
Mareček et al.: Data Structures for Stochastic Scheduling

Data Structures for Stochastic Scheduling
with Applications in GPGPUs

Jakub Mareček

Starting August 7th, 2012
IBM Research, Damastown Industrial Estate, Dublin 15, Ireland

August 2, 2012



Mareček et al.: Data Structures for Stochastic Scheduling

Introduction

In this talk

Introduction:

ARM and GPGPUs

Stochastic task-graph scheduling

The Meat:

Priority queues for scheduling along the critical path

Interval trees for scheduling with multiple resources

The combination of the two and extensions

Acknowledgements



Mareček et al.: Data Structures for Stochastic Scheduling

Motivation

Motivation I: ARM and GPGPUs

ARM

A processor design company

A very successful company (FTSE 100, + 440% in 5yrs)

In Q2 2012, 2B chips were manufactured using ARM IP

General-purpose computing on graphics processing units (GPUs)

In 2011, Mali became the most widely-licensed GPU
architecture

Mali-T658: “desktop-class performance” (8× 512 jobs)

Joint work

Six months on-site in Cambridge (2009, 2010)

Scheduling in OpenCL drivers for Mali GPGPUs, ...



Mareček et al.: Data Structures for Stochastic Scheduling

Motivation

Motivation II: OpenCL

Numerous standards for task- and data- parallel computing

OpenCL is an open standard developed by ARM, AMD/ATI,
IBM, Intel, ..., and nVidia

A brain-child of Apple engineers, who dislike nVidia CUDA

In both CUDA and OpenCL, one can specify data
dependencies between “jobs”:

memobjs[0] = clCreateBuffer(c, ...);
p = clCreateProgramWithSource(c, 1, src, ...);
clBuildProgram(p, ...);
k = clCreateKernel(p, "name", ...);
clSetKernelArg(k, ..., (void *)&memobjs[0]);
event = clEnqueueNDRangeKernel(queue, k, ...);

clFlush(queue);



Mareček et al.: Data Structures for Stochastic Scheduling

Motivation

Motivation III: Scheduling in GPGPUs

Jobs are enqueued in batches, we processes the queue

A DAG capturing data dependencies (“taskgraph”)

Implicit structure in the “taskgraph”

Reliable resource utilisation estimates

depth 0 (ready)

depth 1

depth 2

a

b c

a is at
level 1

G

a

b c

a is at
level 2

G.merge(H,C)

d

e

f

d is at
level 1

b c d

f e

c, d are at
level 1

G.popVertex()



Mareček et al.: Data Structures for Stochastic Scheduling

Motivation

Motivation III: Scheduling in GPGPUs

“Critical path” policies need to maintain longest paths in a DAG:

popVertex: return a source on (one of) the longest path(s)
and delete it together with all out-going edges

merge(H,C): add vertex-disjoint DAG H to the current
DAG G together with |C | “cross” edges from G to H

depth 0 (ready)

depth 1

depth 2

a

b c

a is at
level 1

G

a

b c

a is at
level 2

G.merge(H,C)

d

e

f

d is at
level 1

b c d

f e

c, d are at
level 1

G.popVertex()



Mareček et al.: Data Structures for Stochastic Scheduling

Stochastic Scheduling with Precedencies

Stochastic Scheduling with Precedencies I

n enqueued so far, m jobs scheduled already

G [m, n] is the subgraph induced by vertices {m,m + 1, . . . , n}
corresponding to n −m jobs in the queue

dmn the length of longest path in G [m, n] and βn = E[d1n]/n

Theorem (Attributed to Bruce Hajek by Tsitsiklis et al. (1986))

The limit limn→∞(dmn/n) exists almost surely. Let us use β∗ to
denote the limit for any m where it exists. A system with infinitely
many servers is stable if the arrival rate λ < 1/β∗.



Mareček et al.: Data Structures for Stochastic Scheduling

Stochastic Scheduling with Precedencies

Stochastic Scheduling with Precedencies II

Theorem (Papadimitriou and Tsitsiklis (SICOMP, 1987))

Processing the job with the highest level (“along the critical
path”) first, as soon as any machine is available, is asymptotically
optimal with respect to weighted throughput, under certain
conditions (*), among non-anticipative non-delay non-preemptive
policies and non-anticipative non-delay preemptive policies with
zero cost of preemption.

The conditions (*) are spelled out in the paper. Essentially:

there are jobs with independent identically distributed
processing times, drawn from a common binomial or Poisson
distribution

data dependency graph G is a forest of in-trees.



Mareček et al.: Data Structures for Stochastic Scheduling

The Data Structures

Data Structures for the Critical Path I

The approach:

Dynamic data structures for maintaining both the length of
the longest in-coming path (depth) and the length of the
longest out-going path (level) in each node of a DAG

Dijkstra’s “contraption under gravity” (1960s):

1 traverse the out-going subgraph (“down”) from a vertex along
a topological order of vertices

2 traverse the in-coming subgraph in the reverse direction (“up”)
along a topological order of vertices, updating the level as long
as it is necessary

The non-trivial part is the maintenance of the topological
order of vertices using priority queues.



Mareček et al.: Data Structures for Stochastic Scheduling

The Data Structures

Data Structures for the Critical Path II
The pieces of the puzle:

The maintanence of the topological order using priority queues
Katriel, Michel, Van Hentenryck, Constraints, 2005

Strict Fibonacci heaps
Brodal, Lagogiannis, Tarjan, STOC, 2012

An implementation of strict Fibonacci heaps
Sivr and JM, 2012

Input-output model of analysis
Ramalingam and Reps, TCS, 1996

The overall picture:

Pseudocode and analyses
JM et al, MISTA, 2011

Empirical results etc.
Sivr, JM, 2012



Mareček et al.: Data Structures for Stochastic Scheduling

The Data Structures

Data Structures for the Critical Path III

Table: Upper bounds on the run-time of key operations.

Operation Linked lists Our data structure

merge(H,C) O(|C |n) O(|C | log |C |+ |δ|Q(|δ|) + ||δ||)
popVertex O(n2) O(|δ|Q(|δ|) + ||δ||)
“What next” query O(n2) O(1)
Vertex insertion O(1) O(1)
Edge insertion O(n) O(|δ|Q(|δ|) + ||δ||)
Vertex deletion O(n) O(|δ|Q(|δ|) + ||δ||)

Note n is the number of vertices, |δ| is the number of vertices on the affected longest paths, and ||δ|| is the

number of vertices in the neighbourhoods of the affected vertices. Q(n) is the complexity of insertion and

extraction of an element from a priority queue with n elements.



Mareček et al.: Data Structures for Stochastic Scheduling

The Data Structures

Open Problems I

Open problems in lower bounds:

In prioritising vertices of a DAG, where each vertex is assigned
a priority such that, for each oriented edge (v ,w),
priority(v) < priority(w), there is a lower bound of Ω(n log n)
on the insertion of m edges in a graph on n vertices. Does it
apply when one req. arbitrary edge addition?
Ramalingam and Reps, TCS, 1996

Does the arbitrary edge and vertex addition make a
difference? Can one use some “lazy” approach with the
“queue like” modifications?

Major open problems in priority queues:

an amortised analysis of strict Fibonacci heaps

multi-threaded strict Fibonacci heaps with delayed
self-reorganisation.



Mareček et al.: Data Structures for Stochastic Scheduling

The Data Structures

Open Problems II
Major open problems in stochastic scheduling:

Can the conditions of Papadimitriou and Tsitsiklis (on
processing times, task-graph structure) be relaxed so that the
asymptotic optimality is maintained?
Papadimitriou, Tsitsiklis, SICOMP, 1987

Can one extend the stability results of Hajek to a finite
number of servers?
Tsitsiklis, Papadimitriou, Humblet, Pierre, JACM, 1986

For certain closed queuing systems, the control is
EXP-Complete.
Could the control of certain open queuing systems be
k-EXP-Complete?
Papadimitriou and Tsitsiklis, Math. Oper. Res., 1999

JM, 2010



Mareček et al.: Data Structures for Stochastic Scheduling

The Data Structures

Open Problems III
Further problems in stochastic scheduling:

Stability in realistic models of queuing networks with
depedencies, where there are jobs partitioned into groups.
What if there are no intra-group dependencies and jobs within
each share the dependencies? What if the probability of
dependence of group a on a group b is inversely proportional
to the difference in their release dates ra − rb?

What are the benefits of dynamic scheduling policies, e.g. the
multi-mode multi-armed bandits?
Niño-Mora, ValueTools 2008

Can we exploit structure in the taksgraph? Scheduling along
the critical path is not optimal, when we can make educated
guesses about the future changes of the taskgraph.
Chekuri, Johnson,Motwani, et al., MICRO, 1996



Mareček et al.: Data Structures for Stochastic Scheduling

Packing Boxes into a Large Box

Packing Boxes into a Larger Box

A “box”: orthogonal parallelepiped in dimension d
Large box with d − 1 dimensions known (d − 1 resources)
Smaller non-rotatable boxes (jobs)
“Strip packing” smaller boxes into the larger box



Mareček et al.: Data Structures for Stochastic Scheduling

Packing Boxes into a Large Box

Packing Boxes into a Larger Box

A “box”: orthogonal parallelepiped in dimension d

Large box with d − 1 dimensions known (d − 1 resources)

Smaller non-rotatable boxes (jobs)

“Strip packing” smaller boxes into the larger box

On-line and Stochastic:

Rules for packing the extra box
(e.g. deepest-bottom-left, max-contact)
Burke, Kendall, Whitwell, Oper. Res., 2004

Off-line:

Dynamic programming
Martello, Pisinger, Vigo, Oper. Res., 2000

Local search sequencing boxes and simple rules
Allen, Burke, Kendall, EJOR, 2011

Math. programming uncompetitive until recently
Padberg, Math. Meth. Oper. Res, 2000

Allen, Burke, JM, OR Letters, 2012



Mareček et al.: Data Structures for Stochastic Scheduling

Packing Boxes into a Large Box

Data Structures for the Skyline

Implementations of rules for packing an additional box maintain
the “skyline”, i.e. the (d − 1)D projection of the top-most boxes:



Mareček et al.: Data Structures for Stochastic Scheduling

Packing Boxes into a Large Box

Data Structures for the Skyline

Implementations of rules for packing an additional box maintain the
“skyline”, i.e. the (d − 1)D projection of the top-most boxes:

lowestGaps: return a list of gaps at the lowest position in
the skyline

neighbouringGaps(G ): return gaps touching G that are
at a higher position

splitGap(B,G ): split gap G by packing box B in

changeHeight(G , v): update the height of the skyline after
packing a box

isContained(B,G ): does box B fit gap G



Mareček et al.: Data Structures for Stochastic Scheduling

The Data Structures

Data Structures for the Skyline I

The approach of Allen and Burke (2011):

Maintain the skyline as an ordered list L of (d − 1)D boxes
and their heights, sorted by the heights

Store lines of all (d − 1)D boxes in an interval tree T
interlinked with L

The implementation of interval trees using red-black and AVL
trees is standard
de Berg, Cheong, van Kreveld, Overmars, Springer, 2008

lowestGaps: lookup in the list L

neighbouringGaps(G ): query the interval tree T

changeHeight(G , v): move an element in the list L



Mareček et al.: Data Structures for Stochastic Scheduling

The Data Structures

Data Structures for the Skyline II
Interval trees are a considerable improvement over axis-aligned
bounding-box (AABB) trees, proposed earlier also by Allen et al.

Table: Upper bounds on the run-time of key operations.

Operation AABB Tree Interval Trees

lowestGaps O(log(nd) + k) O(log(n) + k)
isContained O(nd) O(df )
splitGap O(nd2) O(f 2d32d)
neighbouringGaps O(nd) O(df log(f ) + k)
changeHeight O(d log(nd)) O(f 2d32d)

n is the number of boxes, d is the dimension, k is the size of the output, f is the number of facets defining the gap



Mareček et al.: Data Structures for Stochastic Scheduling

The Data Structures

Data Structures for
Taskgraph Scheduling with d − 1 Resources

One should like to combine all of the above

An issue: d-criteria make even shortest paths hard
Papadimitriou, FOCS 2000

An idea: convexify the d-criteria using d-weights,
where the d-weights are obtained by recoding utilisation

Work in progress

The references:

Maintain the skyline using axis-aligned bounding-box trees
Allen, Burke, Kendall, EJOR, 2011

Maintain the skyline using interval trees
Allen, Burke, INFORMS JOC, 2011

The d-criteria critical path and the combined data structure
Kulovaný and JM, 2012



Mareček et al.: Data Structures for Stochastic Scheduling

The Data Structures

More Open Problems I

Open problems:

Are there non-trivial bounds on the numbers of “gaps”?

What is the performance of the “simple rules” (on-line, in the
stochastic model)?

Can the work on 1D reordering buffers be generalised to dD?
Adamaszek et al., STOC, 2011

Is the complexity of packing in the stochastic model still
EXP-Complete?
Papadimitriou and Tsitsiklis, Math. Oper. Res., 1999

Can the work of Okounkov on random plane partitions be
used to describe the performance of randomised algorithms for
packing?



Mareček et al.: Data Structures for Stochastic Scheduling

The Data Structures

More Open Problems II
What if we allow for further, “divisible” resources?
Feldmann, Kao, Sgall, Teng, J. Combin. Optim, 1998

What if we allow for restarts?

What if we allow for a small number of distinct
sequence-dependent set-up times?

What if there is no open dimension, but we allow for multiple,
progressively more conservative estimates of each dimension
(“levels of criticality”) and want to maximise the minimum
“criticality” across boxes packed in?
Baruah et al., IEEE Trans. Computers, 2012



Mareček et al.: Data Structures for Stochastic Scheduling

Conclusions

Acknowledgements

At ARM:

Hedley Francis (GPGPU technical lead)

Anton Lokhmotov (head of a team, GPGPU drivers)

Robert Elliot (implemented the actual scheduler)

At the University of Nottingham:

Edmund K. Burke (former Dean of Science)

Andrew J. Parkes (my other supervisor)

Sam D. Allen (work on n-D packing)

At Czech Technical University:

Jirka Kulovaný (masters dissertation)

Vojta Sivr (masters dissertation)



Mareček et al.: Data Structures for Stochastic Scheduling

Conclusions

Conclusions

The importance of Computer Science in scheduling:
Even “simple” policies require non-trivial implementation

People from the industry may actually read what you write,
but won’t consider it w/o empirical results and pseudocode

There is much more to be done!

Any answers, questions, and comments are very welcome!
jakub@marecek.cz

mailto:jakub@marecek.cz


Mareček et al.: Data Structures for Stochastic Scheduling

Extras

Stochastic Scheduling: Some Definitions I

Long-run properties of “policies”

Weighted throughput of the system for policy π:

J(π) = lim sup
t→∞

1

t

∑
q∈Q

w(q)E[aπq (t)]

where aq is the number of jobs from queue q completed by
time t, and Ci (q) is the completion time of ith job in queue
q, both of which are well-defined random variables, and
0 < α ≤ 1 is the discount rate.



Mareček et al.: Data Structures for Stochastic Scheduling

Extras

Stochastic Scheduling: Some Definitions II
For an objective function f , input σ, and the optimum of f on
σ, OPTf (σ), the asymptotic approximation ratio of policy π
of is:

R∞f (π) = lim sup
n→∞

{
πf (σ)

OPTf (σ)
| OPTf (σ) = n

}
.

Within a family of policies P, policies with approximation
ratio:

R∞f = inf
π∈P

R∞f (π).

are asymptotically optimal.


	Introduction
	Motivation
	Stochastic Scheduling with Precedencies
	The Data Structures
	Packing Boxes into a Large Box
	The Data Structures
	Conclusions
	Extras

