Perfect Digraphs: Answers and Questions

*

Dominique Andres

joint work with: Winfried Hochstättler

dominique.andres@fernuni-hagen.de

MCW 2013, Praha, 29 July - 2 August 2013

2 Main result and a "Strong Perfect Digraph Theorem"

3 Complexity results

4 "Weak Perfect Digraph Theorem"

5 Open questions

Perfect digraphs

Digraphs

Digraphs

Digraphs

Graphs as digraphs

A graph is a digraph D with D = S(D), i.e. its arc set contains only edges, but no single arcs.

graph = symmetric digraph

The dichromatic number $\chi(D)$ of a digraph D is the smallest number of induced acyclic subdigraphs of D that cover the vertices of D. [Neumann-Lara 1982]

The dichromatic number of graphs is the chromatic number.

The dichromatic number $\chi(D)$ of a digraph D is the smallest number of induced acyclic subdigraphs of D that cover the vertices of D. [Neumann-Lara 1982]

The dichromatic number of graphs is the chromatic number.

COLORING: color classes are acyclic subdigraphs

The dichromatic number $\chi(D)$ of a digraph D is the smallest number of induced acyclic subdigraphs of D that cover the vertices of D. [Neumann-Lara 1982]

The dichromatic number of graphs is the chromatic number.

COLORING: color classes are acyclic subdigraphs

Theorem (Bokal, Fijavž, Juvan, Kayll, Mohar (2004))

2-COLORING of digraphs is \mathcal{NP} -complete.

The dichromatic number $\chi(D)$ of a digraph D is the smallest number of induced acyclic subdigraphs of D that cover the vertices of D. [Neumann-Lara 1982]

The dichromatic number of graphs is the chromatic number.

COLORING: color classes are acyclic subdigraphs

Theorem (Bokal, Fijavž, Juvan, Kayll, Mohar (2004))

2-COLORING of digraphs is \mathcal{NP} -complete.

Conjecture (Neumann-Lara (1985))

Orientations of planar graphs are 2-colorable.

The clique number of a digraph

A symmetric clique is a digraph $D = (V, V \times V \setminus \{(v, v) \mid v \in V\})$.

The clique number $\omega(D)$ of a digraph D is the largest size of a symmetric clique in D.

The clique number of a digraph

A symmetric clique is a digraph $D = (V, V \times V \setminus \{(v, v) \mid v \in V\})$.

The clique number $\omega(D)$ of a digraph D is the largest size of a symmetric clique in D.

Theorem (Karp (1971))

Deciding whether a digraph has a symmetric clique of size k is \mathcal{NP} -complete.

Perfect digraphs

Observation

For any digraph D,

$\omega(D) \leq \chi(D).$

A digraph D is perfect if, for any induced subdigraph H of D,

 $\omega(H) = \chi(H).$

Main result and a "Strong Perfect Digraph Theorem"

Perfect digraphs Main result and a "Strong Perfect Digraph Theorem"

Technical requirements

Req. A)

For a digraph D = (V, A) and $V' \subseteq V$, we denote by D[V'] the subdigraph of D induced by the vertices in V'.

Req. B)

Observation

For any digraph D, we have $\omega(D) = \omega(S(D))$.

Theorem

A digraph D is perfect if and only if S(D) is a perfect graph and D does not contain any induced directed cycle \vec{C}_n with $n \ge 3$.

Proof

Theorem

A digraph D is perfect if and only if S(D) is a perfect graph and D does not contain any induced directed cycle \vec{C}_n with $n \ge 3$.

Proof (by contraposition).

" $\begin{array}{l} \text{``} \Rightarrow \text{``} 1) \text{ Assume } S(D) \text{ is not perfect.} \\ \Rightarrow \exists \text{ induced subgraph } H = (V', E') \text{ of } S(D) : \omega(H) < \chi(H). \\ \text{By the observation and from } S(D[V']) = H \text{ we get} \\ \omega(D[V']) = \omega(S(D[V'])) = \omega(H) < \chi(H) = \chi(S(D[V'])) \le \chi(D[V']) \\ \Rightarrow D \text{ is not perfect.} \end{array}$

Theorem

A digraph D is perfect if and only if S(D) is a perfect graph and D does not contain any induced directed cycle \vec{C}_n with $n \ge 3$.

Proof (by contraposition).

"⇒" 1) Assume S(D) is not perfect.
⇒ ∃ induced subgraph H = (V', E') of S(D) : ω(H) < χ(H). By the observation and from S(D[V']) = H we get
ω(D[V']) = ω(S(D[V'])) = ω(H) < χ(H) = χ(S(D[V'])) ≤ χ(D[V'])
⇒ D is not perfect.
2) Assume D contains induced directed cycle C

n, n ≥ 3.
⇒ D is not perfect, since ω(C

n, n) = 1 < 2 = χ(C

n).

Theorem

A digraph D is perfect if and only if S(D) is a perfect graph and D does not contain any induced directed cycle \vec{C}_n with $n \ge 3$.

Proof (by contraposition).

The Strong Perfect Graph Theorem

Theorem (Chudnovsky, Robertson, Seymour, Thomas (2006))

A graph is perfect if and only if it does not contain induced subgraphs of the following types:

(1) odd holes: i.e. cycles of odd length \geq 5 resp.

(2) odd antiholes: i.e. complements of type (1).

Main result and a "Strong Perfect Digraph Theorem"

The Strong Perfect Digraph Theorem

Theorem

A digraph is perfect if and only if it does not contain induced subdigraphs of the following types: (1) filled odd holes: i.e. D with S(D) is odd hole resp.

(2) filled odd antiholes: i.e. D with S(D) is odd antihole resp.

(3) directed cycles of length \geq 3.

Perfect digraphs Complexity results

Complexity results

Corollary (from main result)

If D is a perfect digraph, then a coloring is feasible for D if and only if it is feasible for S(D).

Corollary (from main result)

If D is a perfect digraph, then a coloring is feasible for D if and only if it is feasible for S(D).

Corollary

The COLORING problem for a perfect digraph D is polynomial.

Corollary (from main result)

If D is a perfect digraph, then a coloring is feasible for D if and only if it is feasible for S(D).

Corollary

The COLORING problem for a perfect digraph D is polynomial.

Corollary

There is a polynomial time algorithm to determine an induced acyclic subdigraph of maximum cardinality of a perfect digraph D.

Corollary (from main result)

If D is a perfect digraph, then a coloring is feasible for D if and only if it is feasible for S(D).

Corollary

The COLORING problem for a perfect digraph D is polynomial.

Corollary

There is a polynomial time algorithm to determine an induced acyclic subdigraph of maximum cardinality of a perfect digraph D.

Proofs use:

Theorem (Grötschel, Lovász, Schrijver (1981))

The COLORING resp. MAX INDEPENDENT SET problem for perfect graphs is polynomially solvable.

Question 1

Open Question

Are there other interesting \mathcal{NP} -hard problems on digraphs that are polynomially solvable for perfect digraphs?

In order to test, whether a digraph D is perfect, by our Theorem we have to test

1.) whether S(D) is perfect, and

2.) whether D does not contain an induced \vec{C}_n , $n \ge 3$.

In order to test, whether a digraph D is perfect, by our Theorem we have to test

- 1.) whether S(D) is perfect, and
- 2.) whether D does not contain an induced \vec{C}_n , $n \ge 3$.

Theorem (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković (2005))

Recognizing graphs of types (1) resp. (2) ("Berge graphs") is in \mathcal{P} .

In order to test, whether a digraph D is perfect, by our Theorem we have to test

- 1.) whether S(D) is perfect, and
- 2.) whether D does not contain an induced \vec{C}_n , $n \ge 3$.

Theorem (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković (2005))

Recognizing graphs of types (1) resp. (2) ("Berge graphs") is in \mathcal{P} .

Theorem (Bang-Jensen, Havet, Trotignon (2012))

Testing whether D contains an induced \vec{C}_n , $n \ge 3$, is \mathcal{NP} -complete.

In order to test, whether a digraph D is perfect, by our Theorem we have to test

- 1.) whether S(D) is perfect, and
- 2.) whether D does not contain an induced \vec{C}_n , $n \ge 3$.

Theorem (Chudnovsky, Cornuéjols, Liu, Seymour, Vušković (2005))

Recognizing graphs of types (1) resp. (2) ("Berge graphs") is in \mathcal{P} .

Theorem (Bang-Jensen, Havet, Trotignon (2012))

Testing whether D contains an induced \vec{C}_n , $n \ge 3$, is \mathcal{NP} -complete.

Theorem

The PERFECT DIGRAPH RECOGNITION problem is $co-\mathcal{NP}$ -complete.

Question 2

Open Question

Are there other interesting efficiently solvable problems on perfect graphs that have generalizations to perfect digraphs which are NP-hard?

A "Weak Perfect Digraph Theorem"

A "Weak Perfect Digraph Theorem"

A "Weak Perfect Digraph Theorem"

Complements of perfect digraphs may be not perfect

A "Weak Perfect Digraph Theorem"

Complements of perfect digraphs may be not perfect

So there is no direct analog to Lovasz' Perfect Graph Theorem.

Theorem (Lovasz (1972))

A graph is perfect if and only if its complement is perfect.

A "Weak Perfect Digraph Theorem"

A weak perfect digraph theorem

Def 1: A *superorientation* of an undirected graph G = (V, E) is a digraph D = (V, A), so that for any $e = vw \in E$ there is an arc (v, w) or (w, v) or both in A, and for any $vw \notin E$ there is none of the arcs (v, w) and (w, v) in A. We write G(D) := G.

A "Weak Perfect Digraph Theorem"

A weak perfect digraph theorem

Def 1: A superorientation of an undirected graph G = (V, E) is a digraph D = (V, A), so that for any $e = vw \in E$ there is an arc (v, w) or (w, v) or both in A, and for any $vw \notin E$ there is none of the arcs (v, w) and (w, v) in A. We write G(D) := G.

Def 2: A superorientation D of a graph G is *clique-acyclic* if there does not exist a clique in G which is induced by a (not necessarily induced) directed cycle of D of length ≥ 3 .

A "Weak Perfect Digraph Theorem"

A weak perfect digraph theorem

Def 1: A superorientation of an undirected graph G = (V, E) is a digraph D = (V, A), so that for any $e = vw \in E$ there is an arc (v, w) or (w, v) or both in A, and for any $vw \notin E$ there is none of the arcs (v, w) and (w, v) in A. We write G(D) := G.

Def 2: A superorientation D of a graph G is *clique-acyclic* if there does not exist a clique in G which is induced by a (not necessarily induced) directed cycle of D of length ≥ 3 .

Theorem

A digraph D is perfect if and only if its (loopless) complement \overline{D} is a clique-acyclic superorientation of a perfect graph.

A "Weak Perfect Digraph Theorem"

A weak perfect digraph theorem

Def 1: A superorientation of an undirected graph G = (V, E) is a digraph D = (V, A), so that for any $e = vw \in E$ there is an arc (v, w) or (w, v) or both in A, and for any $vw \notin E$ there is none of the arcs (v, w) and (w, v) in A. We write G(D) := G.

Def 2: A superorientation D of a graph G is *clique-acyclic* if there does not exist a clique in G which is induced by a (not necessarily induced) directed cycle of D of length ≥ 3 .

Theorem

A digraph D is perfect if and only if its (loopless) complement \overline{D} is a clique-acyclic superorientation of a perfect graph.

Proof. By main result, D being perfect is equivalent to S(D) perfect ($\stackrel{Lovasz}{\iff} \overline{S(D)}$ perfect $\iff G(\overline{D})$ perfect) and D contains no induced directed cycle ($\iff \overline{D}$ is clique-acyclic)

A "Weak Perfect Digraph Theorem"

Consequences (I): Recognition of \overline{D}

Corollary

The recognition of clique-acyclic superorientations of perfect graphs is co-NP-complete.

A "Weak Perfect Digraph Theorem"

Consequences (II): Kernels

A "Weak Perfect Digraph Theorem"

Consequences (II): Kernels

A kernel S of a digraph D = (V, A):

Theorem (Boros, Gurvich (2006))

"Perfect graphs are kernel-solvable," i.e. every clique-acyclic superorientation of a perfect graph has a kernel.

Corollary

For any perfect digraph D, the complement \overline{D} has a kernel.

A "Weak Perfect Digraph Theorem"

Kernels: The contrast

Corollary

For any perfect digraph D, the complement \overline{D} has a kernel.

A "Weak Perfect Digraph Theorem"

Kernels: The contrast

Corollary

For any perfect digraph D, the complement \overline{D} has a kernel.

However:

Theorem

It is \mathcal{NP} -complete to decide whether a perfect digraph has a kernel.

A "Weak Perfect Digraph Theorem"

Kernels: The contrast

Corollary

For any perfect digraph D, the complement \overline{D} has a kernel.

However:

Theorem

It is \mathcal{NP} -complete to decide whether a perfect digraph has a kernel.

Proof. Reduction from 3-SAT like in Chvátal's classical proof that existence of kernels in digraphs is \mathcal{NP} -complete:

Open questions

Open questions

Open questions on perfect digraphs

Open Question (1)

Are there other interesting efficiently solvable problems on perfect graphs that have generalizations to perfect digraphs which are \mathcal{NP} -hard?

Open Question (2)

Are there other interesting \mathcal{NP} -hard problems on digraphs that are polynomially solvable for perfect digraphs?

Open Question (3)

Are there other problems that are \mathcal{NP} -complete or co- \mathcal{NP} -complete for graphs in general as well as for perfect digraphs?

Open Question (4)

What is the complexity of recognizing superorientations of perfect graphs that have a kernel?

Other questions on dichromatic numbers

Conjecture (Neumann-Lara (1985))

Orientations of planar graphs are 2-colorable.

Open Question

Determine the maximum dichromatic number M(n) of a tournament of order n.

n
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

$$M(n)$$
 0
 1
 1
 2
 2
 2
 3
 3
 3
 4

Open questions

Thank you!

Open questions

Thank you!

Open questions

Thank you!

NON-PERFECT DIGRAPH RECOGNITION: Given a digraph, decide whether it is not perfect.

NON-PERFECT DIGRAPH RECOGNITION: Given a digraph, decide whether it is not perfect.

Theorem

The NON-PERFECT DIGRAPH RECOGNITION problem is \mathcal{NP} -complete.

NON-PERFECT DIGRAPH RECOGNITION: Given a digraph, decide whether it is not perfect.

Theorem

The NON-PERFECT DIGRAPH RECOGNITION problem is \mathcal{NP} -complete.

Proof. 1.) NON-PERFECT DIGRAPH RECOGNITION is in \mathcal{NP} . Certificate is an induced directed cycle, a filled odd hole/antihole.

NON-PERFECT DIGRAPH RECOGNITION: Given a digraph, decide whether it is not perfect.

Theorem

The NON-PERFECT DIGRAPH RECOGNITION problem is \mathcal{NP} -complete.

Proof. 1.) NON-PERFECT DIGRAPH RECOGNITION is in \mathcal{NP} . Certificate is an induced directed cycle, a filled odd hole/antihole.

2.) Now we prove \mathcal{NP} -completeness. This proof is very similar to the proof of Bang-Jensen, Havet, and Trotignon (2010) of the \mathcal{NP} -completeness of testing whether a digraph has an induced directed cycle.

$$\mathcal{NP} ext{-completeness}$$
 proof I

We describe a reduction from 3-SAT to NON-PERFECT DIGRAPH RECOGNITION.

Instance of 3-SAT: Boolean formula of type

$$F = \bigwedge_{i=1}^m C_i = \bigwedge_{i=1}^m (I_{i1} \vee I_{i2} \vee I_{i3}) \quad \text{with } I_{ij} \in \{x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n\}.$$

Given such an instance, we construct a digraph in the following way.

\mathcal{NP} -completeness proof II (gadgets)

For each variable x_k we construct a variable gadget:

\mathcal{NP} -completeness proof II (gadgets)

For each variable x_k we construct a variable gadget:

For each clause C_i we construct a clause gadget:

Perfect digraphs Open questions

 $(\overline{x}_1 \lor x_3 \lor x_2) \land (x_3 \lor \overline{x}_2 \lor \overline{x}_4)$ The gadgets

Perfect digraphs Open questions

 $(\overline{x}_1 \lor x_3 \lor x_2) \land (x_3 \lor \overline{x}_2 \lor \overline{x}_4)$ Form a ring

Perfect digraphs Open questions

 $(\overline{x}_1 \lor x_3 \lor x_2) \land (x_3 \lor \overline{x}_2 \lor \overline{x}_4)$ Insert edges

Perfect digraphs Open questions

 $(\overline{x}_1 \lor x_3 \lor x_2) \land (x_3 \lor \overline{x}_2 \lor \overline{x}_4)$ Induced directed cycle iff satisfyable

Perfect digraphs Open questions

 $(\overline{x}_1 \lor x_3 \lor x_2) \land (x_3 \lor \overline{x}_2 \lor \overline{x}_4)$ not perfect iff satisfyable