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The Clumsiest Polyomino

¢ Theorem. Let D be a single polyomino of size k. Then

> clumsiness(D) > k/(k* — k + 1).

> clumsiness(D) > k/(k* — [(k—1)/2]* — [(k—1)/2]?),
if D is connected.

Both bounds are best possible.
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> clumsiness(D) > k/(k* — k + 1).

~ 2/k

Both bounds are best possible.

+ Theorem. Let D be a single polyomino of size k. Then

~1/k

> cIumsiness(D) > k/(k*— | (k— 1)/2j2 —[(k—1)/21%),

If D iIs connected.

> D intersects < k% — | (k—1)/2]?
2y i 1%

Both bounds are best possible.

-+ Lemma. Let D be a single polyomino of size k. Then

> D intersects < k% — k + 1 copies of itself| ~ k?
— [(k —1)/2]# copies,

If D iIs connected.
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The Clumsiest Set of Polyominoes

-+ The clumsiest polyomino
of size k has clumsiness

k ~
VY VY

- 2k
clumsiness < ;=577 & 2/k

¢ Open Question: What is the clumsiest set of polyominoes
each of size at most k7
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—+ Theorem. For every palette D and every € > 0 there exists
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Wang Tiles

Thm.(Culik 1996) There exists a set of 13 Wang tiles
such that every Wang tiling is aperiodic.

Thm.(Berger 1966) It is undecidable whether a given set
of Wang tiles tiles the plane.

— Wang Tiling

>
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—e Palette = Wang-polyominoes + bad x-by-x square
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> Wang tiling exists

= density(P) = (220;’:52)92.
> Wang tiling does not exist

= "many’ bad squares

= density(P) > 5.




Wang Tiles

Thm.(Culik 1996) There exists a set of 13 Wang tiles
such that every Wang tiling is aperiodic.

Thm.(Berger 1966) It is undecidable whether a given set
of Wang tiles tiles the plane.

Polyominoes

Theorem. There exists a set of 14 polyominoes
such that every clumsy packing is aperiodic.

Theorem. For some g € QQ it is undecidable whether
a given set of polyominoes has clumsiness at most q.
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Summary and Open Problems

-# Thm. The clumsiest connected polyomino of size k

has clumsiness ~ 2/k.

~® Open: What is the clumsiest set of polyominoes

each of size k7?
Open: What if we allow rotations?

Thm. For every € > 0 there exist a periodic packing P
such that density(P) < clumsiness +¢.

¢ Thm. Sometimes all clumsy packings are aperiodic.

~+ Thm. Computing clumsiness is undecidable for some ¢ € Q.

—» Open: What about other rational numbers ¢?
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