Simple Treewidth

Kolja Knauer
Torsten Ueckerdt Technische Universität Berlin

Treewidth

Treewidth

Treewidth

Treewidth

Treewidth

Treewidth

$$
\operatorname{tw}(G) \leq k \Leftrightarrow G \text { subgraph of } k \text {-tree }
$$

simple Treewidth

simple k-tree

- start with K_{k+1}
- connect new vertex to sub- K_{k} use no K_{k} twice

$$
\operatorname{stw}(G) \leq k \Leftrightarrow G \text { subgraph of } \underbrace{k \text {-tree }}_{\text {simple }}
$$

simple Treewidth

simple k-tree

- start with K_{k+1}
- connect new vertex to sub- K_{k} use no K_{k} twice

$$
\operatorname{stw}(G) \leq k \Leftrightarrow G \text { subgraph of } \underbrace{k \text {-tree }}_{\text {simple }}
$$

Overview

- Definitions (done)
- Why stw is not interesting
- Why stw is interesting
- How we came across it
- Relations to Geometry and Topology
- Problems...

Why stw is not interesting

$$
\operatorname{tw}(G) \leq \operatorname{stw}(G) \leq \operatorname{tw}(G)+1
$$

Why stw is not interesting

$$
\operatorname{tw}(G) \leq \operatorname{stw}(G) \leq \operatorname{tw}(G)+1
$$

Why stw is not interesting

$$
\operatorname{tw}(G) \leq \operatorname{stw}(G) \leq \operatorname{tw}(G)+1
$$

Why stw is not interesting

$$
\operatorname{tw}(G) \leq \operatorname{stw}(G) \leq \operatorname{tw}(G)+1
$$

Why stw is not interesting

$$
\operatorname{tw}(G) \leq \operatorname{stw}(G) \leq \operatorname{tw}(G)+1
$$

Why stw is not interesting

$$
\operatorname{tw}(G) \leq \operatorname{stw}(G) \leq \operatorname{tw}(G)+1
$$

Why stw is not interesting

$$
\operatorname{tw}(G) \leq \operatorname{stw}(G) \leq \operatorname{tw}(G)+1
$$

Why stw is not interesting

$\operatorname{tw}(G) \leq \operatorname{stw}(G) \leq \operatorname{tw}(G)+1$

stw not interesting for asymptotical questions

How we came across stw

Intersection graphs of systems of intervals

How we came across stw

Intersection graphs of systems of intervals

How we came across stw

Intersection graphs of systems of intervals

> how many intervals per vertex such that G is their intersection graph

$\mathrm{tw} \leq k \Rightarrow \max$. interval nr. $=k+1$ stw $\leq k \Rightarrow$ max. interval nr. $=k$
upper bounds: build representation along construction sequence

Relations to Geometry and Topology

simple k-trees form nice simplicial complexes

Def [Below, De Loera, Richter-Gebert '00]: Polytope is stacked if it has a triangulation whose dual graph is a tree.

Obs: A d-dimensional polytope is stacked iff its graph has stw $\leq d$.

Relations to Geometry and Topology

simple k-trees form nice simplicial complexes
Def [Below, De Loera, Richter-Gebert '00]: Polytope is stacked if it has a triangulation whose dual graph is a tree.

Obs: A d-dimensional polytope is stacked iff its graph has stw $\leq d$.

Quest: Does stw $\leq d \leq$ connectivity imply polytope graph?

Relations to Geometry and Topology

Quest: For $k \geq 3$, does planar $\& \mathrm{tw} \leq k \Rightarrow \mathrm{stw} \leq k$?

Relations to Geometry and Topology

Quest: For $k \geq 3$, does planar $\& \mathrm{tw} \leq k \Rightarrow \mathrm{stw} \leq k$?
Quest: For $k \geq 3$, no $K_{3, k}$ minor $\& \mathrm{tw} \leq k \Rightarrow \mathrm{stw} \leq k$

Conjecture: stw ≤ 4 iff linkless embeddable $\& \mathrm{tw} \leq 4$

Conjecture: stw ≤ 4 iff linkless embeddable \& tw ≤ 4

Conjecture: stw ≤ 4 iff linkless embeddable \& tw ≤ 4

Conjecture: stw ≤ 4 iff linkless embeddable \& tw ≤ 4

Conjecture: stw ≤ 4 iff linkless embeddable \& tw ≤ 4

Conjecture: stw ≤ 4 iff linkless embeddable \& tw ≤ 4

- simple k-tree chordal \Rightarrow only check triangles for links
- easy to see that they have no links

$$
" \Leftarrow ": ?
$$

Problems

Quest: For $k \geq 3$, does planar $\& \mathrm{tw} \leq k \Rightarrow \mathrm{stw} \leq k$? Conjecture: stw ≤ 4 iff linkless embeddable \& tw ≤ 4
$\mathrm{STW}_{\leq} k$ minor-closed:
forbidden minors ...

Complexity questions stw $\leq k$ for fixed and variable k

Problems

Quest: For $k \geq 3$, does planar $\& \mathrm{tw} \leq k \Rightarrow \mathrm{stw} \leq k$?
Conjecture: stw ≤ 4 iff linkless embeddable \& tw ≤ 4
$\mathrm{STW}_{\leq} k$ minor-closed:
forbidden minors ...

\[

\]

Complexity questions
$\mathrm{stw} \leq k$ for fixed and variable k

Problems

Quest: For $k \geq 3$, does planar $\& \mathrm{tw} \leq k \Rightarrow \mathrm{stw} \leq k$?
Conjecture: stw ≤ 4 iff linkless embeddable \& tw ≤ 4
$\mathrm{STW}_{\leq} k$ minor-closed:
forbidden minors ...

\[

\]

Complexity questions
stw $\leq k$ for fixed and variable k

