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Graphs as digraphs

A graph is a digraph D with D = S(D), i.e. its arc set contains
only edges, but no single arcs.

an edge a single arc

graph = symmetric digraph
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The dichromatic number of a digraph

The dichromatic number χ(D) of a digraph D is the smallest
number of induced acyclic subdigraphs of D that cover the vertices
of D. [Neumann-Lara 1982]

The dichromatic number of graphs is the chromatic number.

COLORING: color classes are acyclic subdi-
graphs

Theorem (Bokal, Fijavž, Juvan, Kayll, Mohar
(2004))

2-COLORING of digraphs is NP-complete.

Conjecture (Neumann-Lara (1985))

Orientations of planar graphs are 2-colorable.
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The clique number of a digraph

A symmetric clique is a digraph D = (V ,V ×V \ {(v , v) | v ∈ V }).

The clique number ω(D) of a digraph D is the largest size of a
symmetric clique in D.

Theorem (Karp (1971))

Deciding whether a digraph has a symmetric clique of size k is
NP-complete.
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Perfect digraphs

Observation
For any digraph D,

ω(D) ≤ χ(D).

A digraph D is perfect if, for any induced subdigraph H of D,

ω(H) = χ(H).
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Main result and a “Strong Perfect Digraph Theorem”

Technical requirements

Req. A)

For a digraph D = (V ,A) and V ′ ⊆ V , we denote by D[V ′] the
subdigraph of D induced by the vertices in V ′.

Req. B)

Observation
For any digraph D, we have ω(D) = ω(S(D)).
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The main result

Theorem
A digraph D is perfect if and only if S(D) is a perfect graph and D
does not contain any induced directed cycle ~Cn with n ≥ 3.

Proof

(by contraposition)

.
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The main result

Theorem
A digraph D is perfect if and only if S(D) is a perfect graph and D
does not contain any induced directed cycle ~Cn with n ≥ 3.

Proof (by contraposition).

“=⇒” 1) Assume S(D) is not perfect.
=⇒ ∃ induced subgraph H = (V ′,E ′) of S(D) : ω(H) < χ(H).
By the observation and from S(D[V ′]) = H we get

ω(D[V ′]) = ω(S(D[V ′])) = ω(H) < χ(H) = χ(S(D[V ′])) ≤ χ(D[V ′])

=⇒ D is not perfect.

2) Assume D contains induced directed cycle ~Cn, n ≥ 3.
=⇒ D is not perfect, since ω(~Cn) = 1 < 2 = χ(~Cn).
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The main result

Theorem
A digraph D is perfect if and only if S(D) is a perfect graph and D
does not contain any induced directed cycle ~Cn with n ≥ 3.

Proof (by contraposition).

“⇐=” Assume that S(D) is perfect but D is not perfect.
Suffices to show: D contains induced ~Cn, n ≥ 3.
Let H = (V ′,A′) be induced subdigraph of D: ω(H) < χ(H).
=⇒ ∃ proper coloring of S(H) = S(D)[V ′] with ω(S(H))
colors, i.e., by Observation 1, with ω(H) colors.
=⇒ is not a feasible coloring for H.
=⇒ ∃ (not necessarily induced) monochromatic ~Cn (n ≥ 3) in O(H)
Let C be such a cycle of minimal length. C is induced!
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The Strong Perfect Graph Theorem

Theorem (Chudnovsky, Robertson, Seymour, Thomas (2006))

A graph is perfect if and only if it does not contain induced
subgraphs of the following types:
(1) odd holes: i.e. cycles of odd length ≥ 5 resp.
(2) odd antiholes: i.e. complements of type (1).

type (1) type (2)
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The Strong Perfect Digraph Theorem

Theorem
A digraph is perfect if and only if it does not contain induced
subdigraphs of the following types:
(1) filled odd holes: i.e. D with S(D) is odd hole resp.
(2) filled odd antiholes: i.e. D with S(D) is odd antihole resp.
(3) directed cycles of length ≥ 3.

type (1) type (2) type (3)
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Complexity results

COLORING and MAX induced ACYCLIC SUBDIGRAPH
Corollary (from main result)

If D is a perfect digraph, then a coloring is feasible for D if and
only if it is feasible for S(D).

Corollary
The COLORING problem for a perfect digraph D is polynomial.

Corollary
There is a polynomial time algorithm to determine an induced
acyclic subdigraph of maximum cardinality of a perfect digraph D.

Proofs use: Theorem (Grötschel, Lovász, Schrijver (1981))

The COLORING resp. MAX INDEPENDENT SET
problem for perfect graphs is polynomially solvable.
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Question 1

Open Question
Are there other interesting NP-hard problems on digraphs that are
polynomially solvable for perfect digraphs?
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Complexity results

RECOGNITION of perfect digraphs

In order to test, whether a digraph D is perfect, by our Theorem we
have to test

1.) whether S(D) is perfect, and

2.) whether D does not contain an induced ~Cn, n ≥ 3.

Theorem (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković (2005))

Recognizing graphs of types (1) resp. (2) (“Berge graphs”) is in P.

Theorem (Bang-Jensen, Havet, Trotignon (2012))

Testing whether D contains an induced ~Cn, n ≥ 3, is NP-complete.

Theorem
The PERFECT DIGRAPH RECOGNITION problem is
co-NP-complete.
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Complexity results

Question 2

Open Question
Are there other interesting efficiently solvable problems on perfect
graphs that have generalizations to perfect digraphs which are
NP-hard?
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Complements of perfect digraphs may be not perfect

So there is no direct analog to Lovasz’ Perfect Graph Theorem.

Theorem (Lovasz (1972))

A graph is perfect if and only if its complement is perfect.
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A weak perfect digraph theorem

Def 1: A superorientation of an undirected graph G = (V ,E ) is a
digraph D = (V ,A), so that for any e = vw ∈ E there is an arc
(v ,w) or (w , v) or both in A, and for any vw /∈ E there is none of
the arcs (v ,w) and (w , v) in A. We write G (D):= G .

Def 2: A superorientation D of a graph G is clique-acyclic if there
does not exist a clique in G which is induced by a (not necessarily
induced) directed cycle of D of length ≥ 3.

Theorem

A digraph D is perfect if and only if its (loopless) complement D is
a clique-acyclic superorientation of a perfect graph.

Proof. By main result, D being perfect is equivalent to
S(D) perfect (Lovasz⇐⇒ S(D) perfect ⇐⇒ G (D) perfect)
and D contains no induced directed cycle (⇐⇒ D is clique-acyclic)
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Consequences (I): Recognition of D

Corollary
The recognition of clique-acyclic superorientations of perfect graphs
is co-NP-complete.
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A “Weak Perfect Digraph Theorem”

Consequences (II): Kernels

A kernel S of a
digraph D = (V ,A):

S V \ S

Theorem (Boros, Gurvich (2006))

“Perfect graphs are kernel-solvable,” i.e.
every clique-acyclic superorientation of a
perfect graph has a kernel.

Corollary
For any perfect digraph D, the
complement D has a kernel.
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Kernels: The contrast
Corollary

For any perfect digraph D, the complement D has a kernel.

However:

Theorem
It is NP-complete to decide whether a perfect digraph has a kernel.

Proof. Reduction from 3-SAT like in Chvátal’s classical proof that
existence of kernels in digraphs is NP-complete:

x2 x2 x3x3x8 x8
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Open questions on perfect digraphs

Open Question (1)

Are there other interesting
efficiently solvable problems on
perfect graphs that have
generalizations to perfect
digraphs which are NP-hard?

Open Question (2)

Are there other interesting
NP-hard problems on digraphs
that are polynomially solvable for
perfect digraphs?

Open Question (3)

Are there other problems
that are NP-complete or
co-NP-complete for graphs
in general as well as for
perfect digraphs?

Open Question (4)

What is the complexity of
recognizing
superorientations of perfect
graphs that have a kernel?
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Other questions on dichromatic numbers

Conjecture (Neumann-Lara (1985))

Orientations of planar graphs are 2-colorable.

Open Question

Determine the maximum dichromatic number M(n) of a
tournament of order n.

Known values

n 0 1 2 3 4 5 6 7 8 9 10 11
M(n) 0 1 1 2 2 2 2 3 3 3 3 4
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Open questions

Recognition of non-perfect digraphs

NON-PERFECT DIGRAPH RECOGNITION: Given a digraph,
decide whether it is not perfect.

Theorem
The NON-PERFECT DIGRAPH RECOGNITION problem is
NP-complete.

Proof. 1.) NON-PERFECT DIGRAPH RECOGNITION is in NP.
Certificate is an induced directed cycle, a filled odd hole/antihole.

2.) Now we prove NP-completeness. This proof is very similar to
the proof of Bang-Jensen, Havet, and Trotignon (2010) of the
NP-completeness of testing whether a digraph has an induced
directed cycle.
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Open questions

NP-completeness proof I

We describe a reduction from 3-SAT to NON-PERFECT DIGRAPH
RECOGNITION.

Instance of 3-SAT: Boolean formula of type

F =
m∧

i=1

Ci =
m∧

i=1

(li1∨li2∨li3) with lij ∈ {x1, . . . , xn, x1, . . . , xn}.

Given such an instance, we construct a digraph in the following way.
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Open questions

NP-completeness proof II (gadgets)

For each variable xk we con-
struct a variable gadget:

xk

xk

For each clause Ci we con-
struct a clause gadget:
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NP-completeness proof II (gadgets)

For each variable xk we con-
struct a variable gadget:

xk

xk

For each clause Ci we con-
struct a clause gadget:

li3

li2

li1

59 / 64



Perfect digraphs
Open questions

NP-completeness proof III (construction)

x4x3x2x1

x1 x2 x3 x4

l11

l12

l13

l21

l22

l23

(x1 ∨ x3 ∨ x2) ∧ (x3 ∨ x2 ∨ x4) The gadgets
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NP-completeness proof III (construction)

x4x3x2x1

x1 x2 x3 x4

l11

l12

l13

l21

l22

l23

(x1 ∨ x3 ∨ x2) ∧ (x3 ∨ x2 ∨ x4) Form a ring
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NP-completeness proof III (construction)

x4x3x2x1

x1 x2 x3 x4

l11

l12

l13

l21

l22

l23

(x1 ∨ x3 ∨ x2) ∧ (x3 ∨ x2 ∨ x4) Insert edges
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NP-completeness proof III (construction)

x4x3x2x1

x1 x2 x3 x4

l11

l12

l13

l21

l22

l23

(x1 ∨ x3 ∨ x2) ∧ (x3 ∨ x2 ∨ x4) Induced directed cycle iff satisfyable
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NP-completeness proof III (construction)

x4x3x2x1

x1 x2 x3 x4

l11

l12

l13

l21

l22

l23

(x1 ∨ x3 ∨ x2) ∧ (x3 ∨ x2 ∨ x4) not perfect iff satisfyable

64 / 64


	Perfect digraphs
	Main result and a ``Strong Perfect Digraph Theorem''
	Complexity results
	A ``Weak Perfect Digraph Theorem''
	Open questions

