Restricted degree sequences

Péter L. Erdős

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Midsummer Combinatorial Workshop XIX, Prague, July 27 - August 2, 2013

MCW 2013
P.L. Erdős

Background
Restricted DS
Applications
1 Background

2 Restricted degree sequences

3 Application: counting realizations of $\mathbf{d}^{\mathcal{F}}$

Ri
 Social and biological networks

- exponential growth in network theory in last 15 years

Ei. Social and biological networks

- exponential growth in network theory in last 15 years
- algorithmic construction with given parameters

Ei. Social and biological networks

- exponential growth in network theory in last 15 years
- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters

Ei. Social and biological networks

- exponential growth in network theory in last 15 years
- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

Degree sequences

MCW 2013
P.L. Erdős

Background
Restricted DS
Applications
$G(V ; E)$ simple graph; $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ nodes positive integers $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.

Degree sequences

MCW 2013
P.L. Erdős

Background
Restricted DS
Applications
$G(V ; E)$ simple graph; $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ nodes positive integers $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
If \exists simple graph $G(V, E)$ with $\quad d(G)=\mathbf{d}$

Degree sequences

$G(V ; E)$ simple graph; $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ nodes positive integers $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. If \exists simple graph $G(V, E)$ with $\quad d(G)=\mathbf{d}$
$\Rightarrow \quad d$ is a graphical sequence G realizes d.

Degree sequences

$G(V ; E)$ simple graph; $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ nodes positive integers $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
If \exists simple graph $G(V, E)$ with $\quad d(G)=\mathbf{d}$
$\Rightarrow \quad d$ is a graphical sequence
G realizes \mathbf{d}.
Question: how to decide whether \mathbf{d} is graphical?

Degree sequences

$G(V ; E)$ simple graph; $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ nodes positive integers $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
If \exists simple graph $G(V, E)$ with $\quad d(G)=\mathbf{d}$
$\Rightarrow \quad d$ is a graphical sequence
G realizes \mathbf{d}.
Question: how to decide whether \mathbf{d} is graphical?
Tutte's f-factor theorem (1949-52) (slow - not construct all)

Degree sequences

$G(V ; E)$ simple graph; $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ nodes positive integers $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
If \exists simple graph $G(V, E)$ with $\quad d(G)=\mathbf{d}$
$\Rightarrow \quad d$ is a graphical sequence
G realizes \mathbf{d}.
Question: how to decide whether \mathbf{d} is graphical?
Tutte's f-factor theorem (1949-52) (slow - not construct all)

- Havel (1957) - Hakimi (1963) lemma

Degree sequences

$G(V ; E)$ simple graph; $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ nodes positive integers $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
If \exists simple graph $G(V, E)$ with $\quad d(G)=\mathbf{d}$
$\Rightarrow \quad d$ is a graphical sequence G realizes \mathbf{d}.
Question: how to decide whether \mathbf{d} is graphical?
Tutte's f-factor theorem (1949-52) (slow - not construct all)

- Havel (1957) - Hakimi (1963) lemma

Lemma: - any realization can be transformed by swaps into a canonical one

Degree sequences

$G(V ; E)$ simple graph; $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ nodes positive integers $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
If \exists simple graph $G(V, E)$ with $\quad d(G)=\mathbf{d}$
$\Rightarrow \quad d$ is a graphical sequence
G realizes d.
Question: how to decide whether \mathbf{d} is graphical?
Tutte's f-factor theorem (1949-52) (slow - not construct all)

- Havel (1957) - Hakimi (1963) lemma

Lemma: - any realization can be transformed by swaps into a canonical one

Degree sequences

$G(V ; E)$ simple graph; $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ nodes positive integers $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
If \exists simple graph $G(V, E)$ with $\quad d(G)=\mathbf{d}$
$\Rightarrow \quad d$ is a graphical sequence
G realizes d.
Question: how to decide whether \mathbf{d} is graphical?
Tutte's f-factor theorem (1949-52) (slow - not construct all)

- Havel (1957) - Hakimi (1963) lemma

Lemma: - any realization can be transformed by swaps into a canonical one

Degree sequences

$G(V ; E)$ simple graph; $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ nodes positive integers $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
If \exists simple graph $G(V, E)$ with $\quad d(G)=\mathbf{d}$
$\Rightarrow \quad d$ is a graphical sequence
G realizes \mathbf{d}.
Question: how to decide whether \mathbf{d} is graphical?
Tutte's f-factor theorem (1949-52) (slow - not construct all)

- Havel (1957) - Hakimi (1963) lemma

Lemma: - any realization can be transformed by swaps into a canonical one

swap operation

Degree sequences

$G(V ; E)$ simple graph; $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ nodes positive integers $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.
If \exists simple graph $G(V, E)$ with $\quad d(G)=\mathbf{d}$
$\Rightarrow \quad d$ is a graphical sequence G realizes \mathbf{d}.
Question: how to decide whether \mathbf{d} is graphical?
Tutte's f-factor theorem (1949-52) (slow - not construct all)

- Havel (1957) - Hakimi (1963) lemma

Lemma: - any realization can be transformed by swaps into a canonical one

swap operation

Algorithm: - a greedy way to construct one realization (if \exists)

Havel's lemma vs. connection of realizations

Let G and H realizations of \mathbf{d} Then

Havel's lemma vs. connection of realizations

MCW 2013
P.L. Erdős

Background
Restricted DS
Applications

Let G and H realizations of \mathbf{d} Then by Havel's lemma and via canonical realizations

Theorem ()
Exists swap-sequence for $G \longrightarrow H$.

Havel's lemma vs. connection of realizations

Let G and H realizations of \mathbf{d} Then by Havel's lemma and via canonical realizations

Theorem ()
Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development

Havel's lemma vs. connection of realizations

Let G and H realizations of \mathbf{d} Then by Havel's lemma and via canonical realizations

Theorem (Petersen, 1891)
Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development

Havel's lemma vs. connection of realizations

Let G and H realizations of \mathbf{d} Then by Havel's lemma and via canonical realizations

Theorem (Petersen, 1891)
Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development
- the other direction is not trivial at all

Havel's lemma vs. connection of realizations

Let G and H realizations of \mathbf{d} Then by Havel's lemma (1957) and via canonical realizations

Theorem (Petersen, 1891)
Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development
- the other direction is not trivial at all

Havel's lemma vs. connection of realizations

Let G and H realizations of \mathbf{d} Then by Havel's lemma (1957) and via canonical realizations

Theorem (Petersen, 1891)

Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development
- the other direction is not trivial at all

Problem $\quad A, B, C$ vertex classes with $\mathbf{d}_{A}, \mathbf{d}_{B}, \mathbf{d}_{C}$ degree sequences. Looking for tripartite realizations

Havel's lemma vs. connection of realizations

Let G and H realizations of \mathbf{d} Then
by Havel's lemma (1957) and via canonical realizations

Theorem (Petersen, 1891)

Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development
- the other direction is not trivial at all

Problem $\quad A, B, C$ vertex classes with $\mathbf{d}_{A}, \mathbf{d}_{B}, \mathbf{d}_{C}$ degree sequences. Looking for tripartite realizations

- existence through Tutte's theorem is known

Havel's lemma vs. connection of realizations

Let G and H realizations of \mathbf{d} Then
by Havel's lemma (1957) and via canonical realizations

Theorem (Petersen, 1891)

Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development
- the other direction is not trivial at all

Problem $\quad A, B, C$ vertex classes with $\mathbf{d}_{A}, \mathbf{d}_{B}, \mathbf{d}_{C}$ degree sequences. Looking for tripartite realizations

- existence through Tutte's theorem is known
- with reasonable definitions $G \longrightarrow H$ is known

Havel's lemma vs. connection of realizations

Theorem (Petersen, 1891)

Exists swap-sequence for $G \longrightarrow H$.

- this is NOT a new development
- the other direction is not trivial at all

Problem $\quad A, B, C$ vertex classes with $\mathbf{d}_{A}, \mathbf{d}_{B}, \mathbf{d}_{C}$ degree sequences. Looking for tripartite realizations

- existence through Tutte's theorem is known
- with reasonable definitions $G \longrightarrow H$ is known
- there is NOT known Havel type greedy algorithm

MCW 2013
P.L. Erdős

Background
Restricted DS
Applications
$G(U, W ; E)$ simple bipartite graph, bipartite d.s.: $(\ell \leq k)$

$$
\operatorname{bd}(G)=\left(\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{\ell}\right)\right)
$$

Bipartite degree sequences

MCW 2013
P.L. Erdős

Background
Restricted DS
Applications
$G(U, W ; E)$ simple bipartite graph, bipartite d.s.: $(\ell \leq k)$

$$
\operatorname{bd}(G)=\left(\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{\ell}\right)\right)
$$

Bipartite degree sequences

MCW 2013
P.L. Erdős

Background
Restricted DS
Applications
$G(U, W ; E)$ simple bipartite graph, bipartite d.s.: $(\ell \leq k)$

$$
\operatorname{bd}(G)=\left(\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{\ell}\right)\right)
$$

- Forbidden edges

Bipartite degree sequences

$G(U, W ; E)$ simple bipartite graph, bipartite d.s.: $(\ell \leq k)$

$$
\operatorname{bd}(G)=\left(\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{\ell}\right)\right)
$$

- Forbidden edges
- \exists swap operations (careful)

Bipartite degree sequences

$G(U, W ; E)$ simple bipartite graph, bipartite d.s.: $(\ell \leq k)$

$$
\operatorname{bd}(G)=\left(\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{\ell}\right)\right)
$$

- Forbidden edges
- \exists swap operations (careful)
- Multigraphs - Long and venerable history

Bipartite degree sequences

$G(U, W ; E)$ simple bipartite graph, bipartite d.s.: $(\ell \leq k)$

$$
\operatorname{bd}(G)=\left(\left(a_{1}, \ldots, a_{k}\right),\left(b_{1}, \ldots, b_{\ell}\right)\right)
$$

- Forbidden edges
- \exists swap operations (careful)
- Multigraphs - Long and venerable history
- Simple graphs There is HH-lemma and algorithm
D.B. West's book (2001) and

Kim - Toroczkai - Erdős - Miklós - Székely (2009)

Directed degree sequences

MCW 2013
P.L. Erdős

Background
Restricted DS
Applications
$\vec{G}(X ; \vec{E})$ simple directed graph, $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ $\boldsymbol{d d}(\vec{G})=\left(\left(d_{1}^{+}, d_{2}^{+}, \ldots, d_{n}^{+}\right),\left(d_{1}^{-}, d_{2}^{-}, \ldots, d_{n}^{-}\right)\right)$

Directed degree sequences

$\vec{G}(X ; \vec{E})$ simple directed graph, $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ $\boldsymbol{d d}(\vec{G})=\left(\left(d_{1}^{+}, d_{2}^{+}, \ldots, d_{n}^{+}\right),\left(d_{1}^{-}, d_{2}^{-}, \ldots, d_{n}^{-}\right)\right)$

- Directed multigraphs: $\exists \mathrm{HH}$ lemma and algorithm
$\vec{G}(X ; \vec{E})$ simple directed graph, $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ $\boldsymbol{d d}(\vec{G})=\left(\left(d_{1}^{+}, d_{2}^{+}, \ldots, d_{n}^{+}\right),\left(d_{1}^{-}, d_{2}^{-}, \ldots, d_{n}^{-}\right)\right)$
- Directed multigraphs: \exists HH lemma and algorithm Gale (1957), Ryser (1957), Hakimi (1963)
$\vec{G}(X ; \vec{E})$ simple directed graph, $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$

$$
\operatorname{dd}(\vec{G})=\left(\left(d_{1}^{+}, d_{2}^{+}, \ldots, d_{n}^{+}\right),\left(d_{1}^{-}, d_{2}^{-}, \ldots, d_{n}^{-}\right)\right)
$$

- Directed multigraphs: \exists HH lemma and algorithm Gale (1957), Ryser (1957), Hakimi (1963)
- Simple directed graphs: \exists HH lemma and algorithm

Kleitman - Wang (1973) \& Erdős - Miklós - Toroczkai (2010)

Ri
 Directed degree sequences

$\vec{G}(X ; \vec{E})$ simple directed graph, $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ $\boldsymbol{d d}(\vec{G})=\left(\left(d_{1}^{+}, d_{2}^{+}, \ldots, d_{n}^{+}\right),\left(d_{1}^{-}, d_{2}^{-}, \ldots, d_{n}^{-}\right)\right)$

- Directed multigraphs: \exists HH lemma and algorithm Gale (1957), Ryser (1957), Hakimi (1963)
- Simple directed graphs: \exists HH lemma and algorithm

Kleitman - Wang (1973) \& Erdős - Miklós - Toroczkai (2010)

Ri
 Directed degree sequences

$\vec{G}(X ; \vec{E})$ simple directed graph, $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ $\operatorname{dd}(\vec{G})=\left(\left(d_{1}^{+}, d_{2}^{+}, \ldots, d_{n}^{+}\right),\left(d_{1}^{-}, d_{2}^{-}, \ldots, d_{n}^{-}\right)\right)$

- Directed multigraphs: \exists HH lemma and algorithm Gale (1957), Ryser (1957), Hakimi (1963)
- Simple directed graphs: \exists HH lemma and algorithm

Kleitman - Wang (1973) \& Erdős - Miklós - Toroczkai (2010)

Ri
 Directed degree sequences

$\vec{G}(X ; \vec{E})$ simple directed graph, $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ $\operatorname{dd}(\vec{G})=\left(\left(d_{1}^{+}, d_{2}^{+}, \ldots, d_{n}^{+}\right),\left(d_{1}^{-}, d_{2}^{-}, \ldots, d_{n}^{-}\right)\right)$

- Directed multigraphs: \exists HH lemma and algorithm Gale (1957), Ryser (1957), Hakimi (1963)
- Simple directed graphs: \exists HH lemma and algorithm

Kleitman - Wang (1973) \& Erdős - Miklós - Toroczkai (2010)

$$
\overrightarrow{e d}, \overrightarrow{d g}, \overrightarrow{g e}
$$

Directed degree sequences

$\vec{G}(X ; \vec{E})$ simple directed graph, $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ $\operatorname{dd}(\vec{G})=\left(\left(d_{1}^{+}, d_{2}^{+}, \ldots, d_{n}^{+}\right),\left(d_{1}^{-}, d_{2}^{-}, \ldots, d_{n}^{-}\right)\right)$

- Directed multigraphs: $\exists \mathrm{HH}$ lemma and algorithm Gale (1957), Ryser (1957), Hakimi (1963)
- Simple directed graphs: \exists HH lemma and algorithm

Kleitman - Wang (1973) \& Erdős - Miklós - Toroczkai (2010)

$\overrightarrow{d e}, \overrightarrow{g d}, \overrightarrow{e g}$
$\overrightarrow{e d}, \overrightarrow{d g}, \overrightarrow{g e}$

With reasonable definitions: $\exists \mathrm{HH}$ lemma and $\vec{G} \longrightarrow \vec{H}$ algorithm via directed swaps

Representing directed graphs (Gale 1957)

MCW 2013
P.L. Erdős

Background Restricted DS

Applications
with the bipartite graph $B(\vec{G})=(U, W ; E)$ $u_{i} \in U$ - out-edges from $\quad v_{i} \in W$ in-edges to x_{i}.

Representing directed graphs (Gale 1957)

with the bipartite graph $B(\vec{G})=(U, W ; E)$ $u_{i} \in U$ - out-edges from $\quad v_{i} \in W$ in-edges to x_{i}.

There are forbidden edges

$$
\text { e.g. } u_{a} w_{a}, \ldots, u_{g} w_{g}
$$

with the bipartite graph $B(\vec{G})=(U, W ; E)$ $u_{i} \in U$ - out-edges from $\quad v_{i} \in W$ in-edges to x_{i}.

There are forbidden edges

$$
\text { e.g. } u_{a} w_{a}, \ldots, u_{g} w_{g}
$$

the usual swaps between $B(\vec{G})$ and $B(\vec{H})$ represent directed swaps between \vec{G} and \vec{H}

MCW 2013

P．L．Erdős

Background
Restricted DS
Applications

1 Background

2 Restricted degree sequences

3 Application：counting realizations of d^{J}

Ri
 Problem description

given degree sequence $\mathbf{d} ; \quad \mathcal{F} \subset\binom{V}{2}$ of forbidden edges

Problem description

given degree sequence $\mathbf{d} ; \quad \mathcal{F} \subset\binom{V}{2}$ of forbidden edges
The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$:
\exists ? simple graph $G: d(G)=\mathbf{d}$ which completely avoids \mathcal{F}

Problem description

given degree sequence $\mathbf{d} ; \quad \mathcal{F} \subset\binom{V}{2}$ of forbidden edges
The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$:
\exists ? simple graph $G: d(G)=\mathbf{d}$ which completely avoids \mathcal{F}
Solution: Tutte's f-factor theorem (1952) for $K_{n} \backslash \mathcal{F}$

Ri
 Problem description

given degree sequence $\mathbf{d} ; \quad \mathcal{F} \subset\binom{V}{2}$ of forbidden edges
The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$:
\exists ? simple graph $G: d(G)=\mathbf{d}$ which completely avoids \mathcal{F}
Solution: Tutte's f-factor theorem (1952) for $K_{n} \backslash \mathcal{F}$ provides a polynomial algorithm to decide the existence

Ri
 Problem description

given degree sequence $\mathbf{d} ; \quad \mathcal{F} \subset\binom{V}{2}$ of forbidden edges
The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$:
\exists ? simple graph $G: d(G)=\mathbf{d}$ which completely avoids \mathcal{F}
Solution: Tutte's f-factor theorem (1952) for $K_{n} \backslash \mathcal{F}$ provides a polynomial algorithm to decide the existence
with reasonable definitions exists
$G \rightarrow H$ swap-
sequence

Ri
 Problem description

given degree sequence $\mathbf{d} ; \quad \mathcal{F} \subset\binom{V}{2}$ of forbidden edges
The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$:
\exists ? simple graph $G: d(G)=\mathbf{d}$ which completely avoids \mathcal{F}
Solution: Tutte's f-factor theorem (1952) for $K_{n} \backslash \mathcal{F}$ provides a polynomial algorithm to decide the existence
with reasonable definitions exists $G \rightarrow H$ swapsequence

Ri
 Problem description

given degree sequence $\mathbf{d} ; \quad \mathcal{F} \subset\binom{V}{2}$ of forbidden edges
The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$:
\exists ? simple graph $G: d(G)=\mathbf{d}$ which completely avoids \mathcal{F}
Solution: Tutte's f-factor theorem (1952) for $K_{n} \backslash \mathcal{F}$ provides a polynomial algorithm to decide the existence
with reasonable definitions exists $G \rightarrow H$ swapsequence

Ri
 Problem description

given degree sequence $\mathbf{d} ; \quad \mathcal{F} \subset\binom{V}{2}$ of forbidden edges
The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$:
\exists ? simple graph $G: d(G)=\mathbf{d}$ which completely avoids \mathcal{F}
Solution: Tutte's f-factor theorem (1952) for $K_{n} \backslash \mathcal{F}$ provides a polynomial algorithm to decide the existence
with reasonable definitions exists $G \rightarrow H$ swapsequence

Ri
 Problem description

given degree sequence $\mathbf{d} ; \quad \mathcal{F} \subset\binom{V}{2}$ of forbidden edges
The restricted degree sequence problem $\mathbf{d}^{\mathcal{F}}$:
\exists ? simple graph $G: d(G)=\mathbf{d}$ which completely avoids \mathcal{F}
Solution: Tutte's f-factor theorem (1952) for $K_{n} \backslash \mathcal{F}$ provides a polynomial algorithm to decide the existence
with reasonable definitions exists $G \rightarrow H$ swapsequence
\exists an \mathcal{F}-swap

Examples for \mathcal{F}-compatible swaps

circular $C_{4} \mathcal{F}$-swap $=$ Havel-Hakimi swap.

Examples for \mathcal{F}-compatible swaps

circular $C_{4} \mathcal{F}$-swap = Havel-Hakimi swap.
circular $C_{6} \mathcal{F}$-swap $=$ triangular C_{6}-swap,

Examples for \mathcal{F}-compatible swaps

circular $C_{4} \mathcal{F}$-swap = Havel-Hakimi swap.
circular $C_{6} \mathcal{F}$-swap $=$ triangular C_{6}-swap,

Examples for \mathcal{F}-compatible swaps

circular $C_{4} \mathcal{F}$-swap = Havel-Hakimi swap.
circular $C_{6} \mathcal{F}$-swap $=$ triangular C_{6}-swap,

Theorem
G, H realizations of $\mathbf{d}^{\mathcal{F}}$ then $\exists G \rightarrow H$ with \mathcal{F}-swaps

Examples for \mathcal{F}-compatible swaps

circular $C_{4} \mathcal{F}$-swap = Havel-Hakimi swap.
circular $C_{6} \mathcal{F}$-swap $=$ triangular C_{6}-swap,

Theorem

G, H realizations of $\mathbf{d}^{\mathcal{F}}$ then $\exists G \rightarrow H$ with \mathcal{F}-swaps
Examples - directed graphs - connected, with Havel's lemma

Examples for \mathcal{F}-compatible swaps

circular $C_{4} \mathcal{F}$-swap $=$ Havel-Hakimi swap.
circular $C_{6} \mathcal{F}$-swap $=$ triangular C_{6}-swap,

Theorem

G, H realizations of $\mathbf{d}^{\mathcal{F}}$ then $\exists G \rightarrow H$ with \mathcal{F}-swaps
Examples - directed graphs - connected, with Havel's lemma tripartite graphs - connected, no Havel's lemma

A simple example: star+factor problem

In its simplest form:
d is bipartite, and $\mathcal{F}=$ union of 1 -factor and a star

Ei. A simple example: star+factor problem

MCW 2013
P.L. Erdős

Background
Restricted DS
Applications

In its simplest form:
d is bipartite, and $\mathcal{F}=$ union of 1 -factor and a star

Tutte's f-factor theorem applies

In its simplest form:
d is bipartite, and $\mathcal{F}=$ union of 1 -factor and a star

Tutte's f-factor theorem applies realizations are connected

A simple example: star+factor problem

In its simplest form:

Tutte's f-factor theorem applies realizations are connected there exists a Havel-type approach

MCW 2013
P.L. Erdős

Background
Restricted DS
Applications

1 Background

2 Restricted degree sequences

3 Application: counting realizations of $\mathbf{d}^{\mathcal{F}}$

Constrcuting and counting realizations

Applied network theory: exponential growth in last 15 years

Constrcuting and counting realizations

Applied network theory: exponential growth in last 15 years - algorithmic construction with given parameters

Constrcuting and counting realizations

Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters

Constrcuting and counting realizations

Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

Constrcuting and counting realizations

Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

A classical example

Constrcuting and counting realizations

Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

A classical example epidemics studies of sexually transmitted diseases
Liljeros F, Edling C R, Amaral L A N, Stanley H E and Åberg Y 2001 Nature 411

Constrcuting and counting realizations

Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

A classical example epidemics studies of sexually transmitted diseases
Liljeros F, Edling C R, Amaral L A N, Stanley H E and Åberg Y 2001 Nature 411
■ data collected is from anonymous surveys

Constrcuting and counting realizations

Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

A classical example epidemics studies of sexually transmitted diseases
Liljeros F, Edling C R, Amaral L A N, Stanley H E and Åberg Y 2001 Nature 411
\square data collected is from anonymous surveys
■ number of different partners in a given period of time,
\square without revealing their identity.

Constrcuting and counting realizations

Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

A classical example epidemics studies of sexually transmitted diseases
Liljeros F, Edling C R, Amaral L A N, Stanley H E and Åberg Y 2001 Nature 411
\square data collected is from anonymous surveys
■ number of different partners in a given period of time,
■ without revealing their identity.

- constructing the most typical contact graph

■ obeying the empirical degree sequence.

Constrcuting and counting realizations

Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

An other ancient examples
J. K. Senior: Partitions and their Representative Graphs, Amer. J. Math., 73 (1951), 663-689.

Constrcuting and counting realizations

P.L. Erdős

Background
Restricted DS
Applications

Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

An other ancient examples
J. K. Senior: Partitions and their Representative Graphs, Amer. J. Math., 73 (1951), 663-689.

- find all possible molecules with given composition but with different structures

Constrcuting and counting realizations

Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

An other ancient examples

J. K. Senior: Partitions and their Representative Graphs, Amer. J. Math., 73 (1951), 663-689.

- find all possible molecules with given composition but with different structures
■ generating all possible graphs with multiple edges but no loops

Constrcuting and counting realizations

Applied network theory: exponential growth in last 15 years

- algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances

An other ancient examples

J. K. Senior: Partitions and their Representative Graphs, Amer. J. Math., 73 (1951), 663-689.

- find all possible molecules with given composition but with different structures
■ generating all possible graphs with multiple edges but no loops
■ introduced swaps (but called transfusion)

Goal: to find a typical or random realization

Sampling and counting realizations

Goal: to find a typical or random realization Markov Chain Monte Carlo (MCMC) methods

Sampling and counting realizations

Goal: to find a typical or random realization Markov Chain Monte Carlo (MCMC) methods
start with an arbitrary realization and take a long enough series of randomly chosen $G \longrightarrow H$

Sampling and counting realizations

Goal: to find a typical or random realization Markov Chain Monte Carlo (MCMC) methods
start with an arbitrary realization and take a long enough series of randomly chosen $G \longrightarrow H$

■ this method always produces a random realization!

Sampling and counting realizations

Goal: to find a typical or random realization Markov Chain Monte Carlo (MCMC) methods
start with an arbitrary realization and take a long enough series of randomly chosen $G \longrightarrow H$

■ this method always produces a random realization! BUT how fast ????

Sampling and counting realizations

Goal: to find a typical or random realization Markov Chain Monte Carlo (MCMC) methods
start with an arbitrary realization and take a long enough series of randomly chosen $G \longrightarrow H$

■ this method always produces a random realization! BUT how fast????

■ considered fast enough if it is polynomial in time and called fast mixing

Sampling and counting realizations

Goal: to find a typical or random realization Markov Chain Monte Carlo (MCMC) methods
start with an arbitrary realization and take a long enough series of randomly chosen $G \longrightarrow H$

■ this method always produces a random realization! BUT how fast ????
■ considered fast enough if it is polynomial in time and called fast mixing

Theorem (Jerrum, Valiant and Vazirani (1986))

if the problem is Self-reducible then fast mixing MCMC sampling provides a good approximation on the number of realizations

Examples for fast mixing MCMC on realizations

Examples:

■ Kannan-Tetali-Vempala (1999) - d is regular bipartite

Examples for fast mixing MCMC on realizations

Examples:

■ Kannan-Tetali-Vempala (1999) - d is regular bipartite
■ Miklós-Erdős-Soukup (2013) - d half-regular bipartite

Examples for fast mixing MCMC on realizations

Examples:

■ Kannan-Tetali-Vempala (1999) - d is regular bipartite
■ Miklós-Erdős-Soukup (2013) - d half-regular bipartite
■ Greenhill (2011) regular directed graphs - equivalent with regular bipartite \mathbf{d} with a forbidden one-factor \mathcal{F}

Examples for fast mixing MCMC on realizations

Examples:

■ Kannan-Tetali-Vempala (1999) - d is regular bipartite
■ Miklós-Erdős-Soukup (2013) - d half-regular bipartite
■ Greenhill (2011) regular directed graphs - equivalent with regular bipartite \mathbf{d} with a forbidden one-factor \mathcal{F}
■ all are fast mixing but NOT self-reducible

Examples for fast mixing MCMC on realizations

Examples:

■ Kannan-Tetali-Vempala (1999) - d is regular bipartite
■ Miklós-Erdős-Soukup (2013) - d half-regular bipartite
■ Greenhill (2011) regular directed graphs - equivalent with regular bipartite \mathbf{d} with a forbidden one-factor \mathcal{F}
■ all are fast mixing but NOT self-reducible
■ Erdős-Kiss-Miklós-Soukup (2014?) - half-regular, bipartite d with forbidden star+factor

Examples for fast mixing MCMC on realizations

Examples:

■ Kannan-Tetali-Vempala (1999) - d is regular bipartite
■ Miklós-Erdős-Soukup (2013) - d half-regular bipartite
■ Greenhill (2011) regular directed graphs - equivalent with regular bipartite \mathbf{d} with a forbidden one-factor \mathcal{F}
■ all are fast mixing but NOT self-reducible
■ Erdős-Kiss-Miklós-Soukup (2014?) - half-regular, bipartite \mathbf{d} with forbidden star+factor

■ fast mixing

Examples for fast mixing MCMC on realizations

Examples:

■ Kannan-Tetali-Vempala (1999) - d is regular bipartite
■ Miklós-Erdős-Soukup (2013) - d half-regular bipartite
■ Greenhill (2011) regular directed graphs - equivalent with regular bipartite \mathbf{d} with a forbidden one-factor \mathcal{F}
■ all are fast mixing but NOT self-reducible
■ Erdős-Kiss-Miklós-Soukup (2014?) - half-regular, bipartite d with forbidden star+factor

- fast mixing

■ contains the above results

Examples for fast mixing MCMC on realizations

Examples:

■ Kannan-Tetali-Vempala (1999) - d is regular bipartite
■ Miklós-Erdős-Soukup (2013) - d half-regular bipartite
■ Greenhill (2011) regular directed graphs - equivalent with regular bipartite \mathbf{d} with a forbidden one-factor \mathcal{F}
■ all are fast mixing but NOT self-reducible
■ Erdős-Kiss-Miklós-Soukup (2014?) - half-regular, bipartite \mathbf{d} with forbidden star+factor

- fast mixing
- contains the above results

■ self-reducible

Examples for fast mixing MCMC on realizations

Examples:

■ Kannan-Tetali-Vempala (1999) - d is regular bipartite
■ Miklós-Erdős-Soukup (2013) - d half-regular bipartite
■ Greenhill (2011) regular directed graphs - equivalent with regular bipartite \mathbf{d} with a forbidden one-factor \mathcal{F}
$■$ all are fast mixing but NOT self-reducible
■ Erdős-Kiss-Miklós-Soukup (2014?) - half-regular, bipartite d with forbidden star+factor

- fast mixing
- contains the above results

■ self-reducible
■ all MCMC above are suitable for approximate counting

