The binary paint shop problem *

Stephan Dominique Andres

FernUniversität in Hagen
Lehrgebiet Diskrete Mathematik und Optimierung
MCW 2012, Prague, 30 July - 3 August 2012
(1) The binary paint shop problem and its complexity status
(2) Greedy heuristic
(3) Problems

The binary paint shop problem
The binary paint shop problem and its complexity status
Definition

The binary paint shop problem

Definition

Instances of the binary paint shop problem PPW $(2,1)$ are double occurrence words, i.e. words in which every letter occurs exactly twice, and every letter must be colored red once and blue once, so that the number of color changes is minimized.

The binary paint shop problem
The binary paint shop problem and its complexity status

Definition

The binary paint shop problem

Definition

Instances of the binary paint shop problem PPW $(2,1)$ are double occurrence words, i.e. words in which every letter occurs exactly twice, and every letter must be colored red once and blue once, so that the number of color changes is minimized.

given word: ADEBAFCBCDEF

The binary paint shop problem

Definition

Instances of the binary paint shop problem PPW $(2,1)$ are double occurrence words, i.e. words in which every letter occurs exactly twice, and every letter must be colored red once and blue once, so that the number of color changes is minimized.

given word: ADEBAFCBCDEF

ADEBAFCBCDEF
4 color changes

Definition

Instances of the binary paint shop problem PPW $(2,1)$ are double occurrence words, i.e. words in which every letter occurs exactly twice, and every letter must be colored red once and blue once, so that the number of color changes is minimized.

given word: ADEBAFCBCDEF

ADEBAFCBCDEF

ADEBAFCBCDEF

4 color changes
4 color changes

Definition

Instances of the binary paint shop problem PPW $(2,1)$ are double occurrence words, i.e. words in which every letter occurs exactly twice, and every letter must be colored red once and blue once, so that the number of color changes is minimized.
given word: ADEBAFCBCDEF

ADEBAFCBCDEF

ADEBAFCBCDEF
ADEBAFCBCDEF 2 color changes

The binary paint shop problem
The binary paint shop problem and its complexity status

Definition

Interval representation

A D E B A F C B C D E F

Every interval must be cut an odd number of times.

The binary paint shop problem
The binary paint shop problem and its complexity status

Definition

Interval representation

Every interval must be cut an odd number of times.

The binary paint shop problem
The binary paint shop problem and its complexity status

Definition

Interval representation

Every interval must be cut an odd number of times.

The binary paint shop problem
The binary paint shop problem and its complexity status

Definition

Interval representation

Every interval must be cut an odd number of times.

The binary paint shop problem
The binary paint shop problem and its complexity status
Complexity status
The complexity of the binary paint shop problem

Theorem (Bonsma, Epping, Hochstättler (06); Meunier, Sebő (09))
The binary paint shop problem is $\mathcal{A P} \mathcal{X}$-hard.

The binary paint shop problem
The binary paint shop problem and its complexity status
Complexity status
The complexity of the binary paint shop problem

Theorem (Bonsma, Epping, Hochstättler (06); Meunier, Sebő (09))
The binary paint shop problem is $\mathcal{A P} \mathcal{X}$-hard.

Corollary
The binary paint shop decision problem is $\mathcal{N} \mathcal{P}$-complete.

Theorem (Bonsma, Epping, Hochstättler (06); Meunier, Sebő (09))

The binary paint shop problem is $\mathcal{A P} \mathcal{X}$-hard.

Corollary
The binary paint shop decision problem is $\mathcal{N} \mathcal{P}$-complete.

Problem

Is the binary paint shop problem in $\mathcal{A P \mathcal { X }}$, i.e. is there a (polynomial) constant factor approximation?

Greedy heuristic

Color the first letter red.
Scan the word from left to right, as long possible use the same color.

ABBCDECFGDFHIJKLHKAJIELG

Greedy heuristic

Color the first letter red.
Scan the word from left to right, as long possible use the same color.

AB BCDECFGDFHIJKLHKAJIELG

Greedy heuristic

Color the first letter red.
Scan the word from left to right, as long possible use the same color.

ABBCDE CFGDFHIJKLHKAJIELG

Greedy heuristic

Color the first letter red.
Scan the word from left to right, as long possible use the same color.

ABBCDECFGD FHIJKLHKAJIELG

Greedy heuristic

Color the first letter red.
Scan the word from left to right, as long possible use the same color.

ABBCDECFGDFHIJKL HKAJIELG

Greedy heuristic

Color the first letter red.
Scan the word from left to right, as long possible use the same color.

ABBCDECFGDFHIJKLHK AJIELG

Greedy heuristic

Color the first letter red.
Scan the word from left to right, as long possible use the same color.

ABBCDECFGDFHIJKLHKA JIELG

Greedy heuristic

Color the first letter red.
Scan the word from left to right, as long possible use the same color.

ABBCDECFGDFHIJKLHKAJIEL G

Greedy heuristic

Color the first letter red.
Scan the word from left to right, as long possible use the same color.

ABBCDECFGDFHIJKLHKAJIELG

Optimality of the greedy heuristic

Observation

The greedy heuristic is optimal on instances that do not contain subwords of the form ABBA.

Greedy heuristic

Optimality of the greedy heuristic

Observation

The greedy heuristic is optimal on instances that do not contain subwords of the form ABBA.

A B A C D E B F C G D E F G

Greedy heuristic

Optimality of the greedy heuristic

Observation

The greedy heuristic is optimal on instances that do not contain subwords of the form ABBA.

Greedy heuristic

Optimality of the greedy heuristic

Observation

The greedy heuristic is optimal on instances that do not contain subwords of the form ABBA.

Greedy heuristic

Optimality of the greedy heuristic

Observation

The greedy heuristic is optimal on instances that do not contain subwords of the form ABBA.

Optimality and perfectness of the greedy heuristic

Theorem (Amini, Meunier, Michel, Mohajeri (2010))
The greedy heuristic is optimal on instances that do not contain subwords of the form $A B A C C B$ or $A B B C A C$.

Optimality and perfectness of the greedy heuristic

Theorem (Amini, Meunier, Michel, Mohajeri (2010))

The greedy heuristic is optimal on instances that do not contain subwords of the form $A B A C C B$ or $A B B C A C$.

Theorem (Rautenbach, Szigeti (2012))

The greedy heuristic is optimal on every subword of a word w if and only if w does not contain subwords of the form $A B A C C B$ or $A D D B C C A B$ or $A D D C B C A B$.

Expected number of color changes for the greedy

Theorem (Amini,Meunier, Michel, Mohajeri (2010))

The expected number of color changes for the greedy heuristic on uniformly distributed double occurrence words of the length $2 n$ with n characters is

$$
\mathbb{E}_{n}(g) \leq \frac{2}{3} n
$$

Expected number of color changes for the greedy

Theorem (Amini,Meunier, Michel, Mohajeri (2010))

The expected number of color changes for the greedy heuristic on uniformly distributed double occurrence words of the length $2 n$ with n characters is

$$
\mathbb{E}_{n}(g) \leq \frac{2}{3} n
$$

Conjecture (Amini,Meunier, Michel, Mohajeri (2010))

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_{n}(g)=\frac{1}{2}
$$

On the proof of the conjecture I

Idea: The greedy heuristic ignors the first occurrence of a letter.

ABCZDBEDAECZ

On the proof of the conjecture I

Idea: The greedy heuristic ignors the first occurrence of a letter. Consider the last letter Z of a word.

ABCZDBEDAECZ

On the proof of the conjecture I

Idea: The greedy heuristic ignors the first occurrence of a letter. Consider the last letter Z of a word. If we delete both occurrences of Z, then greedy colors the rest of the word in the same way.

ABC DBEDAEC

On the proof of the conjecture I

Idea: The greedy heuristic ignors the first occurrence of a letter. Consider the last letter Z of a word. If we delete both occurrences of Z, then greedy colors the rest of the word in the same way.

ABCDBE DAEC

Only the second occurrence of Z can create an additional color change.

On the proof of the conjecture I

Idea: The greedy heuristic ignors the first occurrence of a letter. Consider the last letter Z of a word. If we delete both occurrences of Z, then greedy colors the rest of the word in the same way.

ABCDBEZDAECZ

Only the second occurrence of Z can create an additional color change. This happens in about a half of the cases.

Greedy heuristic

On the proof of the conjecture II

Lemma

The greedy heuristic colors the first occurrence of Z red with probability $\frac{n}{2 n-1}$ resp. blue with probability $\frac{n-1}{2 n-1}$.

On the proof of the conjecture II

Lemma

The greedy heuristic colors the first occurrence of Z red with probability $\frac{n}{2 n-1}$ resp. blue with probability $\frac{n-1}{2 n-1}$.

Proof. First occurrence of Z

- at the beginning: Z red -1 case
- after red letter: Z red $-n-1$ cases
- after blue letter: Z blue $-n-1$ cases

First Z red \square, first Z blue $\frac{n-1}{2 n-1}$

Theorem (A, Hochstättler (2011)) The expected number of color changes for the greedy heuristic on uniformly distributed double occurrence words of length $2 n$ with n letters is

$$
\mathbb{E}_{n}(g)=\sum_{k=0}^{n-1} \frac{2 k^{2}-1}{4 k^{2}-1}
$$

First Z red \square, first Z blue $\frac{n-1}{2 n-1}$

Theorem (A, Hochstättler (2011)) The expected number of color changes for the greedy heuristic on uniformly distributed double occurrence words of length $2 n$ with n letters is

$$
\mathbb{E}_{n}(g)=\mathbb{E}_{n-1}(g)+
$$

First Z red \square, first Z blue $\frac{n-1}{2 n-1}$

Theorem (A, Hochstättler (2011)) The expected number of color changes for the greedy heuristic on uniformly distributed double occurrence words of length $2 n$ with n letters is

$$
\mathbb{E}_{n}(g)=\mathbb{E}_{n-1}(g)+\frac{n}{2 n-1} \cdot \frac{n-2}{2 n-3}+
$$

First Z red \square, first Z blue $\frac{n-1}{2 n-1}$

Theorem (A, Hochstättler (2011)) The expected number of color changes for the greedy heuristic on uniformly distributed double occurrence words of length $2 n$ with n letters is

$$
\mathbb{E}_{n}(g)=\mathbb{E}_{n-1}(g)+\frac{n}{2 n-1} \cdot \frac{n-2}{2 n-3}+\frac{n-1}{2 n-1} \cdot \frac{n-1}{2 n-3}
$$

Theorem (A, Hochstättler (2011)) The expected number of color changes for the greedy heuristic on uniformly distributed double occurrence words of length $2 n$ with n letters is

$$
\begin{aligned}
& \mathbb{E}_{n}(g)=\mathbb{E}_{n-1}(g)+\frac{n}{2 n-1} \cdot \frac{n-2}{2 n-3}+\frac{n-1}{2 n-1} \cdot \frac{n-1}{2 n-3} \\
& \stackrel{\text { i.h. }}{=} \\
& \sum_{k=0}^{n-2} \frac{2 k^{2}-1}{4 k^{2}-1}+\frac{n^{2}-2 n}{4 n^{2}-8 n+3}+\frac{n^{2}-2 n+1}{4 n^{2}-8 n+3}
\end{aligned}
$$

Theorem (A, Hochstättler (2011)) The expected number of color changes for the greedy heuristic on uniformly distributed double occurrence words of length $2 n$ with n letters is

$$
\begin{aligned}
\mathbb{E}_{n}(g) & =\mathbb{E}_{n-1}(g)+\frac{n}{2 n-1} \cdot \frac{n-2}{2 n-3}+\frac{n-1}{2 n-1} \cdot \frac{n-1}{2 n-3} \\
& \stackrel{\text { i.h. }}{=} \sum_{k=0}^{n-2} \frac{2 k^{2}-1}{4 k^{2}-1}+\frac{n^{2}-2 n}{4 n^{2}-8 n+3}+\frac{n^{2}-2 n+1}{4 n^{2}-8 n+3} \\
& =\sum_{k=0}^{n-2} \frac{2 k^{2}-1}{4 k^{2}-1}+\frac{2(n-1)^{2}-1}{4(n-1)^{2}-1}=\sum_{k=0}^{n-1} \frac{2 k^{2}-1}{4 k^{2}-1}
\end{aligned}
$$

Greedy heuristic

On the performance of the greedy heuristic

$A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}$

Greedy heuristic

On the performance of the greedy heuristic

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

Greedy heuristic

On the performance of the greedy heuristic

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

Greedy heuristic

On the performance of the greedy heuristic

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

Greedy heuristic

On the performance of the greedy heuristic

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

On the performance of the greedy heuristic

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

On the performance of the greedy heuristic

$$
\begin{aligned}
& A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1} \\
& A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
\end{aligned}
$$

Greedy heuristic

On the performance of the greedy heuristic

$$
\begin{aligned}
& A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1} \\
& A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
\end{aligned}
$$

Greedy: n color changes; Optimal: 3 color changes

On the performance of the greedy heuristic

$$
\begin{aligned}
& A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1} \\
& A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
\end{aligned}
$$

Greedy: n color changes; Optimal: 3 color changes
\Longrightarrow Greedy is not a constant factor approximation

The Red-first heuristic and its performance

Color the first occurrence of every letter red

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

The Red-first heuristic and its performance

Color the first occurrence of every letter red

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

The Red-first heuristic and its performance

Color the first occurrence of every letter red

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

The Red-first heuristic and its performance

Color the first occurrence of every letter red

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

The Red-first heuristic and its performance

Color the first occurrence of every letter red

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

The Red-first heuristic and its performance

Color the first occurrence of every letter red

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

on the worst-case instance of greedy red-first colors optimally!

The Red-first heuristic and its performance

Color the first occurrence of every letter red

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

on the worst-case instance of greedy red-first colors optimally!

$$
B_{1} B_{2} \ldots B_{k} B_{1} B_{k+1} B_{2} B_{k+2} \ldots B_{k} B_{2 k} B_{k+1} B_{k+2} \ldots B_{2 k}
$$

The Red-first heuristic and its performance

Color the first occurrence of every letter red

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

on the worst-case instance of greedy red-first colors optimally!

$$
B_{1} B_{2} \ldots B_{k} B_{1} B_{k+1} B_{2} B_{k+2} \ldots B_{k} B_{2 k} B_{k+1} B_{k+2} \ldots B_{2 k}
$$

The Red-first heuristic and its performance

Color the first occurrence of every letter red

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

on the worst-case instance of greedy red-first colors optimally!

$$
B_{1} B_{2} \ldots B_{k} B_{1} B_{k+1} B_{2} B_{k+2} \ldots B_{k} B_{2 k} B_{k+1} B_{k+2} \ldots B_{2 k}
$$

The Red-first heuristic and its performance

Color the first occurrence of every letter red

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

on the worst-case instance of greedy red-first colors optimally!

$$
B_{1} B_{2} \ldots B_{k} B_{1} B_{k+1} B_{2} B_{k+2} \ldots B_{k} B_{2 k} B_{k+1} B_{k+2} \ldots B_{2 k}
$$

The Red-first heuristic and its performance

Color the first occurrence of every letter red

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

on the worst-case instance of greedy red-first colors optimally!

$$
\begin{aligned}
& B_{1} B_{2} \ldots B_{k} B_{1} B_{k+1} B_{2} B_{k+2} \ldots B_{k} B_{2 k} B_{k+1} B_{k+2} \ldots B_{2 k} \\
& B_{1} B_{2} \ldots B_{k} B_{1} B_{k+1} B_{2} B_{k+2} \ldots B_{k} B_{2 k} B_{k+1} B_{k+2} \ldots B_{2 k}
\end{aligned}
$$

The Red-first heuristic and its performance

Color the first occurrence of every letter red

$$
A_{1} \ldots A_{k} A_{k} A_{k+1} \ldots A_{2 k} A_{2 k} A_{1} A_{k+1} A_{2} A_{k+2} \ldots A_{k-1} A_{2 k-1}
$$

on the worst-case instance of greedy red-first colors optimally!

$$
\begin{aligned}
& B_{1} B_{2} \ldots B_{k} B_{1} B_{k+1} B_{2} B_{k+2} \ldots B_{k} B_{2 k} B_{k+1} B_{k+2} \ldots B_{2 k} \\
& B_{1} B_{2} \ldots B_{k} B_{1} B_{k+1} B_{2} B_{k+2} \ldots B_{k} B_{2 k} B_{k+1} B_{k+2} \ldots B_{2 k}
\end{aligned}
$$

red-first needs $n+1$ color changes; greedy/optimal coloring needs 2
\longrightarrow Red-first is neither a constant factor approximation

Result for the red-first heuristic

Theorem (A, Hochstättler (2011))

The expected number of color changes for the red-first heuristic on an instance of length $2 n$ is

$$
\mathbb{E}_{n}(r f)=\frac{2 n+1}{3}
$$

The binary paint shop problem
Greedy heuristic
Recursive greedy heuristic

Idea to improve the greedy heuristic

AZABBZ

The binary paint shop problem
Greedy heuristic
Recursive greedy heuristic

Idea to improve the greedy heuristic

$A Z A B B Z$

The binary paint shop problem
Greedy heuristic
Recursive greedy heuristic

Idea to improve the greedy heuristic

$A Z A B B Z$

The binary paint shop problem
Greedy heuristic
Recursive greedy heuristic

Idea to improve the greedy heuristic

$A Z A B B Z$

The binary paint shop problem
Greedy heuristic
Recursive greedy heuristic

Idea to improve the greedy heuristic

$A Z A B B Z$

The binary paint shop problem
Greedy heuristic
Recursive greedy heuristic

Idea to improve the greedy heuristic

$A Z A B B Z$

Recursive greedy heuristic:

AZABBZ

The binary paint shop problem
Greedy heuristic
Recursive greedy heuristic

Idea to improve the greedy heuristic

$A Z A B B Z$

Recursive greedy heuristic:
\longrightarrow delete both occurrences of the last letter Z

A $A B B$

The binary paint shop problem
Greedy heuristic
Recursive greedy heuristic

Idea to improve the greedy heuristic

$A Z A B B Z$

Recursive greedy heuristic:
\longrightarrow delete both occurrences of the last letter Z
\longrightarrow color the rest recursively

A A

Idea to improve the greedy heuristic

AZABBZ

Recursive greedy heuristic:
\longrightarrow delete both occurrences of the last letter Z
\longrightarrow color the rest recursively
\longrightarrow if the first Z is in a color change: color in such a way that no additional color changes is created; otherwise color according to greedy

Idea to improve the greedy heuristic

AZABBZ

Recursive greedy heuristic:
\longrightarrow delete both occurrences of the last letter Z
\longrightarrow color the rest recursively
\longrightarrow if the first Z is in a color change: color in such a way that no additional color changes is created; otherwise color according to greedy

$$
A \quad A B B
$$

Idea to improve the greedy heuristic

AZABBZ

Recursive greedy heuristic:
\longrightarrow delete both occurrences of the last letter Z
\longrightarrow color the rest recursively
\longrightarrow if the first Z is in a color change: color in such a way that no additional color changes is created; otherwise color according to greedy

$A Z A B B Z$

Result for the recursive greedy heuristic

Theorem (A, Hochstättler (2011))

For all $n \geq 1$, the expected number $\mathbb{E}_{n}(r g)$ of color changes for the recursive greedy heuristic is bounded by

$$
\frac{2}{5} n+\frac{8}{15} \leq \mathbb{E}_{n}(r g) \leq \frac{2}{5} n+\frac{7}{10} .
$$

Summary

red-first heuristic

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_{n}(r f)=\frac{2}{3}
$$

greedy heuristic

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_{n}(g)=\frac{1}{2}
$$

recursive greedy heuristic $\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_{n}(r g)=\frac{2}{5}$

Summary

red-first heuristic

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_{n}(r f)=\frac{2}{3}
$$

greedy heuristic

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_{n}(g)=\frac{1}{2}
$$

recursive greedy heuristic $\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_{n}(r g)=\frac{2}{5}$

Problem

Find better heuristics (with expected number of color changes $\leq 2 n / 5$).

Summary

red-first heuristic

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_{n}(r f)=\frac{2}{3}
$$

greedy heuristic

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_{n}(g)=\frac{1}{2}
$$

recursive greedy heuristic $\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}_{n}(r g)=\frac{2}{5}$

Problem

Find better heuristics (with expected number of color changes $\leq 2 n / 5$).

Problem

Characterize the instances where the recursive greedy is optimal.

The binary paint shop problem
Problems
Summary

Optimal coloring

Problem

Determine the expected number of color changes for optimal coloring.

Optimal coloring

Problem

Determine the expected number of color changes for optimal coloring.

n	1	2	3	4	5	6	7
$\mathbb{E}($ opt $)$	1	$\frac{4}{3}$	$\frac{26}{15}$	$\frac{223}{105}$	$\frac{2355}{945}$	$\frac{29541}{10395}$	$\frac{429677}{135135}$
$\frac{\mathbb{E} \text { (opt) }}{n}$	1	0.6667	0.5778	0.5310	0.4984	0.4736	0.4542

Optimal coloring

Problem

Determine the expected number of color changes for optimal coloring.

n	1	2	3	4	5	6	7
$\mathbb{E}(o p t)$	1	$\frac{4}{3}$	$\frac{26}{15}$	$\frac{223}{105}$	$\frac{2355}{945}$	$\frac{29541}{10395}$	$\frac{429677}{135135}$
$\frac{\mathbb{E} \text { (opt) }}{n}$	1	0.6667	0.5778	0.5310	0.4984	0.4736	0.4542

Conjecture (Meunier, Neveu (2012))
This number is sublinear in n.

Optimal coloring and heuristics

Remark

In case

- there is a constant factor approximation and
- the expected number of color changes for optimal coloring is sublinear
every constant factor approximation for the binary paint shop problem is (in expectation) a better heuristic than the recursive greedy.

The necklace splitting problem

Given: open necklace of length n with t types of beads, every type i occurs $q a_{i}$ times, q thieves want to cut the necklace in a fair way, so that everyone receives exactly a_{i} beads of every type i.

The necklace splitting problem

Given: open necklace of length n with t types of beads, every type i occurs $q a_{i}$ times, q thieves want to cut the necklace in a fair way, so that everyone receives exactly a_{i} beads of every type i.

(binary paint shop:

$$
\left.t=\frac{n}{2}, q=2, a_{i}=1 .\right)
$$

The necklace splitting problem

Given: open necklace of length n with t types of beads, every type i occurs $q a_{i}$ times, q thieves want to cut the necklace in a fair way, so that everyone receives exactly a_{i} beads of every type i.

(binary paint shop:

$$
\left.t=\frac{n}{2}, q=2, a_{i}=1 .\right)
$$

Theorem (Alon (1987))

There is a solution with at most $(q-1) t$ cuts.

The necklace splitting problem

Given: open necklace of length n with t types of beads, every type i occurs $q a_{i}$ times, q thieves want to cut the necklace in a fair way, so that everyone receives exactly a_{i} beads of every type i.

(binary paint shop:

$$
\left.t=\frac{n}{2}, q=2, a_{i}=1 .\right)
$$

Theorem (Alon (1987))

There is a solution with at most $(q-1) t$ cuts.

This is best possible.

The necklace splitting problem

Given: open necklace of length n with t types of beads, every type i occurs $q a_{j}$ times, q thieves want to cut the necklace in a fair way, so that everyone receives exactly a_{i} beads of every type i.

(binary paint shop:

$$
\left.t=\frac{n}{2}, q=2, a_{i}=1 .\right)
$$

Theorem (Alon (1987))

There is a solution with at most $(q-1) t$ cuts.

This is best possible.

Problem

Is there a polynomial algorithm to determine these cuts?

The necklace splitting problem

Given: open necklace of length n with t types of beads, every type i occurs $q a_{i}$ times, q thieves want to cut the necklace in a fair way, so that everyone receives exactly a_{i} beads of every type i.
(binary paint shop:

$$
\left.t=\frac{n}{2}, q=2, a_{i}=1 .\right)
$$

Theorem (Alon (1987))

There is a solution with at most $(q-1) t$ cuts.

This is best possible.

Problem (Meunier, Neveu (2012))

Is the necklace splitting problem PPAD-complete for $q=2$?

Problem

Is there a polynomial algorithm to determine these cuts?

The binary paint shop problem
Problems
Necklace splitting problem

Thank you!

