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Introduction

Graph homomorphism

Graph homomorphism s ¢ : V(G) — V(H) such that

U v = o) ~ o(v)



Introduction

Monotone graph parameters

Graph parameter f : Graphs — R is monotone if
G — H= f(G) < f(H)

Examples: x, x¢, X, - - -



Introduction

Graph products

G, H — graphs. Their products have vertex set V(G) x V(H)
and adjacency defined so, that (g1, hy) ~ (g2, h) iff
@ g1 ~goand hy ~ hy — categorical product G x H

@ gi ~ g and hy = h, OR vice versa
— cartesian product GO H

@ gi~@gorhy~h — disjunctive product G x H
Finally, strong product GR H := (G x H) U (GO H)
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Introduction

Products and y

G— GOH= y(G) < x(GOH)

Theorem (Sabidussi 1964)
x(GO H) = max{x(G), x(H)}

GxH— G = x(Gx H) < v(G)

Conjecture (Hedetniemi 1966)
X(G x H) = min{x(G), x(H)}

Theorem (Zhu 2011)
x#(G x H) = min{x7(G), xt(H)}
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Strict vector coloring — definition

strict vector k-coloring of a graph G is ¢ : V(G) — unit vectors

such that ]
unr Vj@(“)‘@(v):*m

strict vector chromatic number of a graph G

J(G) = min{k > 1 | 3strict vector k-coloring of G}
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Strict vector coloring

Strict vector coloring — definition

strict vector k-coloring of a graph G is ¢ : V(G) — unit vectors

such that ]
unr Vj@(“)‘@(v):*m

strict vector chromatic number of a graph G

J(G) = min{k > 1 | 3strict vector k-coloring of G}

@ defined by [KMS 1998] to approximate x(G)
@ can be approximated with arb. precision by SDP
@ w(G) < Y(G) < x(G) (Sandwich theorem) [GLSch 1981]

@ equal to ¥(G) defined by [Lovasz 1979] to count ©(Cs)
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Strict vector coloring — Sabidussi

Lemma (Godsil, Roberson, Severini, S. 2013)

If a graph has a strict vector k-coloring then it has also a strict
vector k'-coloring for every k' > k.




Strict vector coloring

Strict vector coloring — Sabidussi

Lemma (Godsil, Roberson, Severini, S. 2013)

If a graph has a strict vector k-coloring then it has also a strict
vector k'-coloring for every k' > k.

Proof: Add a new coordinate — the value will be the same for all
vertices.
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Strict vector coloring

Strict vector coloring — Sabidussi

Lemma (Godsil, Roberson, Severini, S. 2013)

If a graph has a strict vector k-coloring then it has also a strict
vector k'-coloring for every k' > k.

Theorem (Godsil, Roberson, Severini, S. 2013)
(GO H) = max{9(G), I(H)}

Proof:
@ > holds for every monotone graph parameter
@ < needs to show: if G, H have strict vector k-colorings g, h
then GO H also has a strict vector k-coloring.
@ Take g ® h: put (g ® h)(u,v) = g(u) ® h(v), where
ue V(G)and v € V(H).
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Strict vector coloring — union

@ [Lovasz 1979] ¥(GX H) = ¥(G)Y¥(H)
@ [Knuth 1994] (G x H) = 9(G)I(H)
(observe that GK H C G« H)
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Strict vector coloring

Strict vector coloring — union

@ [Lovasz 1979] 9(G X H) = J(G)I(H)
@ [Knuth 1994] (G x H) = 9(G)I(H)
(observe that GK H C G« H)
@ observethat GRH=G+Hand GxH=GXH
@ J(G* H)=9(GX H) = J(G)I(H)
@ J(GUH) < I(G)I(H)
Proof: We may assume V(G) = V(H).



Strict vector coloring

Strict vector coloring — union

@ [Lovasz 1979] ¥(GX H) = ¥(G)Y¥(H)
@ [Knuth 1994] ¥(G « H) = ¥(G)¥(H)
(observe that GK H C G« H)

@ observethat GRH=G+Hand GxH=GXH
@ J(G* H)=9(GX H) = J(G)I(H)
@ J(GUH) < I(G)I(H)

Proof: We may assume V(G) = V(H).

G U H is a subgraph of G « H (a diagonal).
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Strict vector coloring — Hedetniemi
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Strict vector coloring — Hedetniemi

Theorem (Godsil, Roberson, Severini, S. 2013)
9(G x H) = min{d(G), 9(H)}

Proof:
@ ConsiderA=GUOHand B= G x H.
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Strict vector coloring — Hedetniemi

Theorem (Godsil, Roberson, Severini, S. 2013)
9(G x H) = min{d(G), 9(H)}

Proof:
@ ConsiderA=GUOHand B= G x H.
° 7§(A UB) < 7§(A)1§(B)
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Strict vector coloring

Strict vector coloring — Hedetniemi

Theorem (Godsil, Roberson, Severini, S. 2013)
9(G x H) = min{d(G), 9(H)}

Proof:
@ Consider A=GOHand B=Gx H.
e J(AUB) < J(A)(B)
@ J(AUB) =9(GX H) = J(G)I(H)
@ J(A) = 9(GOH) = max{9(G),9(H)}
@ Thus

J(G)I(H) < max{d(G),d(H)} - 9(G x H)
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Vector coloring — definition

strict vector k-coloring of a graph G — ¢ : V(G) — unit vectors

such that ]
un~ Vé@(“)'@(v):—ﬁ

strict vector chromatic number of a graph G

J(G) = min{k > 1 | 3strict vector k-coloring of G}
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Vector coloring — definition

sttict vector k-coloring of a graph G — ¢ : V(G) — unit vectors

such that ]
ur~v=p(u)-e(v) < ——

stfict vector chromatic number of a graph G

xv(G) = min{k > 1 | 3étfi¢t vector k-coloring of G}

@ analogy with circular chromatic number “adjacent vertices
are mapped far apart”



Vector coloring

Vector coloring — definition

sttict vector k-coloring of a graph G — ¢ : V(G) — unit vectors

such that ]
ur~v=p(u)-e(v) < ——

stfict vector chromatic number of a graph G

xv(G) = min{k > 1 | 3étfi¢t vector k-coloring of G}

@ analogy with circular chromatic number “adjacent vertices
are mapped far apart”

@ this is the version originally (and mainly) considered by
[KMS 1998].
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Vector coloring — Sabidussi

Theorem (Godsil, Roberson, Severini, S. 2013)
xv(GO H) = max{xv(G), xv(H)}




Vector coloring

Vector coloring — Sabidussi

Theorem (Godsil, Roberson, Severini, S. 2013)
xv(GO H) = max{xv(G), xv(H)}

Proof: the same as for 9.



Vector coloring

Vector coloring — union

XV(GU H) < XV(G)XV(H)
NOT TRUE IN GENERAL [Schrijver 1979]



Vector coloring

Vector coloring — Hedetniemi

Conjecture (Godsil, Roberson, Severini, S. 2013)
XV(G X H) = min{Xv(G)a XV(H)}




Vector coloring

Vector coloring for 1-homogeneous graphs

Theorem (Godsil, Roberson, Severini, S. 2013)
If G and H are 1-homogeneous, then

xv(G x H) = min{x,(G), xv(H)}




Quantum coloring

Quantum coloring — motivation

@ quantum theory is weird

@ in order to study computational consequences, quantum
information protocols/games are studied and compared
with the classical setting

@ one of them is quantum coloring



Quantum coloring

Quantum coloring — definition

@ Game for Alice and Bob against a referee.

@ Both Alice and Bob know a graph G and can agree on a
strategy how to pretend a k-coloring of G. After that, they
may not communicate.

@ Referee chooses vertices a, b € V(G) and gives a to Alice
and b to Bob.

@ Alice and Bob respond with a colorin {1,... k} —
“pretending this is the color of their vertex”

@ If a= b, the color must be the same, if a ~ b, it must be
different.

@ Alice and Bob only care about 100%-proof strategies.
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Quantum coloring — definition

@ Rather obviously, Alice and Bob win iff k > x(G).
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Quantum coloring

Quantum coloring — definition

@ Rather obviously, Alice and Bob win iff k > x(G).

@ However, by sharing a quantum entanglement they may
win for smaller k’s.

Xq(G) := min{k : A & B can win}

@ For Hadamard graphs €4, the separation is exponential

@ x¢(G) < k & G has a quantum homomorphism to Ky
< G — M(K, d) (for some d € N and a certain (infinite)
graph M(Kk, d)). [Mancinska, Roberson 2012]

@ ltis not known, if the question “x4(G) < K" is
algorithmically decidable.
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Quantum coloring

Xq and xy

@ For every graph y, <9 < xq < X
® xq(GUH) = max{xq(G), xq(H)}

@ If x4(G) = Y(G) and xq(H) = ¥(H) then
Xq(G x H) = min{xq(G), xq(H)}
@ In particular, this holds for every pair of the Hadamard
graphs

Xq(2m x Qn) = min{xq(2m), xq(2n)}



Further work

Vector chromatic theory

Find nice theorems for y, ¥, ... as chromatic-type numbers.
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