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Tight Cut Decomposition - Motivation

I M(G) := all perfect matchings of G︸︷︷︸, M(G) 6= ∅ [Tutte 1947]

matching-covered

I Perfect matching polytope of G [Edmonds 1965]

I Linear hull of M(G) [Naddef 1982], Lattice of M(G) [Lovász 1986]

Tight cuts

A cut C of G is tight if every perfect matching of G has exactly one edge in C.

I Tight Cut Decomposition Procedure [Kotzig 59, and Lovász & Plummer 72]

I Output: A list of graphs without non-trivial tight cuts.
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Tight Cut Decomposition - Motivation

Theorem [Edmonds, Lovász & Pulleyblank and Lovász 80’s ]

G does not have non-trivial tight cuts if and only if G is a brick or a brace.

Theorem [Edmonds, Lovász & Pulleyblank 1982]

G matching-covered graph, b := number of bricks and

dim(conv(M(G))) = dim(lin(M(G)))− 1 = |E(G)|−|V (G)|+1−b

Theorem [Lovász 1986]

The list of bricks and braces is unique.
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Pfaffian Orientations

An orientation of a graph G is Pfaffian if for every perfect matching M of G each

even cycle of G\M has an odd number of edges directed in either direction.

Theorem [Kasteleyn 1967]

If G is a Pfaffian graph, then |M(G)| can be computed in polynomial time.

Theorem [Vazirani & Yannakakis 1989, and Little & Rendl 1991]

A graph is Pfaffian if and only if all bricks and braces of its tight cut decomposition

are Pfaffian.

I Polynomial-time algorithm: Pfaffian bipartite graphs; using Pfaffian braces—

Robertson, Seymour & Thomas 1999

I Pfaffian bricks — Norine (Ph.D. Thesis) 2005
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Brick Generation

Theorem [Carvalho, Lucchesi & Murty 2004]

Every brick can be obtained from one of the basic bricks by a sequence of
applications of the following four operations (expansions):

(1) (2) (4)(3)

Corollary (Lovász’s Conjecture)

Every minimal brick has a vertex of degree 3.

I More about brick generation — Norine & Thomas
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Generation of minimal bricks

Theorem [Norine & Thomas 2005]

Every minimal brick other than the Petersen graph can be obtained from K4 or
C̄6 by a sequence of applications of strict extensions.

strict linear 1 strict linear 3

bilinear pseudolinear

quasiquadratic: type 1, type 2 quasiquartic: type 1, type 2, type 3

strict linear 2



Cubic vertices of minimal bricks

Theorem [Norine & Thomas 2005]

Every minimal brick has at least 3 vertices of degree 3.

Conjecture [Norine & Thomas]

Every minimal brick has linearly many vertices of degree 3.

Theorem [Lin, Lu & Zhang 2013]

Every minimal brick has at least 4 vertices of degree 3.

Theorem [Bruhn & Stein 2012]

Every minimal brick G has at least
|V (G)|

9
vertices of degree 4.

Theorem [J. & Stein 2013]

Every minimal brick G has at least 1
52

√
|V (G)| vertices of degree 3.
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Proof’s Ideas

I G0
ψ17−→ G1

ψ27−→ . . .
ψk7−→ Gk := min-brick sequence [Norine & Thomas]

I {ψ1, ψ2, . . . , ψk} strict extensions, G = Gk

I |Gi|3 := number of cubic vertices in Gi

Generous, neutral and selfish operations

i ∈ {1, . . . , k}, p = p(i) = |Gi|3 − |Gi−1|3
I Generous if p > 0, Neutral if p = 0, Selfish if p < 0

I Selfish

I Neutral
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Proof’s Ideas

I G0
ψ17−→ G1

ψ27−→ . . .
ψk7−→ Gk := nice min-brick sequence

I Is ⊂ {1, 2, . . . , k}, with i ∈ Is for ψi selfish

Case 1: |Is| ≥ 1
2

√
k

Lemma
There exists a partition Ias , Ibs of Is such that

(a) for each i ∈ Ias there is a vertex vi that has degree 3 in G and the v′is are
distinct for distinct i ∈ Ias , and

(b) there is Ĩbs ⊆ {1, . . . , k} such that Ibs ⊆ Ĩbs and∑
j∈Ĩbs

(|Gj |3 − |Gj−1|3) ≥
1

4
|Ibs |.
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j∈Ĩbs

(|Gj |3 − |Gj−1|3) ≥
1

4
|Ibs |.



Proof’s Ideas

Case 2: |Is| < 1
2

√
k

I In ⊂ {1, 2, . . . , k}, with j ∈ In for ψj neutral and d(j) = 4

Case 2.1: |In| ≥ k − 27
26

√
k

I (i) there exist a bad subsequence of lenght at least 27
52

√
k

(ii) subcase (i) does not happen.

(i) A bad subsequence of lenght at least 27
52

√
k gives at least

27
52

√
k − 2|Is| ≥ 1

26

√
k vertices of degree 3 in G.

(ii) ∼ Case 1; taking bad subsequences instead of isolated operations.

Case 2.2: |{1, . . . , k} − Is − In| ≥ 7
13

√
k

I i ∈ |{1, . . . , k} − Is − In|, then d(i) ≤ 3.5
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