Clumsy Packings with Polyominoes

Maria Axenovich Torsten Ueckerdt* Stefan Walzer

Department of Mathematics, Karlsruhe Institute of Technology

maria.aksenovich@kit.edu

torsten.ueckerdt@kit.edu

stefan.walzer@student.kit.edu

packed packings (many applications, papers, results ...)

reload.8r4d.com

clumsy packings (very little known, This talk ...)

theworststuffever.com

packed packings

(many applications, papers, results ...)

reload.8r4d.com

Clumsy Packings with Polyominoes

I. Introduction

Definitions & Examples

II. Results

- Extremal Questions
- Aperiodic Clumsy Packings
- Undecidability

More Examples

$$\mathsf{clumsiness}\Big(\underbrace{\qquad}_{k}\Big) = \frac{k}{2k-1} \approx 1/2$$

More Examples

$$\mathsf{clumsiness}\left(\underbrace{\qquad}_{k}\right) = \frac{k}{2k-1} \approx 1/2$$

			_					
				_	_			E
					_			C
E		_				_		Γ
								H
			_		_			

More Examples

$$\mathsf{clumsiness}\left(\underbrace{\qquad}_{k}\right) = \frac{k}{2k-1} \approx 1/2$$

Clumsy Packings with Polyominoes

I. Introduction

Definitions & Examples

II. Results

- Extremal Questions
- Aperiodic Clumsy Packings
- Undecidability

What is the smallest clumsiness if \mathcal{D} is a single polyomino of size k?

What is the smallest clumsiness if \mathcal{D} is a single polyomino of size k?

What is the smallest clumsiness if \mathcal{D} is a single polyomino of size k?

• **Theorem.** Let D be a single polyomino of size k. Then $\triangleright \operatorname{clumsiness}(D) \ge k/(k^2 - k + 1).$ $\triangleright \operatorname{clumsiness}(D) \ge k/(k^2 - \lfloor (k-1)/2 \rfloor^2 - \lceil (k-1)/2 \rceil^2),$ if D is connected.

Both bounds are best possible.

Lemma. Let D be a single polyomino of size k. Then $\triangleright D$ intersects $\leq k^2 - k + 1$ copies of itself. $\approx k^2$ $\triangleright D$ intersects $\leq k^2 - \lfloor (k-1)/2 \rfloor^2 - \lceil (k-1)/2 \rceil^2$ copies, $\approx k^2/2$ if D is connected. Both bounds are best possible.

Lemma. A polyomino of size k intersects at most $k^2 - k + 1$ copies of itself (including itself).

Lemma. A polyomino of size k intersects at most $k^2 - k + 1$ copies of itself (including itself).

D' intersects D

Lemma. A polyomino of size k intersects at most $k^2 - k + 1$ copies of itself (including itself).

D' intersects D

cell c_i of D coincides with cell c_j of D'

Lemma. A polyomino of size k intersects at most $k^2 - k + 1$ copies of itself (including itself).

D' intersects D

cell c_i of D coincides with cell c_j of D'

 $c_i - c_j$ is a difference in D

Proof of Lemma (general case)

Lemma. In a polyomino of size k there are at most $k^2 - k + 1$ distinct differences.

• There are
$$k^2$$
 differences $c_i - c_j$.

• The k differences $c_i - c_i$ are the same.

Thm.(Singer 1938) For every prime power n there is a set S_n of n + 1 numbers in \mathbb{Z}_{n^2+n+1} such that every non-zero difference modulo $n^2 + n + 1$ occurs exactly once in S_n .

E.g.
$$S_2 = \{1, 2, 4\}$$
 and $S_3 = \{1, 2, 4, 8, 13\}$

5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1

Proof of Lemma (general case)

Lemma. In a polyomino of size k there are at most $k^2 - k + 1$ distinct differences.

• There are
$$k^2$$
 differences $c_i - c_j$.

• The k differences $c_i - c_i$ are the same.

Thm.(Singer 1938) For every prime power n there is a set S_n of n + 1 numbers in \mathbb{Z}_{n^2+n+1} such that every non-zero difference modulo $n^2 + n + 1$ occurs exactly once in S_n .

E.g.
$$S_2 = \{1, 2, 4\}$$
 and $S_3 = \{1, 2, 4, 8, 13\}$

Proof of Lemma (general case)

Lemma. In a polyomino of size k there are at most $k^2 - k + 1$ distinct differences.

• There are
$$k^2$$
 differences $c_i - c_j$.

• The k differences $c_i - c_i$ are the same.

Thm.(Singer 1938) For every prime power n there is a set S_n of n + 1 numbers in \mathbb{Z}_{n^2+n+1} such that every non-zero difference modulo $n^2 + n + 1$ occurs exactly once in S_n .

E.g.
$$S_2 = \{1, 2, 4\}$$
 and $S_3 = \{1, 2, 4, 8, 13\}$

5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1

Lemma. A connected polyomino of size k has at most $k^2 - \lfloor (k-1)/2 \rfloor^2 - \lceil (k-1)/2 \rceil^2$ distinct differences.

 \triangleright Fix a tree T.

Lemma. A connected polyomino of size k has at most $k^2 - \lfloor (k-1)/2 \rfloor^2 - \lceil (k-1)/2 \rceil^2$ distinct differences.

 \triangleright Fix a tree T.

 \triangleright Fix a difference d.

- \triangleright Fix a tree T.
- \triangleright Fix a difference d.
- $\label{eq:move_d_along} \mathsf{D} \ \mathsf{Move} \ d \ \mathsf{along} \ T \\ \mathsf{if} \ \mathsf{possible} \ \mathsf{on} \ \mathsf{both} \ \mathsf{ends}.$
- ▷ Record all starting points.

- \triangleright Fix a tree T.
- \triangleright Fix a difference d.
- $$\label{eq:constraint} \begin{split} & \triangleright \mbox{ Move } d \mbox{ along } T \\ & \mbox{ if possible on both ends.} \end{split}$$
- ▷ Record all starting points.

- \triangleright Fix a tree T.
- \triangleright Fix a difference d.
- $$\label{eq:constraint} \begin{split} & \triangleright \mbox{ Move } d \mbox{ along } T \\ & \mbox{ if possible on both ends.} \end{split}$$
- ▷ Record all starting points.

- \triangleright Fix a tree T.
- \triangleright Fix a difference d.
- $$\label{eq:constraint} \begin{split} & \triangleright \mbox{ Move } d \mbox{ along } T \\ & \mbox{ if possible on both ends.} \end{split}$$
- ▷ Record all starting points.

- \triangleright Fix a tree T.
- \triangleright Fix a difference d.
- $\label{eq:move_d_along} \mathsf{D} \ \mathsf{Move} \ d \ \mathsf{along} \ T \\ \mathsf{if} \ \mathsf{possible} \ \mathsf{on} \ \mathsf{both} \ \mathsf{ends}.$
- ▷ Record all starting points.

- \triangleright Fix a tree T.
- \triangleright Fix a difference d.
- $$\label{eq:constraint} \begin{split} & \triangleright \mbox{ Move } d \mbox{ along } T \\ & \mbox{ if possible on both ends.} \end{split}$$
- ▷ Record all starting points.

- \triangleright Fix a tree T.
- \triangleright Fix a difference d.
- $\label{eq:move_d_along} \mathsf{D} \ \mathsf{Move} \ d \ \mathsf{along} \ T \\ \mathsf{if} \ \mathsf{possible} \ \mathsf{on} \ \mathsf{both} \ \mathsf{ends}.$
- ▷ Record all starting points.

- \triangleright Fix a tree T.
- \triangleright Fix a difference d.
- $$\label{eq:constraint} \begin{split} & \triangleright \mbox{ Move } d \mbox{ along } T \\ & \mbox{ if possible on both ends.} \end{split}$$
- ▷ Record all starting points.

- \triangleright Fix a tree T.
- \triangleright Fix a difference d.
- $$\label{eq:constraint} \begin{split} & \triangleright \mbox{ Move } d \mbox{ along } T \\ & \mbox{ if possible on both ends.} \end{split}$$
- ▷ Record all starting points.

- \triangleright Fix a tree T.
- \triangleright Fix a difference d.
- $$\label{eq:constraint} \begin{split} & \triangleright \mbox{ Move } d \mbox{ along } T \\ & \mbox{ if possible on both ends.} \end{split}$$
- ▷ Record all starting points.

differences
$$\leq k^2 - \#(\bullet \bullet)^2 - \#(\bullet)^2$$

The Clumsiest Set of Polyominoes

Clumsy Packings with Polyominoes

I. Introduction

Definitions & Examples

II. Results

- Extremal Questions
- Aperiodic Clumsy Packings
- Undecidability

Does there always exist a periodic clumsy packing?

• Does there always exist a periodic clumsy packing?

• **Theorem.** For every palette \mathcal{D} and every $\varepsilon > 0$ there exists a periodic packing P s.t. density $(P) \leq \text{clumsiness}(\mathcal{D}) + \varepsilon$.

Does there always exist a periodic clumsy packing?

Theorem. For every palette \mathcal{D} and every $\varepsilon > 0$ there exists a periodic packing P s.t. density $(P) \leq \text{clumsiness}(\mathcal{D}) + \varepsilon$.

clumsy packing

Does there always exist a periodic clumsy packing?

Theorem. For every palette \mathcal{D} and every $\varepsilon > 0$ there exists a periodic packing P s.t. density $(P) \leq \text{clumsiness}(\mathcal{D}) + \varepsilon$.

clumsy packing

Does there always exist a periodic clumsy packing?

• **Theorem.** For every palette \mathcal{D} and every $\varepsilon > 0$ there exists a periodic packing P s.t. density $(P) \leq \text{clumsiness}(\mathcal{D}) + \varepsilon$.

clumsy packing

 $\varepsilon\text{-}\mathsf{clumsy}$ periodic packing

Does there always exist a periodic clumsy packing?

• **Theorem.** For every palette \mathcal{D} and every $\varepsilon > 0$ there exists a periodic packing P s.t. density $(P) \leq \text{clumsiness}(\mathcal{D}) + \varepsilon$.

clumsy packing

 $\varepsilon\text{-clumsy}$ periodic packing

Does there always exist a periodic clumsy packing?

Does there always exist a periodic clumsy packing?

Does there always exist a periodic clumsy packing?

• **Theorem.** There exists a palette $\mathcal{D}, |\mathcal{D}| = 14$ such that every clumsy packing is aperiodic.

Does there always exist a periodic clumsy packing?

• **Theorem.** There exists a palette $\mathcal{D}, |\mathcal{D}| = 14$ such that every clumsy packing is aperiodic.

Wang Tiles

Wang Tiles \times \times \times └ Wang Tiling

Wang Tiles

• **Thm.**(Culik 1996) There exists a set of 13 Wang tiles such that every Wang tiling is aperiodic.

Thm.(Berger 1966) It is undecidable whether a given set of Wang tiles tiles the plane.

Wang Tiling

- Palette = Wang-polyominoes + bad x-by-x square

- ▷ Wang tiling exists ⇒ density(P) = $\frac{20x-29}{(2x+5)^2}$.
- ▷ Wang tiling does not exist ⇒ "many" bad squares ⇒ density(P) > $\frac{20x-29}{(2x+5)^2}$.

Wang Tiles

• **Thm.**(Culik 1996) There exists a set of 13 Wang tiles such that every Wang tiling is aperiodic.

• Thm.(Berger 1966) It is undecidable whether a given set of Wang tiles tiles the plane.

Clumsy Packings with Polyominoes

Thank you for your attention!

Maria Axenovich

Torsten Ueckerdt*

Stefan Walzer

maria.aksenovich@kit.edu

torsten.ueckerdt@kit.edu

stefan.walzer@student.kit.edu

Department of Mathematics, Karlsruhe Institute of Technology

Summary and Open Problems

Thm. The clumsiest connected polyomino of size k has clumsiness $\approx 2/k$.

 Open: What is the clumsiest set of polyominoes each of size k?
 Open: What if we allow rotations?

Thm. For every $\varepsilon > 0$ there exist a periodic packing P such that density $(P) \leq \text{clumsiness } +\varepsilon$.

Thm. Sometimes all clumsy packings are aperiodic.

Thm. Computing clumsiness is undecidable for some $q \in \mathbb{Q}$.

• **Open:** What about other rational numbers q?