
MCW 2013

P.L. Erdős
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Background

Restricted DS

Applications

Degree sequences

G(V ;E) simple graph; V = {v1, v2, . . . , vn} nodes
positive integers d = (d1,d2, . . . ,dn).

If ∃ simple graph G(V ,E) with d(G) = d
⇒ d is a graphical sequence

G realizes d.



MCW 2013

P.L. Erdős
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G(V ;E) simple graph; V = {v1, v2, . . . , vn} nodes
positive integers d = (d1,d2, . . . ,dn).

If ∃ simple graph G(V ,E) with d(G) = d
⇒ d is a graphical sequence

G realizes d.
Question: how to decide whether d is graphical?
Tutte’s f -factor theorem (1949-52) (slow - not construct all)

— Havel (1957) - Hakimi (1963) lemma
Lemma: - any realization can be transformed by swaps into

a canonical one

swap operation

Algorithm: - a greedy way to construct one realization (if ∃)
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Background

Restricted DS

Applications

Havel’s lemma vs. connection of realizations

Let G and H realizations of d Then
by Havel’s lemma and via canonical realizations

Theorem (Petersen, 1891)

Exists swap-sequence for G −→ H.

- this is NOT a new development



MCW 2013

P.L. Erdős

Background

Restricted DS

Applications

Havel’s lemma vs. connection of realizations

Let G and H realizations of d Then
by Havel’s lemma and via canonical realizations

Theorem (Petersen, 1891)

Exists swap-sequence for G −→ H.

- this is NOT a new development
- the other direction is not trivial at all



MCW 2013

P.L. Erdős
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Let G and H realizations of d Then
by Havel’s lemma (1957) and via canonical realizations

Theorem (Petersen, 1891)

Exists swap-sequence for G −→ H.

- this is NOT a new development
- the other direction is not trivial at all

Problem A,B,C vertex classes with dA,dB ,dC degree
sequences. Looking for tripartite realizations

- existence through Tutte’s theorem is known
- with reasonable definitions G −→ H is known
- there is NOT known Havel type greedy algorithm
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G(U,W ;E) simple bipartite graph, bipartite d.s.: (` ≤ k)

bd(G) =
(

(

a1, . . . ,ak
)

,
(

b1, . . . ,b`

)

)

,

- Forbidden edges
- ∃ swap operations (careful)

- Multigraphs - Long and venerable history
- Simple graphs There is HH-lemma and algorithm

D.B. West’s book (2001) and
Kim - Toroczkai - Erdős - Miklós - Székely (2009)
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Background

Restricted DS

Applications

Directed degree sequences

~G(X ; ~E) simple directed graph, X = {x1, x2, . . . , xn}

dd(~G) =
(

(

d+

1 ,d+

2 , . . . ,d+
n
)

,
(

d−

1 ,d−

2 , . . . ,d−
n
)

)

- Directed multigraphs: ∃ HH lemma and algorithm
Gale (1957), Ryser (1957), Hakimi (1963)



MCW 2013

P.L. Erdős
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- Directed multigraphs: ∃ HH lemma and algorithm
Gale (1957), Ryser (1957), Hakimi (1963)

- Simple directed graphs: ∃ HH lemma and algorithm
Kleitman - Wang (1973) & Erdős - Miklós - Toroczkai (2010)
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d e

g
~de, ~gd , ~eg

m
~ed , ~dg, ~ge

With reasonable definitions: ∃ HH lemma and ~G −→ ~H
algorithm via directed swaps
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Representing directed graphs (Gale 1957)

with the bipartite graph B(~G) = (U,W ;E)
ui ∈ U - out-edges from vi ∈ W in-edges to xi .

ua ud ue uf ug

wa wd we wg wh

There are forbidden edges
e.g. uawa, . . . ,ugwg

the usual swaps between B(~G) and B(~H) represent
directed swaps between ~G and ~H
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Background

Restricted DS

Applications

Problem description

given degree sequence d; F ⊂
(V

2

)

of forbidden edges

The restricted degree sequence problem dF :
∃? simple graph G : d(G) = d which completely avoids F

Solution: Tutte’s f -factor theorem (1952) for Kn \ F



MCW 2013

P.L. Erdős
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Background

Restricted DS

Applications

Problem description

given degree sequence d; F ⊂
(V

2

)

of forbidden edges

The restricted degree sequence problem dF :
∃? simple graph G : d(G) = d which completely avoids F

Solution: Tutte’s f -factor theorem (1952) for Kn \ F
provides a polynomial algorithm to decide the existence

with reasonable
definitions exists
G → H swap-
sequence

v



MCW 2013

P.L. Erdős
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given degree sequence d; F ⊂
(V

2

)

of forbidden edges

The restricted degree sequence problem dF :
∃? simple graph G : d(G) = d which completely avoids F

Solution: Tutte’s f -factor theorem (1952) for Kn \ F
provides a polynomial algorithm to decide the existence

with reasonable
definitions exists
G → H swap-
sequence

∃ an F-swap v
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Examples for F -compatible swaps

circular C4 F-swap = Havel–Hakimi swap.
circular C6 F-swap = triangular C6-swap,

ud ue ug

wd we wg

Theorem

G,H realizations of dF then ∃G → H with F-swaps

Examples - directed graphs - connected, with Havel’s lemma
tripartite graphs - connected, no Havel’s lemma
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Background

Restricted DS

Applications

A simple example: star+factor problem

In its simplest form:
d is bipartite, and F = union of 1-factor and a star

s

Tutte’s f -factor theorem applies
realizations are connected
there exists a Havel-type approach



MCW 2013

P.L. Erdős

Background

Restricted DS

Applications
1 Background

2 Restricted degree sequences

3 Application: counting realizations of dF



MCW 2013

P.L. Erdős
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Background

Restricted DS

Applications

Constrcuting and counting realizations

Applied network theory: exponential growth in last 15 years
- algorithmic construction with given parameters



MCW 2013

P.L. Erdős
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obeying the empirical degree sequence.
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generating all possible graphs with multiple edges but
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Goal: to find a typical or random realization
Markov Chain Monte Carlo (MCMC) methods

start with an arbitrary realization and take a long enough
series of randomly chosen G −→ H

this method always produces a random realization!
BUT how fast ????

considered fast enough if it is polynomial in time
and called fast mixing

Theorem (Jerrum, Valiant and Vazirani (1986))

if the problem is Self-reducible then fast mixing MCMC
sampling provides a good approximation on the number of
realizations
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Erdős-Kiss-Miklós-Soukup (2014?) - half-regular,
bipartite d with forbidden star+factor

fast mixing
contains the above results
self-reducible



MCW 2013

P.L. Erdős
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Examples:

Kannan-Tetali-Vempala (1999) - d is regular bipartite

Miklós-Erdős-Soukup (2013) - d half-regular bipartite

Greenhill (2011) regular directed graphs – equivalent
with regular bipartite d with a forbidden one-factor F

all are fast mixing but NOT self-reducible
Erdős-Kiss-Miklós-Soukup (2014?) - half-regular,
bipartite d with forbidden star+factor

fast mixing
contains the above results
self-reducible

all MCMC above are suitable for approximate counting
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