List Hadwiger conjecture and extremal K_5 -minor-free graphs with fixed girth

János Barát

Monash University, Melbourne, Australia

2013.07.30.

joint work with David R. Wood

Concepts

Concepts

Contraction of an edge

Concepts

Contraction of an edge

G contains H as a minor

The choosability $\chi_{\ell}(G)$ of a graph G is the minimum k such that having k available colours at each vertex guarantees a proper colouring.

The choosability $\chi_{\ell}(G)$ of a graph G is the minimum k such that having k available colours at each vertex guarantees a proper colouring.

List Hadwiger Conjecture

Every K_t -minor-free graph is *t*-list-colourable.

The choosability $\chi_{\ell}(G)$ of a graph G is the minimum k such that having k available colours at each vertex guarantees a proper colouring.

List Hadwiger Conjecture

Every K_t -minor-free graph is *t*-list-colourable.

Weak List Hadwiger Conjecture

There exists a constant c such that every K_t -minor-free graph is ct-choosable.

The choosability $\chi_{\ell}(G)$ of a graph G is the minimum k such that having k available colours at each vertex guarantees a proper colouring.

List Hadwiger Conjecture

Every K_t -minor-free graph is *t*-list-colourable.

Weak List Hadwiger Conjecture

There exists a constant c such that every K_t -minor-free graph is ct-choosable.

KM: c = 3/2, W: c = 1.

Thomassen 1994

Every planar graph is 5-list-colourable.

Thomassen 1994

Every planar graph is 5-list-colourable.

Linusson, Wood 2010

Every K_5 -minor-free graph is 5-list-colourable.

Thomassen 1994

Every planar graph is 5-list-colourable.

Linusson, Wood 2010

Every K_5 -minor-free graph is 5-list-colourable.

Barát, Joret, Wood 2011

There is a K_{3t+2} -minor-free graph that is not 4*t*-choosable.

Thomassen 1994

Every planar graph is 5-list-colourable.

Linusson, Wood 2010

Every K_5 -minor-free graph is 5-list-colourable.

Barát, Joret, Wood 2011

There is a K_{3t+2} -minor-free graph that is not 4t-choosable.

New Conjecture: c = 4/3.

Lower bound

There exists a K_6 -minor-free graph that is not 5-list-colourable.

Lower bound

There exists a K_6 -minor-free graph that is not 5-list-colourable.

Upper bound

Mader: every K_6 -minor-free graph is 7-degenerate, therefore 8-choosable.

Lower bound

There exists a K_6 -minor-free graph that is not 5-list-colourable.

Upper bound

Mader: every K_6 -minor-free graph is 7-degenerate, therefore 8-choosable.

Conjecture

Every K_6 -minor-free graph is 7-list-colourable.

Lower bound

There exists a K_6 -minor-free graph that is not 5-list-colourable.

Upper bound

Mader: every K_6 -minor-free graph is 7-degenerate, therefore 8-choosable.

Conjecture

Every K_6 -minor-free graph is 7-list-colourable.

Conjecture

Every K_6 -minor-free graph is 6-degenerate.

Lower bound

There exists a K_6 -minor-free graph that is not 5-list-colourable.

Upper bound

Mader: every K_6 -minor-free graph is 7-degenerate, therefore 8-choosable.

Conjecture

Every K_6 -minor-free graph is 7-list-colourable.

Conjecture

Every K_6 -minor-free graph is 6-degenerate.

Conjecture

Every K_6 -minor-free graph is 6-list-colourable.

Summary of things

Summary of things

The girth of a graph is the length of its shortest cycle, denoted as g.

The girth of a graph is the length of its shortest cycle, denoted as g.

	planar	<mark>K</mark> ₅-mf	<mark>K</mark> ₀-mf	toroidal
general	5	5	6,7,8	6 ex <i>K</i> ₇
girth 5	3	3	3,4,5,6,7,8	conj 3
girth 4	4	4	5,6,7,8	4
bipartite	3	4	5,6,7,8	?

K₅-minor-free

K₅-minor-free

Planarity criterion by minors

A graph is planar if and only if it is K_5 -minor-free and $K_{3,3}$ -minor-free.

K₅-minor-free

Planarity criterion by minors

A graph is planar if and only if it is K_5 -minor-free and $K_{3,3}$ -minor-free.

Easy consequence of Euler's formula

Planar graphs can have at most 3n - 6 edges.

n is the number of vertices, m the number of edges in G

Wagner's characterisation

Wagner's characterisation

Wagner 1937

Every edge-maximal K_5 -minor-free graph can be built recursively from planar triangulations and V_8 by (≤ 3)-sums.

Wagner's characterisation

Wagner 1937

Every edge-maximal K_5 -minor-free graph can be built recursively from planar triangulations and V_8 by (≤ 3)-sums.

corollary

Any K_5 -minor-free graph can have at most 3n - 6 edges.

Fundamental question

Let G be a K_5 -minor-free graph that has girth g. What is the maximum number of edges in G? What are the extremal graphs?

Fundamental question

Let G be a K_5 -minor-free graph that has girth g. What is the maximum number of edges in G? What are the extremal graphs?

g = 3

corollary of Wagner's Thm

The maximum number of edges in a K_5 -minor-free graph of girth 3 is 3n - 6.

Fundamental question

Let G be a K_5 -minor-free graph that has girth g. What is the maximum number of edges in G? What are the extremal graphs?

g = 3

corollary of Wagner's Thm

The maximum number of edges in a K_5 -minor-free graph of girth 3 is 3n - 6.

proposition

For g = 4 the answer is 3n - 9. The extremal graphs are $K_{3,n-3}$.

Mader's idea

Let $d \ge 3$ and $k \ge 1$. If G is a graph with minimum degree d and girth at least 8k + 3, then G has a minor with minimum degree $d(d - 1)^k$.

Mader's idea

Let $d \ge 3$ and $k \ge 1$. If G is a graph with minimum degree d and girth at least 8k + 3, then G has a minor with minimum degree $d(d - 1)^k$.

For k = 1 and d = 3 it gives a minor with minimum degree 6. Using the extremal number for K_5 -mf graphs, every such graph must have a K_5 -minor.

Mader's idea

Let $d \ge 3$ and $k \ge 1$. If G is a graph with minimum degree d and girth at least 8k + 3, then G has a minor with minimum degree $d(d - 1)^k$.

For k = 1 and d = 3 it gives a minor with minimum degree 6. Using the extremal number for K_5 -mf graphs, every such graph must have a K_5 -minor.

If G is K_5 -mf and has girth at least 11, then it must have a vertex of degree 2.

Mader's idea

Let $d \ge 3$ and $k \ge 1$. If G is a graph with minimum degree d and girth at least 8k + 3, then G has a minor with minimum degree $d(d - 1)^k$.

For k = 1 and d = 3 it gives a minor with minimum degree 6. Using the extremal number for K_5 -mf graphs, every such graph must have a K_5 -minor.

If G is K_5 -mf and has girth at least 11, then it must have a vertex of degree 2.

proposition

Every K_5 -minor free graph of girth 6 has a vertex of degree 2. Every K_5 -minor free graph of girth 4 has a vertex of degree 3.

Mader's idea

Let $d \ge 3$ and $k \ge 1$. If G is a graph with minimum degree d and girth at least 8k + 3, then G has a minor with minimum degree $d(d - 1)^k$.

For k = 1 and d = 3 it gives a minor with minimum degree 6. Using the extremal number for K_5 -mf graphs, every such graph must have a K_5 -minor.

If G is K_5 -mf and has girth at least 11, then it must have a vertex of degree 2.

proposition

Every K_5 -minor free graph of girth 6 has a vertex of degree 2. Every K_5 -minor free graph of girth 4 has a vertex of degree 3.

guess

Every K_5 -minor free graph with girth at least 5 has a vertex of degree at most 2.

guess

Every K_5 -minor free graph with girth at least 5 has a vertex of degree at most 2.

guess

Every K_5 -minor free graph with girth at least 5 has a vertex of degree at most 2.

There is a list-colouring evidence for this conjecture.

guess

Every K_5 -minor free graph with girth at least 5 has a vertex of degree at most 2.

There is a list-colouring evidence for this conjecture.

Counterexample: the dodecahedron is a cubic planar graph of girth 5.

guess

Every K_5 -minor free graph with girth at least 5 has a vertex of degree at most 2.

There is a list-colouring evidence for this conjecture. Counterexample: the dodecahedron is a cubic planar graph of girth 5.

better guess

Every K_5 -minor free graph with girth at least 5 has a vertex of degree at most 2 or is planar.

Conjecture falls

Conjecture falls

conjecture

Every K_5 -minor free graph with girth at least 5 has a vertex of degree at most 2 or is planar.

Conjecture falls

conjecture

Every K_5 -minor free graph with girth at least 5 has a vertex of degree at most 2 or is planar.

The girth at least 5 condition implies that $2m \ge 5f$, where f is the number of faces.

The girth at least 5 condition implies that $2m \ge 5f$, where f is the number of faces.

Euler's formula implies 5n - 5m + 5f = 10 and therefore $3m \le 5n - 10$.

The girth at least 5 condition implies that $2m \ge 5f$, where f is the number of faces.

Euler's formula implies 5n - 5m + 5f = 10 and therefore $3m \le 5n - 10$. At some point we wrongly conjectured $4m \le 7n - 13$ to be the extremal number for K_5 -minor-free.

The girth at least 5 condition implies that $2m \ge 5f$, where f is the number of faces.

Euler's formula implies 5n - 5m + 5f = 10 and therefore $3m \le 5n - 10$. At some point we wrongly conjectured $4m \le 7n - 13$ to be the extremal number for K_5 -minor-free.

n=	4	5	6	7	8	9	10	11	12	13	14	15
planar	3	5	6	8	10	11	13	15	16	18	20	21
w/conj	3	5	7	9	10	12	14	16	17	19	21	23
<mark>K</mark> ₅-mf	3	5	6	8	10	12	14	15	17	19	21	22

Non-planar constructions

Non-planar constructions

The gadgets and the theorem

The gadgets and the theorem

The gadgets and the theorem

Theorem (JB, David Wood '13+)

If G is a K₅-minor-free graph of girth 5 with n vertices and m edges and $n \ge 4$, then $5m \le 9n - 21$ except that 5m(G) = 9n(G) - 20 when G is C_5 or the Petersen graph with one edge deleted.