## Simple Treewidth

Torsten Ueckerdt Kolja Knauer Technische Universität Berlin

Midsummer Combinatorial Workshop XVIII, Prague, August 1st, 2012



# Treewidth k-tree • start with $K_{k+1}$ • connect new vertex to sub- $K_k$

# Treewidth k-tree • start with $K_{k+1}$ • connect new vertex to sub- $K_k$







$$\mathsf{tw}(G) \leq k \Leftrightarrow G$$
 subgraph of k-tree



$$\begin{aligned} \mathsf{Stw}(G) \leq k \Leftrightarrow G \text{ subgraph of } k\text{-tree} \\ \overbrace{\textit{simple}} \end{aligned}$$



$$\begin{aligned} \mathsf{Stw}(G) \leq k \Leftrightarrow G \text{ subgraph of } k\text{-tree} \\ \overbrace{\textit{simple}} \end{aligned}$$

# Overview

- Definitions (done)
- Why *stw* is not interesting
- Why stw is interesting
  - How we came across it
  - Relations to Geometry and

Topology

• Problems...



























stw not interesting for asymptotical questions

How we came across *stw* 

#### Intersection graphs of systems of intervals



How we came across stw

#### Intersection graphs of systems of intervals





#### Intersection graphs of systems of intervals



how many intervals per vertex such that G is their intersection graph



simple k-trees form nice simplicial complexes

Def [Below, De Loera, Richter-Gebert '00]: Polytope is *stacked* if it has a triangulation whose dual graph is a tree.

Obs: A d-dimensional polytope is stacked iff its graph has stw $\leq d$ .

simple k-trees form nice simplicial complexes

Def [Below, De Loera, Richter-Gebert '00]: Polytope is *stacked* if it has a triangulation whose dual graph is a tree.

Obs: A *d*-dimensional polytope is stacked iff its graph has stw $\leq d$ .

Quest: Does stw $\leq d \leq$  connectivity imply polytope graph?



Quest: For  $k \ge 3$ , does planar & tw \le k \Rightarrow stw \le k?



Quest: For  $k \ge 3$ , does planar & tw  $\le k \Rightarrow$  stw  $\le k$ ? Quest: For  $k \ge 3$ , no  $K_{3,k}$  minor & tw  $\le k \Rightarrow$  stw  $\le k$ 

#### Conjecture: stw $\leq 4$ iff linkless embeddable & tw $\leq 4$









Conjecture: stw  $\leq 4$  iff linkless embeddable & tw  $\leq 4$ 





- simple k-tree chordal
  ⇒ only check
  triangles for links
- easy to see that they have no links

Conjecture: stw  $\leq 4$  iff linkless embeddable & tw  $\leq 4$ 





- simple k-tree chordal
  ⇒ only check
  triangles for links
- easy to see that they have no links

"⇐": ?



Quest: For  $k \ge 3$ , does planar & tw  $\le k \Rightarrow$  stw  $\le k$ ? Conjecture: stw  $\le 4$  iff linkless embeddable & tw  $\le 4$ 

STW < k minor-closed:

forbidden minors ...

Complexity questions stw $\leq k$  for fixed and variable k

# Problems

Quest: For  $k \ge 3$ , does planar & tw  $\le k \Rightarrow$  stw  $\le k$ ? Conjecture: stw  $\le 4$  iff linkless embeddable & tw  $\le 4$ 

 $STW_{\leq}k$  minor-closed: forbidden minors ...

$$\begin{array}{|c|c|c|c|c|c|c|c|} \leq 1 & \leq 2 & \leq 3 \\ \hline K_{1,3} & K_{2,3} & K_{3,3} \\ \hline K_3 & K_4 & \textit{Oct } K_5 \\ \hline & & C_5 \Box K_2 \end{array}$$

Complexity questions stw $\leq k$  for fixed and variable k

# Problems

Quest: For  $k \ge 3$ , does planar & tw  $\le k \Rightarrow$  stw  $\le k$ ? Conjecture: stw  $\le 4$  iff linkless embeddable & tw  $\le 4$ 

 $STW_{\leq}k$  minor-closed: forbidden minors ...

$$\begin{array}{|c|c|c|c|c|c|c|c|} \leq 1 & \leq 2 & \leq 3 \\ \hline K_{1,3} & K_{2,3} & K_{3,3} \\ \hline K_3 & K_4 & \textit{Oct } K_5 \\ \hline & & C_5 \Box K_2 \end{array}$$

Complexity questions stw $\leq k$  for fixed and variable k

