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palette D

Example & Definitions

packing P = maximal set of disjoint copies from D

density(P ) = limn→∞
area covered by P in n-ball

area of n-ball

Thm.(Gyárfás, Lehel, Tuza 1988)

clumsiness
(

,
)
= 2/3.

clumsiness(D) = minimum density of a packing
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The Clumsiest Polyomino

Theorem. Let D be a single polyomino of size k. Then

. clumsiness
(
D
)
≥ k/(k2 − k + 1).

. clumsiness
(
D
)
≥ k/(k2−b(k− 1)/2c2−d(k− 1)/2e2),

if D is connected.

Both bounds are best possible.

Lemma. Let D be a single polyomino of size k. Then

. D intersects ≤ k2 − k + 1 copies of itself.

. D intersects ≤ k2 − b(k− 1)/2c2 − d(k− 1)/2e2 copies,
if D is connected.

Both bounds are best possible.

≈ 1/k

≈ 2/k

≈ k2/2

≈ k2
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Proof of Lemma

Lemma. A polyomino of size k intersects at most
k2 − k + 1 copies of itself (including itself).

⇐⇒ ⇐⇒

D′ intersects D
cell ci of D coincides

with cell cj of D′

fix D

D′
ci = (xi, yi)

cj = (xj , yj)

ci − cj is a
difference in D
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Proof of Lemma (general case)

Lemma. In a polyomino of size k there are at most
k2 − k + 1 distinct differences.

There are k2 differences ci − cj .

The k differences ci − ci are the same.

Thm.(Singer 1938) For every prime power n there is a set Sn

of n+ 1 numbers in Zn2+n+1 such that every non-zero
difference modulo n2 + n+ 1 occurs exactly once in Sn.

E.g. S2 = {1, 2, 4} and S3 = {1, 2, 4, 8, 13}
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Proof of Lemma (connected case)

Lemma. A connected polyomino of size k has at most
k2−b(k− 1)/2c2−d(k− 1)/2e2 distinct differences.

. Fix a tree T .

. Fix a difference d.

. Move d along T
if possible on both ends.

. Record all starting points.

# differences ≤ k2 −#
( )2 −#

( )2



The Clumsiest Set of Polyominoes

The clumsiest polyomino
of size k has clumsiness

clumsiness ≤ 2k
k(k−1)+1 ≈ 2/k

Open Question: What is the clumsiest set of polyominoes
each of size at most k?

k
k2−b(k−1)/2c2−d(k−1)/2e2≈ 2/k.
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Wang Tiling

Thm.(Culik 1996) There exists a set of 13 Wang tiles
such that every Wang tiling is aperiodic.

Thm.(Berger 1966) It is undecidable whether a given set
of Wang tiles tiles the plane.
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From Wang Tiles to Polyominoes

. Wang tiling exists
⇒ density(P ) = 20x−29

(2x+5)2 .

. Wang tiling does not exist
⇒ ”many” bad squares
⇒ density(P ) > 20x−29

(2x+5)2 .

Palette = Wang-polyominoes + bad x-by-x square



Wang Tiles

Thm.(Culik 1996) There exists a set of 13 Wang tiles
such that every Wang tiling is aperiodic.

Thm.(Berger 1966) It is undecidable whether a given set
of Wang tiles tiles the plane.

Polyominoes

Theorem. There exists a set of 14 polyominoes
such that every clumsy packing is aperiodic.

Theorem. For some q ∈ Q it is undecidable whether
a given set of polyominoes has clumsiness at most q.
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Summary and Open Problems

Thm. The clumsiest connected polyomino of size k
has clumsiness ≈ 2/k.

Open: What is the clumsiest set of polyominoes
each of size k?

Thm. For every ε > 0 there exist a periodic packing P
such that density(P ) ≤ clumsiness +ε.

Open: What about other rational numbers q?

Thm. Sometimes all clumsy packings are aperiodic.

Thm. Computing clumsiness is undecidable for some q ∈ Q.

Open: What if we allow rotations?
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