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- exponential growth in network theory in last 15 years
- algorithmic construction with given parameters

- uniform sampling all networks with that given parameters
- (approximate) counting of all instances
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G(V;E) simple graph; V = {v1,Vz,...,vn} nodes
positive integers d = (dq,dy,...,dy).

Sackground If 3 simple graph G(V,E) with d(G)=d

= d is a graphical sequence
G realizes d.

Question: how to decide whether d is graphical?

Tutte’s f-factor theorem (1949-52) (slow - not construct all)

— Havel (1957) - Hakimi (1963) lemma

Lemma: - any realization can be transformed by swaps into

a canonical one

o—©O
swap operation
o—0

Algorithm: - a greedy way to construct one realization (if J)

P.L. Erd6s
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PL. Erdds Let G and H realizations of d Then
by Havel's lemma (1957) and via canonical realizations

Background

Theorem (Petersen, 1891)

Exists swap-sequence for G — H.

- this is NOT a new development
- the other direction is not trivial at all

Problem A, B, C vertex classes with dp, dg,dc degree
sequences. Looking for tripartite realizations

- existence through Tutte's theorem is known

- with reasonable definitions G — H is known

- there is NOT known Havel type greedy algorithm
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PL. Erdss G(U,W:; E) simple bipartite graph, bipartite d.s.: (¢ < k)

ackaround bd(G) = ((al,...,ak), (bl,...,bg)),
- Forbidden edges
- 4 swap operations (careful)
- Multigraphs - Long and venerable history
- Simple graphs There is HH-lemma and algorithm
D.B. West's book (2001) and
Kim - Toroczkai - Erdds - Miklés - Székely (2009)
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S é(X; E) simple directed graph, X = {X1,Xz2,...,Xn}
dd(G) = ((df"d,....d), (7. d7 ... d7) )
- Directed multigraphs: 4 HH lemma and algorithm

Gale (1957), Ryser (1957), Hakimi (1963)
- Simple directed graphs: 3 HH lemma and algorithm
Kleitman - Wang (1973) & Erdds - Miklés - Toroczkai (2010)
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With reasonable definitions: 3 HH lemma and G —s H
algorithm via directed swaps

Background
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Representing directed graphs (Gale 1957)

MCW 2013

PL. Erdés with the bipartite graph B(é) =(U,W;E)
SR Ui € U - out-edges from v; € W in-edges to ;.

There are forbidden edges

€.g. UaWa, . .., UgWqy
the usual swaps between B(G) and B(H) represent
directed swaps between G and H
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Problem description

given degree sequence d; F C (%) of forbidden edges

The restricted degree sequence problem d-:
37 simple graph G : d(G) = d which completely avoids F

Solution: Tutte’s f-factor theorem (1952) for K, \ F
provides a polynomial algorithm to decide the existence

with reasonable
definitions exists
G — H swap-
sequence

Jan F-swap
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MCW 2013

circular C4 F-swap = Havel-Hakimi swap.
circular Cg F-swap = triangular Cg-swap,

P.L. Erd6s

Restricted DS

G, H realizations of d” then 3G — H with F-swaps

Examples - directed graphs - connected, with Havel's lemma
tripartite graphs - connected, no Havel's lemma
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A simple example: star+factor problem

MCW 2013

P.L. Erd6s

In its simplest form:
d is bipartite, and F = union of 1-factor and a star

Restricted DS

Tutte’s f-factor theorem applies
realizations are connected
there exists a Havel-type approach
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Sy 2T Applied network theory: exponential growth in last 15 years
PL. Erdds - algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances
Applications
A classical example
epidemics studies of sexually transmitted diseases
Liljeros F, Edling C R, Amaral L A N, Stanley H E and Aberg Y 2001 Nature 411

m data collected is from anonymous surveys

m number of different partners in a given period of time,
m without revealing their identity.

m constructing the most typical contact graph

m obeying the empirical degree sequence.
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Constrcuting and counting realizations

Sy 2T Applied network theory: exponential growth in last 15 years
PL. Erdds - algorithmic construction with given parameters
- uniform sampling all networks with that given parameters
- (approximate) counting of all instances
Applications

An other ancient examples
J. K. Senior: Partitions and their Representative Graphs, Amer. J. Math.,
73 (1951), 663-689.

m find all possible molecules with given composition but
with different structures

m generating all possible graphs with multiple edges but
no loops

m introduced swaps (but called transfusion)
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Sampling and counting realizations

MCW 2013

Goal: to find a typical or random realization
o e Markov Chain Monte Carlo (MCMC) methods

start with an arbitrary realization and take a long enough
Applications series of randomly chosen G — H

m this method always produces a random realization!
BUT how fast ????

m considered fast enough if it is polynomial in time
and called fast mixing

Theorem (Jerrum, Valiant and Vazirani (1986))

if the problem is Self-reducible then fast mixing MCMC
sampling provides a good approximation on the number of
realizations
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Examples:
m Kannan-Tetali-Vempala (1999) - d is regular bipartite
m Miklos-Erdds-Soukup (2013) - d half-regular bipartite
m Greenhill (2011) regular directed graphs — equivalent
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