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A graph G is a brick if G is 3-connected and bicritical.
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» M(G) := all perfect matchings of \G/, M(G) # 0 [Tutte 1947]
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matching-covered

» Perfect matching polytope of G [Edmonds 1965]

» Linear hull of M(G) [Naddef 1982], Lattice of M(G) [Lovasz 1986]
A cut C of G is tight if every perfect matching of G has exactly one edge in C.
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A cut C of G is tight if every perfect matching of G' has exactly one edge in C
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» M(G) := all perfect matchings of G

M(G) # 0 [Tutte 1947]
matching-covered
» Perfect matching polytope of G [Edmonds 1965]

» Linear hull of M(G) [Naddef 1982], Lattice of M(G) [Lovasz 1986]

A cut C of G is tight if every perfect matching of G' has exactly one edge in C

» Tight Cut Decomposition Procedure [Kotzig 59, and Lovész & Plummer 72]
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» Output: A list of graphs without non-trivial tight cuts
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G does not have non-trivial tight cuts if and only if G is a brick or a brace.
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G does not have non-trivial tight cuts if and only if G is a brick or a brace.

G matching-covered graph, b := number of bricks and

dim(conv(M(G))) = dim(lin(M(G))) — 1 = |E(G)|—|V(G)|+1-b

«0O0>» «Fr «=»r «

»

DA



G does not have non-trivial tight cuts if and only if G is a brick or a brace.

G matching-covered graph, b := number of bricks and

dim(conv(M(Q))) = dim(lin(M(G))) — 1 = |E(G)|—|V(G)|+1-b

The list of bricks and braces is unique.
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An orientation of a graph G is Pfaffian if for every perfect matching M of G each
even cycle of G\M has an odd number of edges directed in either direction.
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An orientation of a graph G is Pfaffian if for every perfect matching M of G each

even cycle of G\M has an odd number of edges directed in either direction.
If G is a Pfaffian graph, then |M(G)| can be computed in polynomial time.

«0O>» «F>»

DA



An orientation of a graph G is Pfaffian if for every perfect matching M of G each
even cycle of G\M has an odd number of edges directed in either direction.

If G is a Pfaffian graph, then |M(G)| can be computed in polynomial time.
A graph is Pfaffian if and only if all bricks and braces of its tight cut decomposition
are Pfaffian.
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An orientation of a graph G is Pfaffian if for every perfect matching M of G each
even cycle of G\M has an odd number of edges directed in either direction.

If G is a Pfaffian graph, then |M(G)| can be computed in polynomial time.
A graph is Pfaffian if and only if all bricks and braces of its tight cut decomposition
are Pfaffian.

» Polynomial-time algorithm: Pfaffian bipartite graphs; using Pfaffian braces—
Robertson, Seymour & Thomas 1999
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An orientation of a graph G is Pfaffian if for every perfect matching M of G each
even cycle of G\M has an odd number of edges directed in either direction.

If G is a Pfaffian graph, then |M(G)| can be computed in polynomial time.
are Pfaffian.

A graph is Pfaffian if and only if all bricks and braces of its tight cut decomposition

» Polynomial-time algorithm: Pfaffian bipartite graphs; using Pfaffian braces—
Robertson, Seymour & Thomas 1999

» Pfaffian bricks — Norine (Ph.D. Thesis) 2005
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Every brick can be obtained from one of the basic bricks by a sequence of

applications of the following four operations (expansions):
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Every minimal brick has a vertex of degree 3.
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Every brick can be obtained from one of the basic bricks by a sequence of
applications of the following four operations (expansions):

“)

Every minimal brick has a vertex of degree 3.

» More about brick generation — Norine & Thomas
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Every minimal brick other than the Petersen graph can be obtained from Ky or
Cs by a sequence of applications of strict extensions.

o< E A
N D SEEN A -
° el oo e
strict linear 1 strict linear 2 strict linear 3
@ ----- @ ®----- @
>4 it
[} [ @®------ ®
quasiquadratic: type 1, type 2 quasiquartic: type 1, type 2, type 3
.—/V\ 7¥<
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[} [}
bilinear pseudolinear
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Every minimal brick has at least 3 vertices of degree 3.
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Every minimal brick has at least 4 vertices of degree 3.

Every minimal brick G has at least Mggﬂ- vertices of degree 4.
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Every minimal brick has at least 3 vertices of degree 3.

Every minimal brick has linearly many vertices of degree 3.

Every minimal brick has at least 4 vertices of degree 3.

Every minimal brick G has at least Jﬂgﬁl{ vertices of degree 4.

Every minimal brick G has at least 5% [V (G)] vertices of degree 3.
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> Gglﬂ)Glbﬂ)

Ly G}, := min-brick sequence [Norine & Thomas]
> {Y1,v2,...,Yr} strict extensions, G = G,

DA



>G’(]lﬂ)Gll£>

RINe % := min-brick sequence [Norine & Thomas]
> {Y1,v2,...,Yr} strict extensions, G = G,
> |G;|3 := number of cubic vertices in G;
i€{l,....k}, p=0p()=|Gils —|Gi-1l3
» Generous if p > 0, Neutral if p =0, Selfishif p <0
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> {Y1,v2,...,Yr} strict extensions, G = G,
> |G;|3 := number of cubic vertices in G;
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>G0rﬂ>G1tﬂ>

RINe % := min-brick sequence [Norine & Thomas]
> {Y1,v2,...,Yr} strict extensions, G = G,
> |G;|3 := number of cubic vertices in G;

(XS {17 cee 7k}7 b= p(z) = |G1|3 - |Gi—1|3
» Generous if p > 0, Neutral if p =0,

Selfish if p < 0
» Selfish ° ® N H
° °
» Neutral o< ;._I_’é ) :>< ° °
- -
® ° °

«O» «F>r «=)»r « »

DA



> Go RN Gy RN G}, := min-brick sequence [Norine & Thomas]
> {Y1,v2,...,Yr} strict extensions, G = G,

> |G|3 := number of cubic vertices in G

» If G is such that d(G) <4 —~ and § > 3, then |G|3 > ~|V(G)].
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> Go RN Gy R NNy % := min-brick sequence [Norine & Thomas]

> {Y1,v2,...,Yr} strict extensions, G = G,

> |G|3 := number of cubic vertices in G
» If G is such that d(G) <4 —~ and § > 3, then |G|3 > ~|V(G)].
i €{1,...,k} we define

n(i) == [V(G)| = [V(Gia| e(i) == |B(G:)| — |E(Gi_1)| d(i) = 2%
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> Go RN Gy R NNy % := min-brick sequence [Norine & Thomas]

> {Y1,v2,...,Yr} strict extensions, G = G,

> |G|3 := number of cubic vertices in G

» If G is such that d(G) <4 —~ and § > 3, then |G|3 > ~|V(G)].

i €{1,...,k} we define

n(i) == V(Go)l = [V(Gioa| e(d) = |E(Ga)| - |B(Gi_1)| d(i) = 229

n(i)
> d(i) =5 N H
[ ) [
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> Go NN G1 e NNy’ & := min-brick sequence [Norine & Thomas]

> {Y1,v2,...,Yr} strict extensions, G = G,

> |G|3 := number of cubic vertices in G

> If G is such that d(G) <4 — v and ¢ > 3, then |G|3 > 7|V (G)|.

i €{1,...,k} we define }
n(i) == V(Go)l = [V(Gioa| e(d) = |E(Ga)| - |B(Gi_1)| d(i) = 229

n(z)
> (i) =5 . ._>:><
e o

> d(i) =4
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> Go Gy

»ﬁ) G}, := nice min-brick sequence
> I, C{1,2,...,k}, with ¢ € I for 1; selfish
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> Go Gy

,ﬂ) G}, := nice min-brick sequence
> I, C{1,2,...,k}, with ¢ € I for 1; selfish
Case 1: |Is| > %\/E
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FGoiﬂ)Gliﬂ

IIs] > vk

There exists a partition 1%, I? of I such that
(a) for each i € I there is a vertex v; that has degree 3 in G and the v]s are
distinct for distinct ¢ € I¢, and

,ﬂ) G}, := nice min-brick sequence
> I, C{1,2,...,k}, with ¢ € I for 1; selfish
Case 1:

ER)

(b) there is I® C {1,...,k} such that I? C I? and

1
D (1Gils —1Gj-113) > ZIIL’I
jert

DA




Case 2 |I] < 5vk

(o B <

o
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Case: |L|<3zVk

» In C{1,2,...,k}, with j € I, for ¢; neutral and d(j) = 4

(Or Fr <= 4

>
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Case 2: |I5] < %\/E

> I, C{1,2,...,k}, with j € I, for ¢; neutral and d(j) =4
Case 2.1: |In| >k — 2LVE

> (i) there exist a bad subsequence of lenght at least g—;\/E
(ii) subcase (i) does not happen.
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Case 2: |I5] < %\/E

> I, C{1,2,...,k}, with j € I, for ¢; neutral and d(j) =4
Case 2.1: |In| >k — 2LVE
> (i) there exist a bad subsequence of lenght at least g—;\/E
(ii) subcase (i) does not happen.

(i) A bad subsequence of lenght at least %\/E gives at least
%\/E —2|I| > %\/E vertices of degree 3 in G.
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Case 2.1: |In| >k — 2LVE
> (i) there exist a bad subsequence of lenght at least g—;\/E
(ii) subcase (i) does not happen.

(i) A bad subsequence of lenght at least %\/E gives at least
%\/E —2|I| > %\/E vertices of degree 3 in G.

(i) ~ Case 1; taking bad subsequences instead of isolated operations.
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Case 2: |I5] < %\/E

> I, C{1,2,...,k}, with j € I, for ¢; neutral and d(j) =4
Case 2.1: |In| >k — 2LVE
> (i) there exist a bad subsequence of lenght at least g—;\/E
(ii) subcase (i) does not happen.

(i) A bad subsequence of lenght at least %\/E gives at least
%\/E —2|I| > %\/E vertices of degree 3 in G.
Case 2.2:

(i) ~ Case 1; taking bad subsequences instead of isolated operations.
{1, k} = Is = In| > 5VE
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Case 2: |I5] < %\/E

> I, C{1,2,...,k}, with j € I, for ¢; neutral and d(j) =4
Case 2.1: |In| >k — 2LVE
> (i) there exist a bad subsequence of lenght at least g—;\/ﬁ
(ii) subcase (i) does not happen.

(i) A bad subsequence of lenght at least %\/E gives at least
%\/E —2|I| > %\/E vertices of degree 3 in G.
Case 2.2:

{1,... k}—Is— 1| > SVE

(i) ~ Case 1; taking bad subsequences instead of isolated operations.
» i€ |{l,...,k} — I, — I, then d(i) < 3.5
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