Clumsy Packings with Polyominoes

Maria Axenovich
 Torsten Ueckerdt*
 Stefan Walzer

Department of Mathematics, Karlsruhe Institute of Technology

packed packings

(many applications, papers, results ...)
reload.8r4d.com

clumsy packings

(very little known, This talk ...)

packed packings

(many applications, papers, results ...)
reload.8r4d.com

Clumsy Packings with Polyominoes

I. Introduction

- Definitions \& Examples

II. Results

- Extremal Questions
- Aperiodic Clumsy Packings
- Undecidability

Example \& Definitions

Example \& Definitions

Example \& Definitions

packing $P=$ maximal set of disjoint copies from \mathcal{D}
$\operatorname{density}(P)=\lim _{n \rightarrow \infty} \frac{\text { area covered by } P \text { in } n \text {-ball }}{\text { area of } n \text {-ball }}$
clumsiness $(\mathcal{D})=$ minimum density of a packing
palette \mathcal{D}

Example \& Definitions

Example \& Definitions

packing $P=$ maximal set of disjoint copies from \mathcal{D}
density $(P)=\lim _{n \rightarrow \infty} \frac{\text { area covered by } P \text { in } n \text {-ball }}{\text { area of } n \text {-ball }}$
clumsiness $(\mathcal{D})=$ minimum density of a packing
\square
m.(Gyárfás, Lehel, Tuza 1988)

$$
\operatorname{clumsiness}(\square, \square)=2 / 3
$$

More Examples

$\operatorname{clumsiness}(\underbrace{\square}_{k})=\frac{k}{2 k-1} \approx 1 / 2$

More Examples

$\operatorname{clumsiness}(\underbrace{\square}_{k})=\frac{k}{2 k-1} \approx 1 / 2$

More Examples

$\operatorname{clumsiness}(\underbrace{\square}_{k})=\frac{k}{2 k-1} \approx 1 / 2$

Clumsy Packings with Polyominoes

I. Introduction

- Definitions \& Examples

II. Results

- Extremal Questions
- Aperiodic Clumsy Packings

- Undecidability

The Clumsiest Polyomino

What is the smallest clumsiness if \mathcal{D} is a single polyomino of size k ?

$\operatorname{clumsiness}(\overbrace{\square}^{k})$

$$
=\frac{k}{2 k-1} \approx 1 / 2
$$

The Clumsiest Polyomino

What is the smallest clumsiness if \mathcal{D} is a single polyomino of size k ?

clumsiness $(\overbrace{\sim}^{k})$
clumsiness $(\boxed{\square})$
$=\frac{k}{2 k-1} \approx 1 / 2$

$$
\begin{aligned}
& =\frac{k}{k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2}} \\
& \quad \approx 2 / k
\end{aligned}
$$

The Clumsiest Polyomino

What is the smallest clumsiness if \mathcal{D} is a single polyomino of size k ?

clumsiness $(\square \square)$
clumsiness $(\boxed{\square})$
$=\frac{k}{k^{2}-k+1} \approx 1 / k$

$$
\begin{gathered}
=\frac{k}{k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2}} \\
\quad \approx 2 / k
\end{gathered}
$$

The Clumsiest Polyomino

Theorem. Let D be a single polyomino of size k. Then
\triangleright clumsiness $(D) \geq k /\left(k^{2}-k+1\right)$.
\triangleright clumsiness $(D) \geq k /\left(k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2}\right)$,
if D is connected.
Both bounds are best possible.

The Clumsiest Polyomino

Theorem. Let D be a single polyomino of size k. Then
\triangleright clumsiness $(D) \geq k /\left(k^{2}-k+1\right) . \approx 1 / k$
\triangleright clumsiness $(D) \geq k /\left(k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2}\right)$,

$$
\approx 2 / k \quad \text { if } D \text { is connected. }
$$

Both bounds are best possible.

The Clumsiest Polyomino

Theorem. Let D be a single polyomino of size k. Then
\triangleright clumsiness $(D) \geq k /\left(k^{2}-k+1\right) . \approx 1 / k$
\triangleright clumsiness $(D) \geq k /\left(k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2}\right)$,

$$
\approx 2 / k \quad \text { if } D \text { is connected. }
$$

Both bounds are best possible.

Lemma. Let D be a single polyomino of size k. Then
$\triangleright D$ intersects $\leq k^{2}-k+1$ copies of itself. $\approx k^{2}$
$\triangleright D$ intersects $\leq k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2}$ copies, $\approx k^{2} / 2$ if D is connected.

Both bounds are best possible.

Proof of Lemma

Lemma. A polyomino of size k intersects at most $k^{2}-k+1$ copies of itself (including itself).
fix D

Proof of Lemma

Lemma. A polyomino of size k intersects at most $k^{2}-k+1$ copies of itself (including itself).
fix D

D^{\prime} intersects D

Proof of Lemma

Lemma. A polyomino of size k intersects at most $k^{2}-k+1$ copies of itself (including itself).

D^{\prime} intersects D
cell c_{i} of D coincides with cell c_{j} of D^{\prime}

Proof of Lemma

Lemma. A polyomino of size k intersects at most $k^{2}-k+1$ copies of itself (including itself).

cell c_{i} of D coincides with cell c_{j} of D^{\prime}
$c_{i}-c_{j}$ is a difference in D

Examles of intersections of polyominoes with themselves.

Examles of intersections of polyominoes with themselves.

Examles of intersections of polyominoes with themselves.

12	3	4	5	6	7	8	9	10	1112	13

Examles of intersections of polyominoes with themselves.

12	3	4	5	6	7	8	9
10112	13						

Proof of Lemma (general case)

Lemma. In a polyomino of size k there are at most $k^{2}-k+1$ distinct differences.

- There are k^{2} differences $c_{i}-c_{j}$.
- The k differences $c_{i}-c_{i}$ are the same.

Thm.(Singer 1938) For every prime power n there is a set S_{n} of $n+1$ numbers in $\mathbb{Z}_{n^{2}+n+1}$ such that every non-zero difference modulo $n^{2}+n+1$ occurs exactly once in S_{n}.

$$
\text { E.g. } S_{2}=\{1,2,4\} \text { and } S_{3}=\{1,2,4,8,13\}
$$

Proof of Lemma (general case)

Lemma. In a polyomino of size k there are at most $k^{2}-k+1$ distinct differences.

- There are k^{2} differences $c_{i}-c_{j}$.
- The k differences $c_{i}-c_{i}$ are the same.

Thm.(Singer 1938) For every prime power n there is a set S_{n} of $n+1$ numbers in $\mathbb{Z}_{n^{2}+n+1}$ such that every non-zero difference modulo $n^{2}+n+1$ occurs exactly once in S_{n}.

$$
\text { E.g. } S_{2}=\{1,2,4\} \text { and } S_{3}=\{1,2,4,8,13\}
$$

Proof of Lemma (general case)

Lemma. In a polyomino of size k there are at most $k^{2}-k+1$ distinct differences.

- There are k^{2} differences $c_{i}-c_{j}$.
- The k differences $c_{i}-c_{i}$ are the same.

Thm.(Singer 1938) For every prime power n there is a set S_{n} of $n+1$ numbers in $\mathbb{Z}_{n^{2}+n+1}$ such that every non-zero difference modulo $n^{2}+n+1$ occurs exactly once in S_{n}.

$$
\text { E.g. } S_{2}=\{1,2,4\} \text { and } S_{3}=\{1,2,4,8,13\}
$$

Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most

$$
k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2} \text { distinct differences. }
$$

\triangleright Fix a tree T.

Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most

$$
k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2} \text { distinct differences. }
$$

\triangleright Fix a tree T.
\triangleright Fix a difference d.

Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most

$$
k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2} \text { distinct differences. }
$$

\triangleright Fix a tree T.
\triangleright Fix a difference d.
\triangleright Move d along T if possible on both ends.
\triangleright Record all starting points.

Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most

$$
k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2} \text { distinct differences. }
$$

\triangleright Fix a tree T.
\triangleright Fix a difference d.
\triangleright Move d along T if possible on both ends.
\triangleright Record all starting points.

Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most

$$
k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2} \text { distinct differences. }
$$

\triangleright Fix a tree T.
\triangleright Fix a difference d.
\triangleright Move d along T if possible on both ends.
\triangleright Record all starting points.

Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most

$$
k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2} \text { distinct differences. }
$$

\triangleright Fix a tree T.
\triangleright Fix a difference d.
\triangleright Move d along T if possible on both ends.
\triangleright Record all starting points.

Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most

$$
k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2} \text { distinct differences. }
$$

\triangleright Fix a tree T.
\triangleright Fix a difference d.
\triangleright Move d along T if possible on both ends.
\triangleright Record all starting points.

Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most

$$
k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2} \text { distinct differences. }
$$

\triangleright Fix a tree T.
\triangleright Fix a difference d.
\triangleright Move d along T if possible on both ends.
\triangleright Record all starting points.

Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most

$$
k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2} \text { distinct differences. }
$$

\triangleright Fix a tree T.
\triangleright Fix a difference d.
\triangleright Move d along T if possible on both ends.
\triangleright Record all starting points.

Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most

$$
k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2} \text { distinct differences. }
$$

\triangleright Fix a tree T.
\triangleright Fix a difference d.
\triangleright Move d along T if possible on both ends.
\triangleright Record all starting points.

Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most

$$
k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2} \text { distinct differences. }
$$

\triangleright Fix a tree T.
\triangleright Fix a difference d.
\triangleright Move d along T if possible on both ends.
\triangleright Record all starting points.

Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most

$$
k^{2}-\lfloor(k-1) / 2\rfloor^{2}-\lceil(k-1) / 2\rceil^{2} \text { distinct differences. }
$$

\triangleright Fix a tree T.
\triangleright Fix a difference d.
\triangleright Move d along T if possible on both ends.
\triangleright Record all starting points.
$\#$ differences $\leq k^{2}-\#(\bullet \bullet)^{2}-\#(\emptyset)^{2}$

The Clumsiest Set of Polyominoes

The clumsiest polyomino of size k has clumsiness $\frac{k}{k^{2}-\lfloor(k-1) / 2\rfloor^{2}-[(k-1) / 2\rceil^{2}} \approx 2 / k$.

clumsiness $\leq \frac{2 k}{k(k-1)+1} \approx 2 / k$

Open Question: What is the clumsiest set of polyominoes each of size at most k ?

Clumsy Packings with Polyominoes

I. Introduction

- Definitions \& Examples

II. Results

- Extremal Questions
- Aperiodic Clumsy Packings
- Undecidability

Almost-Clumsy Periodic Packings

- Does there always exist a periodic clumsy packing?

Almost-Clumsy Periodic Packings

- Does there always exist a periodic clumsy packing?

Theorem. For every palette \mathcal{D} and every $\varepsilon>0$ there exists a periodic packing P s.t. density $(P) \leq \operatorname{clumsiness}(\mathcal{D})+\varepsilon$.

Almost-Clumsy Periodic Packings

- Does there always exist a periodic clumsy packing?

Theorem. For every palette \mathcal{D} and every $\varepsilon>0$ there exists a periodic packing P s.t. density $(P) \leq$ clumsiness $(\mathcal{D})+\varepsilon$.

clumsy packing

Almost-Clumsy Periodic Packings

- Does there always exist a periodic clumsy packing?

Theorem. For every palette \mathcal{D} and every $\varepsilon>0$ there exists a periodic packing P s.t. density $(P) \leq$ clumsiness $(\mathcal{D})+\varepsilon$.

clumsy packing

Almost-Clumsy Periodic Packings

- Does there always exist a periodic clumsy packing?

Theorem. For every palette \mathcal{D} and every $\varepsilon>0$ there exists a periodic packing P s.t. density $(P) \leq \operatorname{clumsiness}(\mathcal{D})+\varepsilon$.

clumsy packing

ε-clumsy periodic packing

Almost-Clumsy Periodic Packings

- Does there always exist a periodic clumsy packing?

Theorem. For every palette \mathcal{D} and every $\varepsilon>0$ there exists a periodic packing P s.t. density $(P) \leq \operatorname{clumsiness}(\mathcal{D})+\varepsilon$.

clumsy packing

ε-clumsy periodic packing

Aperiodic Clumsy Packings

. Does there always exist a periodic clumsy packing?

Aperiodic Clumsy Packings

. Does there always exist a periodic clumsy packing? 0 !

Aperiodic Clumsy Packings

- Does there always exist a periodic clumsy packing P !

Theorem. There exists a palette $\mathcal{D},|\mathcal{D}|=14$ such that every clumsy packing is aperiodic.

Aperiodic Clumsy Packings

- Does there always exist a periodic clumsy packing 10 !

Theorem. There exists a palette $\mathcal{D},|\mathcal{D}|=14$ such that every clumsy packing is aperiodic.

Wang Tiles

Wang Tiles

- Wang Tiling

Wang Tiles

Thm.(Culik 1996) There exists a set of 13 Wang tiles such that every Wang tiling is aperiodic.

Thm.(Berger 1966) It is undecidable whether a given set of Wang tiles tiles the plane.

- Wang Tiling

From Wang Tiles to Polyominoes

From Wang Tiles to Polyominoes

From Wang Tiles to Polyominoes

- Palette $=$ Wang-polyominoes + bad x-by- x square

From Wang Tiles to Polyominoes

- Palette $=$ Wang-polyominoes + bad x-by- x square

\triangleright Wang tiling exists $\Rightarrow \operatorname{density}(P)=\frac{20 x-29}{(2 x+5)^{2}}$.
\triangleright Wang tiling does not exist
\Rightarrow "many" bad squares
$\Rightarrow \operatorname{density}(P)>\frac{20 x-29}{(2 x+5)^{2}}$.

Wang Tiles

Thm.(Culik 1996) There exists a set of 13 Wang tiles such that every Wang tiling is aperiodic.

Thm.(Berger 1966) It is undecidable whether a given set of Wang tiles tiles the plane.

Polyominoes

Theorem. There exists a set of 14 polyominoes such that every clumsy packing is aperiodic.

Theorem. For some $q \in \mathbb{Q}$ it is undecidable whether a given set of polyominoes has clumsiness at most q.

Clumsy Packings with Polyominoes

Thank you for your attention!

Maria Axenovich
maria.aksenovich@kit.edu

Torsten Ueckerdt*
torsten.ueckerdt@kit.edu

Stefan Walzer
stefan.walzer@student.kit.edu

Department of Mathematics, Karlsruhe Institute of Technology

Summary and Open Problems

Thm. The clumsiest connected polyomino of size k has clumsiness $\approx 2 / k$.

- Open: What is the clumsiest set of polyominoes each of size k ?
Open: What if we allow rotations?
Thm. For every $\varepsilon>0$ there exist a periodic packing P such that density $(P) \leq$ clumsiness $+\varepsilon$.

Thm. Sometimes all clumsy packings are aperiodic.
Thm. Computing clumsiness is undecidable for some $q \in \mathbb{Q}$.

- Open: What about other rational numbers q ?

