Two of my favorite problems

Steve Butler ${ }^{1}$

${ }^{1}$ Department of Mathematics Iowa State University

$$
\text { July } 2013
$$

Problem - Minimizing monox k-APs

Minimize the number of monochromatic 3-term arithmetic progressions in a 2-coloring of the numbers $1, \ldots, n$.

Example ($\mathrm{n}=28$)
R R R B B R R R B B B B B B R R R R R R B B B R R B B B

Theorem (Frankl-Graham-Rödl)
There is some $c>0$ so that every coloring of $1, \ldots, n$ has $\mathrm{cn}^{2}+\mathrm{o}\left(\mathrm{n}^{2}\right)$ monochromatic 3-term arithmetic progressions.

Theorem (Parrilo-Robertson-Saracino; Butler-Costello-Graham)
Expanding the following coloring gives

$$
\frac{117}{2192} n^{2}+O(n)=\frac{117}{137} \cdot \frac{1}{16} n^{2}+O(n)
$$

monochromatic 3-APs:

$$
\underbrace{R \cdots}_{28} \underbrace{R \cdots B}_{6} \underbrace{R \cdots R}_{28} \underbrace{B \cdots B}_{37} \underbrace{R \cdots}_{59} \underbrace{R \cdots B}_{116} \underbrace{R \cdots R}_{116} \underbrace{B \cdots B}_{59} \underbrace{R \cdots R}_{37} \underbrace{R \cdots B}_{28} \underbrace{R \cdots R}_{6} \underbrace{R \cdots B}_{28}
$$

Conjecture

This is best possible. (Note at least $\frac{1675}{32768} n^{2}+o\left(n^{2}\right)$ monox 3-APs.)

A possible approach

50 SHADES OF PURPLE

Turn it into a continuous problem. Allow the colors to take a range of values between -1 and 1 . Also instead of coloring $1, \ldots, n$ focus on coloring the interval $[0,1]$.

Problem now reduces to finding $\mathrm{f}:[0,1] \rightarrow[-1,1]$ minimizing

$$
\left(\int_{0}^{1} f(u) d u\right)^{2}+4 \int_{0}^{1} \int_{u / 2}^{(u+1) / 2} f(u) f(v) d v d u .
$$

Geometrical variation

- Take a square and subdivide two perpendicular sides using the exact same pattern.
- Form a red/blue checkerboard with blue in the lower left.

- Take the triangle from the lower left corner, to the opposite midpoint to the upper left corner.
- Find the subdivision which maximizes the red inside the triangle.

What about 4-APs?

Lu-Peng found the following coloring based on good coloring of \mathbb{Z}_{11}.

Given $\ell=\sum b_{i} \cdot 11^{i}$ and j is the smallest index so that $b_{j} \neq 0$, then

$$
\text { color } \ell \begin{cases}\text { red } & \text { if } b_{j}=1,3,4,5, \text { or } 9 \\ \text { blue } & \text { if } b_{j}=2,6,7,8 \text {, or } 10 .\end{cases}
$$

This coloring has $\frac{1}{72} n^{2}+O(n)$ monochromatic 4-APs.
Conjecture
This is best possible.

Other problems...

For 3 colors and avoiding 3-APs best known is to repeat one of five different fixed coloring of \mathbb{Z}_{12}. Any gives $\frac{1}{48} n^{2}+O(n)$. Can we do better?

Conjecture

For fixed k (=AP-length) and r (=colors) we can always beat random.

Problem - Induced universal graphs

Given a family \mathcal{F} of graphs, construct a small graph F which contains each graph in \mathcal{F} as an induced subgraph.

Examples of possible families \mathcal{F} :

- Bipartite graphs on n vertices
- Graphs with n edges
- Hypergraphs on n vertices.
- Hypergraphs on n vertices $w /$ degrees $\leq d$.
- Graphs on \mathfrak{n} vertices with bounded chromatic number.

Moon, "On minimal n-universal graphs"
If \mathcal{F} is the family of graphs on n vertices, then there is an induced universal graph with number of vertices N satisfying:

$$
2^{(n-1) / 2}<N<2 n 2^{(n-1) / 2} .
$$

- Lower bound: Number of graphs is bounded by number of induced subgraphs:

$$
\frac{2^{\binom{n}{2}}}{n!} \leq\binom{ N}{n}<\frac{N^{n}}{n!} .
$$

- Upper bound: Construction based on starting with a tournament.

Chung, "Universal graphs and induced

 universal graphs"Considered several families including trees, planar graphs, graphs with bounded arboricity.
Theorem
Let F be an induced universal graph for \mathcal{F}. If every graph in \mathcal{H} can be edge-partitioned into k graphs in \mathcal{F}, then there is an induced universal graph H where

$$
|\mathrm{V}(\mathrm{H})| \leq|\mathrm{V}(\mathrm{~F})|^{k} \text { and }|\mathrm{E}(\mathrm{H})| \leq \mathrm{k}|\mathrm{E}(\mathrm{~F})||\mathrm{V}(\mathrm{~F})|^{2 k-2} .
$$

Note: This theorem can be easily generalized to multigraphs, directed graphs, hypergraphs, and also can decompose into different families.

