1973) & Erdős Miklós Toroczkai (2010)

With reasonable definitions: \exists HH lemma and $\vec{G} \longrightarrow \vec{H}$ algorithm via directed swaps

Representing directed graphs (Gale 1957)

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

MCW 2013

P.L. Erdős

Background Restricted DS Applications with the bipartite graph $B(\vec{G}) = (U, W; E)$ $u_i \in U$ - out-edges from $v_i \in W$ in-edges to x_i .

Representing directed graphs (Gale 1957)

MCW 2013

P.L. Erdős

Background Restricted DS Applications with the bipartite graph $B(\vec{G}) = (U, W; E)$ $u_i \in U$ - out-edges from $v_i \in W$ in-edges to x_i .

There are forbidden edges

e.g. $U_a W_a, \ldots, U_g W_g$

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

Representing directed graphs (Gale 1957)

MCW 2013

P.L. Erdős

Background Restricted DS Applications

There are forbidden edges

e.g. $u_a w_a, \ldots, u_g w_g$ the usual swaps between $B(\vec{G})$ and $B(\vec{H})$ represent directed swaps between \vec{G} and \vec{H}

3 Application: counting realizations of $d^{\mathcal{F}}$

P.L. Erdő

Background

Restricted DS

Applications

given degree sequence \mathbf{d} ; $\mathcal{F} \subset {V \choose 2}$ of forbidden edges

MCW 2013

P.L. Erdő

Background Restricted DS

The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$: \exists ? simple graph $G : d(G) = \mathbf{d}$ which completely avoids \mathcal{F}

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

given degree sequence **d**; $\mathcal{F} \subset \binom{V}{2}$ of forbidden edges

MCW 2013 P.L. Erdős Background Restricted DS

Applications

given degree sequence \mathbf{d} ; $\mathcal{F} \subset {V \choose 2}$ of forbidden edges

The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$: \exists ? simple graph $G : d(G) = \mathbf{d}$ which completely avoids \mathcal{F}

(日) (日) (日) (日) (日) (日) (日) (日)

Solution: Tutte's *f*-factor theorem (1952) for $K_n \setminus \mathcal{F}$

MCW 2013 P.L. Erdős Background Restricted DS

given degree sequence \mathbf{d} ; $\mathcal{F} \subset {V \choose 2}$ of forbidden edges

The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$: \exists ? simple graph $G : d(G) = \mathbf{d}$ which completely avoids \mathcal{F}

Solution: Tutte's *f*-factor theorem (1952) for $K_n \setminus \mathcal{F}$ provides a polynomial algorithm to decide the existence

MCW 2013 P.L. Erdős Background Restricted DS

given degree sequence \mathbf{d} ; $\mathcal{F} \subset {V \choose 2}$ of forbidden edges

The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$: \exists ? simple graph $G : d(G) = \mathbf{d}$ which completely avoids \mathcal{F}

Solution: Tutte's *f*-factor theorem (1952) for $K_n \setminus \mathcal{F}$ provides a polynomial algorithm to decide the existence

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

MCW 2013 P.L. Erdős Background Restricted DS

given degree sequence \mathbf{d} ; $\mathcal{F} \subset {\binom{V}{2}}$ of forbidden edges

The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$: \exists ? simple graph $G : d(G) = \mathbf{d}$ which completely avoids \mathcal{F}

Solution: Tutte's *f*-factor theorem (1952) for $K_n \setminus \mathcal{F}$ provides a polynomial algorithm to decide the existence

MCW 2013 P.L. Erdős Background Restricted DS

given degree sequence \mathbf{d} ; $\mathcal{F} \subset {V \choose 2}$ of forbidden edges

The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$: \exists ? simple graph $G : d(G) = \mathbf{d}$ which completely avoids \mathcal{F}

Solution: Tutte's *f*-factor theorem (1952) for $K_n \setminus \mathcal{F}$ provides a polynomial algorithm to decide the existence

MCW 2013 P.L. Erdős Background Restricted DS

given degree sequence \mathbf{d} ; $\mathcal{F} \subset {\binom{V}{2}}$ of forbidden edges

The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$: \exists ? simple graph $G : d(G) = \mathbf{d}$ which completely avoids \mathcal{F}

Solution: Tutte's *f*-factor theorem (1952) for $K_n \setminus \mathcal{F}$ provides a polynomial algorithm to decide the existence

MCW 2013 P.L. Erdős Background Restricted DS

given degree sequence \mathbf{d} ; $\mathcal{F} \subset {V \choose 2}$ of forbidden edges

The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$: \exists ? simple graph $G : d(G) = \mathbf{d}$ which completely avoids \mathcal{F}

Solution: Tutte's *f*-factor theorem (1952) for $K_n \setminus \mathcal{F}$ provides a polynomial algorithm to decide the existence

with reasonable definitions exists $G \rightarrow H$ swapsequence

 \exists an \mathcal{F} -swap

P.L. Erdős

Background

Restricted DS

Applications

circular $C_4 \mathcal{F}$ -swap = Havel–Hakimi swap.

MCW 2013

P.L. Erdős

Restricted DS

Applications

circular $C_4 \mathcal{F}$ -swap = Havel–Hakimi swap. circular $C_6 \mathcal{F}$ -swap = triangular C_6 -swap,

MCW 2013 P.L. Erdős Background Restricted DS Applications

circular $C_4 \mathcal{F}$ -swap = Havel–Hakimi swap. circular $C_6 \mathcal{F}$ -swap = triangular C_6 -swap,

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

MCW 2013 P.L. Erdős Background Restricted DS Applications

circular $C_4 \mathcal{F}$ -swap = Havel–Hakimi swap. circular $C_6 \mathcal{F}$ -swap = triangular C_6 -swap,

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Theorem

G, H realizations of $d^{\mathcal{F}}$ then $\exists G \rightarrow H$ with \mathcal{F} -swaps

MCW 2013 P.L. Erdős Background Restricted DS Applications

circular $C_4 \mathcal{F}$ -swap = Havel–Hakimi swap. circular $C_6 \mathcal{F}$ -swap = triangular C_6 -swap,

Theorem

G, H realizations of $d^{\mathcal{F}}$ then $\exists G \rightarrow H$ with \mathcal{F} -swaps

Examples - directed graphs - connected, with Havel's lemma

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

MCW 2013 P.L. Erdős Background Restricted DS Applications

circular $C_4 \mathcal{F}$ -swap = Havel–Hakimi swap. circular $C_6 \mathcal{F}$ -swap = triangular C_6 -swap,

Theorem

G, H realizations of $d^{\mathcal{F}}$ then $\exists G \rightarrow H$ with \mathcal{F} -swaps

Examples - directed graphs - connected, with Havel's lemma tripartite graphs - connected, no Havel's lemma

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MCW 2013

P.L. Erdős

Background

Restricted DS

Applications

In its simplest form:

d is bipartite, and $\mathcal{F} =$ union of **1-factor** and a star

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MCW 2013

P.L. Erdős

Restricted DS

In its simplest form:

d is bipartite, and $\mathcal{F} =$ union of 1-factor and a star

・ロット (雪) (日) (日) (日)

MCW 2013

P.L. Erdős

Restricted DS

In its simplest form:

d is bipartite, and $\mathcal{F} =$ union of 1-factor and a star

・ロット (雪) (日) (日) (日)

Tutte's f-factor theorem applies

MCW 2013

P.L. Erdős

Restricted DS

In its simplest form:

d is bipartite, and $\mathcal{F} =$ union of 1-factor and a star

Tutte's *f*-factor theorem applies realizations are connected

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MCW 2013

P.L. Erdős

Restricted DS

In its simplest form:

d is bipartite, and $\mathcal{F} =$ union of 1-factor and a star

Tutte's *f*-factor theorem applies realizations are connected there exists a Havel-type approach

3 Application: counting realizations of $\mathbf{d}^{\mathcal{F}}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Constrcuting and counting realizations

MCW 2013	
Restricted DS	
Applications	

Applied network theory: exponential growth in last 15 years

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Constrcuting and counting realizations

MCW 2013 P.L. Erdős Background Restricted DS

Applications

Applied network theory: exponential growth in last 15 years - algorithmic construction with given parameters

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

Constrcuting and counting realizations

MCW 2013 P.L. Erdős Background Restricted DS Applications Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

Ri

Constrcuting and counting realizations

MCW 2013

P.L. Erdős

Background

Applications

Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

- (approximate) counting of all instances

Ri

Constrcuting and counting realizations

MCW 2013

P.L. Erdős

Background

Applications

Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

- (approximate) counting of all instances

A classical example

Ri

Constrcuting and counting realizations

MCW 2013 P.L. Erdős Background Restricted DS Applications Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

A classical example

epidemics studies of sexually transmitted diseases

Liljeros F, Edling C R, Amaral L A N, Stanley H E and Åberg Y 2001 Nature 411

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

Constrcuting and counting realizations

MCW 2013 P.L. Erdős Background Restricted DS Applications Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

A classical example

epidemics studies of sexually transmitted diseases

Liljeros F, Edling C R, Amaral L A N, Stanley H E and Åberg Y 2001 Nature 411

data collected is from anonymous surveys

Constrcuting and counting realizations

MCW 2013 P.L. Erdős Background Restricted DS Applications Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

A classical example

epidemics studies of sexually transmitted diseases

Liljeros F, Edling C R, Amaral L A N, Stanley H E and Åberg Y 2001 Nature 411

data collected is from anonymous surveys
 number of different partners in a given period of time,
 without revealing their identity.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Constrcuting and counting realizations

MCW 2013 P.L. Erdős Background Restricted DS Applications Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

A classical example

epidemics studies of sexually transmitted diseases

Liljeros F, Edling C R, Amaral L A N, Stanley H E and Åberg Y 2001 Nature 411

- data collected is from anonymous surveys
- number of different partners in a given period of time,
- without revealing their identity.
- constructing the most typical contact graph
- obeying the empirical degree sequence.

Constrcuting and counting realizations

MCW 2013 P.L. Erdős Background Restricted DS Applications Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

An other ancient examples

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

J. K. Senior: Partitions and their Representative Graphs, *Amer. J. Math.*, **73** (1951), 663–689.

Constrcuting and counting realizations

MCW 2013 P.L. Erdős Background Restricted DS Applications Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

An other ancient examples

J. K. Senior: Partitions and their Representative Graphs, *Amer. J. Math.*, **73** (1951), 663–689.

find all possible molecules with given composition but with different structures

Constrcuting and counting realizations

MCW 2013 P.L. Erdős Background Restricted DS Applications Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

An other ancient examples

J. K. Senior: Partitions and their Representative Graphs, *Amer. J. Math.*, **73** (1951), 663–689.

- find all possible molecules with given composition but with different structures
- generating all possible graphs with multiple edges but no loops

Constrcuting and counting realizations

MCW 2013 P.L. Erdős Background Restricted DS Applications Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

An other ancient examples

J. K. Senior: Partitions and their Representative Graphs, *Amer. J. Math.*, **73** (1951), 663–689.

- find all possible molecules with given composition but with different structures
- generating all possible graphs with multiple edges but no loops
- introduced swaps (but called transfusion)

Μ	С	W	20	113

P.L. Erdős

Background

Restricted DS

Applications

Goal: to find a typical or random realization

MCW 2013

P.L. Erdős Background Restricted D

Applications

Goal: to find a typical or random realization Markov Chain Monte Carlo (MCMC) methods

MCW 2013 P.L. Erdős

Background Restricted [

Applications

Goal: to find a typical or random realization Markov Chain Monte Carlo (MCMC) methods

start with an arbitrary realization and take a long enough series of randomly chosen $G \longrightarrow H$

MCW 2013 P.L. Erdős Background Restricted DS Applications

Goal: to find a typical or random realization Markov Chain Monte Carlo (MCMC) methods

start with an arbitrary realization and take a long enough series of randomly chosen $G \longrightarrow H$

this method always produces a random realization!

Goal: to find a typical or random realization Markov Chain Monte Carlo (MCMC) methods

MCW 2013 P.L. Erdős Background Restricted DS

Applications

start with an arbitrary realization and take a long enough series of randomly chosen $G \longrightarrow H$

this method always produces a random realization! BUT how fast ????

Goal: to find a typical or random realization Markov Chain Monte Carlo (MCMC) methods

MCW 2013 P.L. Erdős Background Restricted DS

Applications

start with an arbitrary realization and take a long enough series of randomly chosen $G \longrightarrow H$

this method always produces a random realization! BUT how fast ????

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

considered fast enough if it is polynomial in time and called fast mixing

MCW 2013 P.L. Erdős Background Restricted DS

Applications

Goal: to find a typical or random realization Markov Chain Monte Carlo (MCMC) methods

start with an arbitrary realization and take a long enough series of randomly chosen $G \longrightarrow H$

this method always produces a random realization! BUT how fast ????

considered fast enough if it is polynomial in time and called fast mixing

Theorem (Jerrum, Valiant and Vazirani (1986))

if the problem is Self-reducible then fast mixing MCMC sampling provides a good approximation on the number of realizations

MCW 2013

P.L. Erdős

Background Restricted D <u>Applications</u> Examples:

Kannan-Tetali-Vempala (1999) - d is regular bipartite

MCW 2013

P.L. Erdő

Examples:

Background Restricted D

Applications

- Kannan-Tetali-Vempala (1999) d is regular bipartite
- Miklós-Erdős-Soukup (2013) d half-regular bipartite

MCW 2013

P.L. Erdős

Examples:

Kannan-Tetali-Vempala (1999) - d is regular bipartite

- Applications
- Miklós-Erdős-Soukup (2013) d half-regular bipartite
- Greenhill (2011) regular directed graphs equivalent with regular bipartite d with a forbidden one-factor F

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

MCW 2013

P.L. Erdős

Applications

Examples:

- Kannan-Tetali-Vempala (1999) d is regular bipartite
- Miklós-Erdős-Soukup (2013) d half-regular bipartite
 - Greenhill (2011) regular directed graphs equivalent with regular bipartite d with a forbidden one-factor F

◆□▶ ◆□▶ ▲□▶ ▲□▶ = のQ@

all are fast mixing but NOT self-reducible

MCW 2013

P.L. Erdős Background

Applications

Examples:

- Kannan-Tetali-Vempala (1999) d is regular bipartite
- Miklós-Erdős-Soukup (2013) d half-regular bipartite
- Greenhill (2011) regular directed graphs equivalent with regular bipartite d with a forbidden one-factor F

- all are fast mixing but NOT self-reducible
- Erdős-Kiss-Miklós-Soukup (2014?) half-regular, bipartite d with forbidden star+factor

MCW 2013

P.L. Erdős Background

Applications

Examples:

- Kannan-Tetali-Vempala (1999) d is regular bipartite
- Miklós-Erdős-Soukup (2013) d half-regular bipartite
- Greenhill (2011) regular directed graphs equivalent with regular bipartite d with a forbidden one-factor F

- all are fast mixing but NOT self-reducible
- Erdős-Kiss-Miklós-Soukup (2014?) half-regular, bipartite d with forbidden star+factor
 - fast mixing

MCW 2013

P.L. Erdős

Applications

Examples:

- Kannan-Tetali-Vempala (1999) d is regular bipartite
- Miklós-Erdős-Soukup (2013) d half-regular bipartite
- Greenhill (2011) regular directed graphs equivalent with regular bipartite d with a forbidden one-factor F

- all are fast mixing but NOT self-reducible
- Erdős-Kiss-Miklós-Soukup (2014?) half-regular, bipartite d with forbidden star+factor
 - fast mixing
 - contains the above results

MCW 2013

P.L. Erdős

Applications

Examples:

- Kannan-Tetali-Vempala (1999) d is regular bipartite
- Miklós-Erdős-Soukup (2013) d half-regular bipartite
- Greenhill (2011) regular directed graphs equivalent with regular bipartite d with a forbidden one-factor F

- all are fast mixing but NOT self-reducible
- Erdős-Kiss-Miklós-Soukup (2014?) half-regular, bipartite d with forbidden star+factor
 - fast mixing
 - contains the above results
 - self-reducible

MCW 2013

P.L. Erdős

Applications

Examples:

- Kannan-Tetali-Vempala (1999) d is regular bipartite
- Miklós-Erdős-Soukup (2013) d half-regular bipartite
- Greenhill (2011) regular directed graphs equivalent with regular bipartite d with a forbidden one-factor F
- all are fast mixing but NOT self-reducible
- Erdős-Kiss-Miklós-Soukup (2014?) half-regular, bipartite d with forbidden star+factor
 - fast mixing
 - contains the above results
 - self-reducible
- all MCMC above are suitable for approximate counting