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Graph homomorphism

Graph homomorphism is ϕ : V (G)→ V (H) such that

u ∼ v ⇒ ϕ(u) ∼ ϕ(v)
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Monotone graph parameters

Graph parameter f : Graphs→ R is monotone if

G→ H ⇒ f (G) ≤ f (H)

Examples: χ, χc , χf , . . .
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Graph products

G, H – graphs. Their products have vertex set V (G)× V (H)
and adjacency defined so, that (g1,h1) ∼ (g2,h2) iff

g1 ∼ g2 and h1 ∼ h2 — categorical product G × H
g1 ∼ g2 and h1 = h2 OR vice versa

— cartesian product G � H
g1 ∼ g2 or h1 ∼ h2 — disjunctive product G ∗ H

Finally, strong product G � H :=
(
G × H

)
∪
(
G � H

)



Introduction Strict vector coloring Vector coloring Quantum coloring Further work

Products and χ

G→ G � H



Introduction Strict vector coloring Vector coloring Quantum coloring Further work

Products and χ

G→ G � H ⇒ χ(G) ≤ χ(G � H)



Introduction Strict vector coloring Vector coloring Quantum coloring Further work

Products and χ

G→ G � H ⇒ χ(G) ≤ χ(G � H)

Observation
χ(G � H) ≥ max{χ(G), χ(H)}
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Products and χ

G→ G � H ⇒ χ(G) ≤ χ(G � H)

Theorem (Sabidussi 1964)

χ(G � H) = max{χ(G), χ(H)}
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Products and χ

G→ G � H ⇒ χ(G) ≤ χ(G � H)

Theorem (Sabidussi 1964)

χ(G � H) = max{χ(G), χ(H)}

G × H → G
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Products and χ

G→ G � H ⇒ χ(G) ≤ χ(G � H)

Theorem (Sabidussi 1964)

χ(G � H) = max{χ(G), χ(H)}

G × H → G ⇒ χ(G × H) ≤ χ(G)
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Products and χ

G→ G � H ⇒ χ(G) ≤ χ(G � H)

Theorem (Sabidussi 1964)

χ(G � H) = max{χ(G), χ(H)}

G × H → G ⇒ χ(G × H) ≤ χ(G)

Observation
χ(G × H) ≤ min{χ(G), χ(H)}
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Products and χ

G→ G � H ⇒ χ(G) ≤ χ(G � H)

Theorem (Sabidussi 1964)

χ(G � H) = max{χ(G), χ(H)}

G × H → G ⇒ χ(G × H) ≤ χ(G)

Conjecture (Hedetniemi 1966)

χ(G × H) = min{χ(G), χ(H)}
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Products and χ

G→ G � H ⇒ χ(G) ≤ χ(G � H)

Theorem (Sabidussi 1964)

χ(G � H) = max{χ(G), χ(H)}

G × H → G ⇒ χ(G × H) ≤ χ(G)

Conjecture (Hedetniemi 1966)

χ(G × H) = min{χ(G), χ(H)}

Theorem (Zhu 2011)

χf (G × H) = min{χf (G), χf (H)}



Introduction Strict vector coloring Vector coloring Quantum coloring Further work

Strict vector coloring – definition

strict vector k-coloring of a graph G is ϕ : V (G)→ unit vectors
such that

u ∼ v ⇒ ϕ(u) · ϕ(v) = − 1
k − 1

strict vector chromatic number of a graph G

ϑ̄(G) = min{k > 1 | ∃strict vector k -coloring of G}

defined by [KMS 1998] to approximate χ(G)

can be approximated with arb. precision by SDP
ω(G) ≤ ϑ̄(G) ≤ χ(G) (Sandwich theorem) [GLSch 1981]
equal to ϑ(G) defined by [Lovász 1979] to count Θ(C5)
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Strict vector coloring – Sabidussi

Lemma (Godsil, Roberson, Severini, Š. 2013)
If a graph has a strict vector k-coloring then it has also a strict
vector k ′-coloring for every k ′ > k.
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Strict vector coloring – Sabidussi

Lemma (Godsil, Roberson, Severini, Š. 2013)
If a graph has a strict vector k-coloring then it has also a strict
vector k ′-coloring for every k ′ > k.

Proof: Add a new coordinate – the value will be the same for all
vertices.
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Strict vector coloring – Sabidussi

Lemma (Godsil, Roberson, Severini, Š. 2013)
If a graph has a strict vector k-coloring then it has also a strict
vector k ′-coloring for every k ′ > k.

Theorem (Godsil, Roberson, Severini, Š. 2013)

ϑ̄(G � H) = max{ϑ̄(G), ϑ̄(H)}
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Strict vector coloring – Sabidussi

Lemma (Godsil, Roberson, Severini, Š. 2013)
If a graph has a strict vector k-coloring then it has also a strict
vector k ′-coloring for every k ′ > k.

Theorem (Godsil, Roberson, Severini, Š. 2013)

ϑ̄(G � H) = max{ϑ̄(G), ϑ̄(H)}

Proof:
≥ holds for every monotone graph parameter
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Strict vector coloring – Sabidussi

Lemma (Godsil, Roberson, Severini, Š. 2013)
If a graph has a strict vector k-coloring then it has also a strict
vector k ′-coloring for every k ′ > k.

Theorem (Godsil, Roberson, Severini, Š. 2013)

ϑ̄(G � H) = max{ϑ̄(G), ϑ̄(H)}

Proof:
≥ holds for every monotone graph parameter
≤ needs to show: if G, H have strict vector k -colorings g, h
then G � H also has a strict vector k -coloring.
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Strict vector coloring – Sabidussi

Lemma (Godsil, Roberson, Severini, Š. 2013)
If a graph has a strict vector k-coloring then it has also a strict
vector k ′-coloring for every k ′ > k.

Theorem (Godsil, Roberson, Severini, Š. 2013)

ϑ̄(G � H) = max{ϑ̄(G), ϑ̄(H)}

Proof:
≥ holds for every monotone graph parameter
≤ needs to show: if G, H have strict vector k -colorings g, h
then G � H also has a strict vector k -coloring.
Take g ⊗ h: put (g ⊗ h)(u, v) = g(u)⊗ h(v), where
u ∈ V (G) and v ∈ V (H).
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Strict vector coloring – union

[Lovász 1979] ϑ(G � H) = ϑ(G)ϑ(H)

[Knuth 1994] ϑ(G ∗ H) = ϑ(G)ϑ(H)
(observe that G � H ⊆ G ∗ H)

observe that G � H = G ∗ H and G ∗ H = G � H
ϑ̄(G ∗ H) = ϑ̄(G � H) = ϑ̄(G)ϑ̄(H)

ϑ̄(G ∪ H) ≤ ϑ̄(G)ϑ̄(H)
Proof: We may assume V (G) = V (H).
G ∪ H is a subgraph of G ∗ H (a diagonal).
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Strict vector coloring – Hedetniemi

Theorem (Godsil, Roberson, Severini, Š. 2013)

ϑ̄(G × H) = min{ϑ̄(G), ϑ̄(H)}

Proof:
Consider A = G � H and B = G × H.
ϑ̄(A ∪ B) ≤ ϑ̄(A)ϑ̄(B)

ϑ̄(A ∪ B) = ϑ̄(G � H) = ϑ̄(G)ϑ̄(H)

ϑ̄(A) = ϑ̄(G � H) = max{ϑ̄(G), ϑ̄(H)}
Thus

ϑ̄(G)ϑ̄(H) ≤ max{ϑ̄(G), ϑ̄(H)} · ϑ̄(G × H)
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Vector coloring – definition

strict vector k-coloring of a graph G — ϕ : V (G)→ unit vectors
such that

u ∼ v ⇒ ϕ(u) · ϕ(v) = − 1
k − 1

strict vector chromatic number of a graph G

ϑ̄(G) = min{k > 1 | ∃strict vector k -coloring of G}

analogy with circular chromatic number “adjacent vertices
are mapped far apart”
this is the version originally (and mainly) considered by
[KMS 1998].
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Vector coloring – Sabidussi

Theorem (Godsil, Roberson, Severini, Š. 2013)

χv (G � H) = max{χv (G), χv (H)}

Proof: the same as for ϑ̄.
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Vector coloring – Sabidussi

Theorem (Godsil, Roberson, Severini, Š. 2013)

χv (G � H) = max{χv (G), χv (H)}

Proof: the same as for ϑ̄.



Introduction Strict vector coloring Vector coloring Quantum coloring Further work

Vector coloring – union

χv (G ∪ H) ≤ χv (G)χv (H)

NOT TRUE IN GENERAL [Schrijver 1979]
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Vector coloring – Hedetniemi

Conjecture (Godsil, Roberson, Severini, Š. 2013)

χv (G × H) = min{χv (G), χv (H)}
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Vector coloring for 1-homogeneous graphs

Theorem (Godsil, Roberson, Severini, Š. 2013)
If G and H are 1-homogeneous, then

χv (G × H) = min{χv (G), χv (H)}
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Quantum coloring – motivation

quantum theory is weird
in order to study computational consequences, quantum
information protocols/games are studied and compared
with the classical setting
one of them is quantum coloring
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Quantum coloring – definition

Game for Alice and Bob against a referee.
Both Alice and Bob know a graph G and can agree on a
strategy how to pretend a k -coloring of G. After that, they
may not communicate.
Referee chooses vertices a,b ∈ V (G) and gives a to Alice
and b to Bob.
Alice and Bob respond with a color in {1, . . . , k}—
“pretending this is the color of their vertex”
If a = b, the color must be the same, if a ∼ b, it must be
different.
Alice and Bob only care about 100%-proof strategies.



Introduction Strict vector coloring Vector coloring Quantum coloring Further work

Quantum coloring – definition

Rather obviously, Alice and Bob win iff k ≥ χ(G).
However, by sharing a quantum entanglement they may
win for smaller k ’s.

χq(G) := min{k : A & B can win}

For Hadamard graphs Ω4n the separation is exponential
χq(G) ≤ k ⇔ G has a quantum homomorphism to Kk
⇔ G→ M(Kk ,d) (for some d ∈ N and a certain (infinite)
graph M(Kk ,d)). [Mančinska, Roberson 2012]
It is not known, if the question “χq(G) ≤ k ” is
algorithmically decidable.
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graph M(Kk ,d)). [Mančinska, Roberson 2012]
It is not known, if the question “χq(G) ≤ k ” is
algorithmically decidable.



Introduction Strict vector coloring Vector coloring Quantum coloring Further work

Quantum coloring – definition

Rather obviously, Alice and Bob win iff k ≥ χ(G).
However, by sharing a quantum entanglement they may
win for smaller k ’s.

χq(G) := min{k : A & B can win}

For Hadamard graphs Ω4n the separation is exponential
χq(G) ≤ k ⇔ G has a quantum homomorphism to Kk
⇔ G→ M(Kk ,d) (for some d ∈ N and a certain (infinite)
graph M(Kk ,d)). [Mančinska, Roberson 2012]
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χq and χv

For every graph χv ≤ ϑ̄ ≤ χq ≤ χ
χq(G � H) = max{χq(G), χq(H)}
If χq(G) = ϑ̄(G) and χq(H) = ϑ̄(H) then

χq(G × H) = min{χq(G), χq(H)}

In particular, this holds for every pair of the Hadamard
graphs

χq(Ωm × Ωn) = min{χq(Ωm), χq(Ωn)}
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Introduction Strict vector coloring Vector coloring Quantum coloring Further work

χq and χv

For every graph χv ≤ ϑ̄ ≤ χq ≤ χ
χq(G � H) = max{χq(G), χq(H)}
If χq(G) = ϑ̄(G) and χq(H) = ϑ̄(H) then

χq(G × H) = min{χq(G), χq(H)}

In particular, this holds for every pair of the Hadamard
graphs

χq(Ωm × Ωn) = min{χq(Ωm), χq(Ωn)}



Introduction Strict vector coloring Vector coloring Quantum coloring Further work

Vector chromatic theory

Find nice theorems for χv , ϑ̄, . . . as chromatic-type numbers.
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