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Introduction

The 18th Prague Midsummer Combinatorial Workshop was held from
July 30 to August 3, 2012 in our beautiful building Malostranské náměst́ı 25.
This of course contributed to the comfort of the participants as all the activ-
ities (including the lunches) could be taken on the same site. Besides, as it
was expressed by several participants, the renovated faculty building surely
belongs to the most beautiful math and computer science departments in
the world! The workshop was organized by the Department of Applied
Mathematics (KAM) of Charles University jointly with DIMATIA and CE
ITI. Moreover, the 2013 was the first year of existence of our newly founded
Computer Science Institute of Charles University (in Czech Informatický
ústav University Karlovy; http://iuuk.mff.cuni.cz). Only a small but
distinguished group of mathematicians was invited and we were particularly
happy to have Maria Axenovich, John Gimbel and András Gyárfás among
the participants. The list of speakers is included in this booklet. As it
already became a tradition, the workshop benefited from participation of
young researchers and PhD students. For example six undergraduate stu-
dents from the USA and six undergraduate students from Charles Univer-
sity, together with their mentor Kellen Myers from US side and Josef Cibulka
from Prague side took part in the workshop, within the DIMATIA-DIMACS
program International REU (supported jointly by NSF and Czech Ministry
of Education ME 09074). The workshop followed an informal daily rou-
tine with morning and early afternoon discussions and presentations. This
report reflects some of the presentations during the workshop. On Wednes-
day August 1 we had an excursion to the world famous Strahov Library
where we were give a special tour by Dr. Pařez, especially directed to early
mathematical and astronomy manuscripts in the library funds (visit http:
//www.360cities.net/gigapixel/strahov-library.html). Perhaps you
can digest some of the atmosphere at the workshop from these proceedings,
and you can also see that the fruitful exchange of ideas led directly to some
new results and papers. The organization of the workshop from the help
of several people. But mainly we benefited from the work of our secretary
Mrs. Hana Polǐsenská and Pavel Ryt́ı̌r who also edited this volume. Thank
to both of them for excellent work. Most of the contributions were supplied
by the authors in an electronic form. In a few cases, slight typographical
changes were necessary. We apologize for any possible inaccuracies which
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might have occurred in the editing process. We gratefully acknowledge fi-
nancial support of Czech research projects GACR P202/12/G061 and ERC
CZ LL1201 CORES.

We hope to meet again in 2013 the same midsummer week!

Jaroslav Nešetřil
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Jiŕı Fiala Jiŕı Fink Jan Foniok
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Zsolt Tuza Tomáš Valla Pavel Valtr
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The binary paint shop problem

Stephan Dominique Andres
Fernuniversität in Hagen, Fakultät für Mathematik und Informatik

dominique.andres@fernuni-hagen.de

Joint work with Winfried Hochstättler 1.

1 Introduction

The binary paint shop problem introduced by Epping et al. [5] is the fol-
lowing task of combinatorial optimization. We are given an alphabet Σ of
n letters and a word w ∈ Σ2n of 2n characters in which every letter from
Σ occurs exactly twice; such a word is called double occurrence word. A
feasible colouring of w is an assignment (f1, . . . , f2n) ∈ {red,blue}2n, such
that for any i 6= j, if wi = wj , then fi 6= fj . For i = 1, . . . , 2n− 1, there is a
colour change at position i+ 1

2 if and only if fi 6= fi+1. The goal is to find
a feasible colouring with the minimal number of colour changes.

This problem is difficult, even hard to approximate: there is no PTAS
unless P = NP. Bonsma et al. [4] proved this by reducing VERTEX
COVER FOR CUBIC GRAPHS to the binary paint shop problem. Meunier
and Sebő [6] used a reduction from MAX CUT FOR 3-REGULAR GRAPHS
to obtain the same result. Both reductions imply that the binary paint shop
decision problem is NP-complete.

Problem 1.1. Is there a constant factor approximation for the binary paint
shop problem?

2 The greedy heuristic

The greedy heuristic colours a given double occurrence word feasibly from
left to right, the first character is coloured red, after that a colour is used as
long as possible in a feasible colouring. The following is a trivial observation.

Remark 2.1. The greedy heuristic obtains an optimal solution on double
occurrence words that do not contain subwords of the form ABBA.

Amini et al. [2] resp. Rautenbach and Szigeti [7] improved Remark 2.1.

1Fernuniversität in Hagen, Fakultät für Mathematik und Informatik.
winfried.hochstaettler@fernuni-hagen.de.
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Theorem 2.2 (Amini et al. (2010)). The greedy heuristic is optimal on
instances that do not contain subwords of the form ABACCB or ABBCAC.

Theorem 2.3 (Rautenbach, Szigeti (2012)). The greedy heuristic is optimal
on every subword of a word w if and only if w does not contain subwords of
the form ABACCB or ADDBCCAB or ADDCBCAB.

Amini et al. [2] also consider the expected performance of the greedy
heuristic (assuming uniform distribution).

Theorem 2.4 (Amini et al. (2010)). The expected number of colour changes
for the greedy heuristic on double occurrence words of the length 2n is

En(g) ≤ 2

3
n.

In [3] we improve this, proving a conjecture of Amini et al. [2].

Theorem 2.5. The expected number of colour changes for the greedy heuris-
tic on double occurrence words of length 2n is

En(g) =

n−1∑
k=0

2k2 − 1

4k2 − 1
.

In [3] two other heuristics were considered, too. The red-first heuristic
simply colours the first occurrence of every letter red, the second blue. The
recursive greedy heuristic deletes both occurrences of the last letter, say Z,
colours the rest of the word recursively by recursive greedy heuristic, and
then proceeds with the two Zs in the following way. If the first occurrence of
Z is placed between two differently coloured characters, then it is coloured
in such a way that there is no colour change before the last Z, otherwise it
is coloured in the colour of its neighbours.

None of the three heuristics mentioned is a constant factor approxima-
tion [3]. In [3] analogs of Theorem 2.5 are proved.

Theorem 2.6. The expected number of colour changes for the red-first heur-
istic on an instance of length 2n is

En(rf) =
2n+ 1

3
.

Theorem 2.7. For all n ≥ 1, the expected number En(rg) of colour changes
for the recursive greedy heuristic is bounded by

2

5
n+

8

15
≤ En(rg) ≤ 2

5
n+

7

10
.
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3 Problems and a generalization

Problem 3.1. Find better heuristics (with better expected performance).

Problem 3.2. Characterize the instances where the recursive greedy is op-
timal.

Problem 3.3. Determine the expected number of colour changes for optimal
colouring.

The binary paint shop problem is a special case of the optimization
version of the so-called necklace splitting problem. In the necklace splitting
problem q thieves have to divide an open necklace with t types of beads,
where each type i occurs exactly aiq times, in a fair way, i.e. to cut it into
pieces, so that every thief receives exactly ai beads of type i.

Theorem 3.4 (Alon (1987)). There is a solution with at most (q−1)t cuts.

Problem 3.5 (Meunier, Sebő (2009)). Is there a polynomial algorithm to
determine the cuts mentioned in Theorem 3.4?

References

[1] N. Alon, Splitting necklaces, Advances in Math. 63 (1987), 247–253

[2] H. Amini, F. Meunier, H. Michel, A. Mohajeri, Greedy colorings for
the binary paintshop problem, J. Discrete Algorithms 8 (2010) 8–14

[3] S.D. Andres, W. Hochstättler, Some heuristics for the binary paint
shop problem and their expected number of colour changes, J. Discrete
Algorithms 9 (2011), 203–211

[4] P. Bonsma, T. Epping, W. Hochstättler, Complexity results on re-
stricted instances of a paint shop problem for words, Discrete Appl.
Math. 154 (2006) 1335–1343

[5] T. Epping, W. Hochstättler, P. Oertel, Complexity result on a paint
shop problem, Discrete Appl. Math. 136 (2004) 217–226

[6] F. Meunier, A. Sebő, Paintshop, odd cycles and necklace splitting,
Discrete Appl. Math. 157 (2009) 780–793

[7] D. Rautenbach, Z. Szigeti, Greedy colorings of words, Discrete Applied
Math. 160 (2012), 1872–1874
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Twins in sequences

Maria Axenovich
Karlsruhe Institute of Technology, Germany

maria.aksenovich@kit.edu

Joint work with Yury Person 1 and Svetlana Puzynina 2.

For a word S, let f(S) be the largest integer m such that there are
two disjoint identical (scattered) subwords of length m. Let f(n,Σ) =
min{f(S) : S is of length n, over alphabet Σ}. Here, it is shown that

2f(n, {0, 1}) = n− o(n)

using the regularity lemma for words. In other words, any binary word of
length n can be split into two identical subwords (referred to as twins) and,
perhaps, a remaining subword of length o(n). A similar result is proven for
k identical subwords of a word over an alphabet with at most k letters.

1Frei Universität Berlin, Germany
2Turku University, Finland.
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Upper density of quasi-random hypergraphs

Vindya Bhat
Emory University
vbhat@emory.edu

Joint work with Vojtěch Rödl 1.

In 1964, Erdős proved that for any α > 0, an l-uniform hypergraph
G with n ≥ n0(α, l) vertices and α

(
n
l

)
edges contains a large complete l-

equipartite subgraph. This implies that any sufficiently large G with density
α > 0 contains a large subgraph with density at least l!/ll.

In this talk we discuss a similar problem for l-uniform hypergraphs Q
with a (weak) quasi-random property. We prove any sufficiently large quasi-
random l-uniform hypergraph Q with density α > 0 contains a large sub-

graph with density at least (l−1)!
ll−1−1 . In particular, for l = 3, any sufficiently

large such Q contains a large subgraph with density at least 1
4 which is the

best possible lower bound.
We define jumps for quasi-random sequences of l-graphs and our result

implies that every number between 0 and (l−1)!
ll−1−1 is a jump for quasi-random

l-graphs. For l = 3 this interval can be improved based on a recent result of
Glebov, Král’ and Volec. We prove that every number between [0, 0.3192)
is a jump for quasi-random 3-graphs.

References

[1] N. Alon, W. de la Vega, R. Kannan, and M. Karpinski. Random
sampling and approximation of MAX-CSP problems. In Proceedings
of the 34th annual ACM symposium on Theory of computing, pages
232–239. ACM Press, 2002.

[2] P. Erdős. On extremal problems of graphs and generalized graphs.
Israel Journal of Mathematics, 2:183–190, 1964.

[3] P. Erdős. Problems and results on graphs and hypergraphs: Similarities
and differences. In J. Nešetřil and V. Rödl, editors, Mathematics of
Ramsey Theory, pages 223–233. Springer-Verlag, 1990.

1Emory University. Research partially supported by NSF grant DMS 0800070 and
Emory University Research Committee Grant. rodl@emory.edu.
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Tight Hamilton cycles in random hypergraphs

Julia Böttcher
Joint work with Peter Allen, Yoshiharu Kohayakawa, Yury Person.

The London School of Economics and Political Science
j.boettcher@lse.ac.uk

The question of when the random graph G(n, p) becomes hamiltonian
is well understood. For random hypergraphs until recently not much was
known. The random r-uniform hypergraph G(r)(n, p) on vertex set [n] is

generated by including each hyperedge from
(
[n]
r

)
independently with prob-

ability p = p(n). First, Frieze [3] considered loose Hamilton cycles in ran-
dom 3-uniform hypergraphs. The loose r-uniform cycle on vertex set [n]
has edges {i + 1, . . . , i + r} for exactly all i = k(r − 1) with k ∈ N and
(r − 1) | n, where we calculate modulo n. Frieze showed that the threshold
for a loose Hamilton cycle in G(3)(n, p) is Θ(log n/n2). Dudek and Frieze [2]
extended this to r-uniform hypergraphs with r ≥ 4, where the threshold is
Θ̃(log n/nr−1).

Tight Hamilton cycles, on the other hand, were considered only later.
The tight r-uniform cycle on vertex set [n] has edges {i + 1, . . . , i + r} for
all i calculated modulo n. Dudek and Frieze [1] used a second moment
argument to show that the threshold for a tight Hamilton cycle in G(r)(n, p)
is sharp and equals e/n for each r ≥ 4 and for r = 3 they showed that
G(3)(n, p) contains a tight Hamilton cycle when p = ω(n)/n for any ω(n)
that goes to infinity. Since their method is non-constructive they asked for
an algorithm to find a tight Hamilton cycle in a random hypergraph. We
obtain a randomised algorithm for this problem if p is slightly bigger than
in their result.

Theorem 1.1. For each integer r ≥ 3 and 0 < ε < 1/(4r) there is a
randomised polynomial time algorithm which for any n−1+ε < p ≤ 1 a.a.s.
finds a tight Hamilton cycle in the random r-uniform hypergraph G(r)(n, p).

The probability referred to in Theorem 1.1 is with respect to the random
bits used by the algorithm as well as by G(r)(n, p). The running time of the
algorithm in the above theorem is polynomial in n, where the degree of the
polynomial depends on ε.
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Outline of the proof A simple greedy strategy shows that for p = nε−1

it is easy to find a tight path (and similarly a tight cycle) in G(r)(n, p)
which covers all but at most n1−

1
2 ε of its vertices. Incorporating these few

remaining vertices is where the difficulty lies.
To overcome this difficulty we apply the following strategy, which we call

the reservoir method. We first construct a tight path P of a linear length
in n which contains a vertex set W ∗, called the reservoir, such that for any
W ⊆W ∗ there is a tight path on V (P )\W whose end (r−1)-tuples are the
same as that of P . In a second step we use the mentioned greedy strategy
to extend P to an almost spanning tight path P ′, with a leftover set L.
The advantage we have gained now is that we are permitted to reuse the
vertices in W ∗: we will show that, by using a subset W of vertices from W ∗

to incorporate the vertices from L, we can extend the almost spanning tight
path to a spanning tight cycle C. More precisely, we shall delete W from P ′

(observe that, by construction of P , the hypergraph induced on V (P ) \W
contains a tight path with the same ends) and use precisely all vertices of W
to connect the vertices of L to construct C.

References

[1] A. Dudek and A. Frieze, Tight Hamilton cycles in random uniform hy-
pergraphs, Random Structures Algorithms, to appear.

[2] A. Dudek and A. Frieze, Loose Hamilton cycles in random uniform hy-
pergraphs, Electron. J. Combin. 18 (2011), no. 1, Paper 48, 14.

[3] A. Frieze, Loose Hamilton cycles in random 3-uniform hypergraphs,
Electron. J. Combin. 17 (2010), no. 1, Note 28, 4.
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On restricted Ramsey numbers

Andrzej Dudek
Department of Mathematics

Western Michigan University
andrzej.dudek@wmich.edu

The general Ramsey-type problem in graph theory involves determining
the existence, and consequently the least order, of a graph which guarantees
that a certain property holds. One variation of this general problem is
to impose certain restrictions on the size of the clique that the graph is
allowed to contain. Folkman extended Ramsey theory in this direction.
The following problem, originally raised by Erdős and Hajnal [5], asks to
construct a graph H that does not contain a copy of Kn+1 such that in
every coloring of its edges with two colors, there is a Kn, all of whose edges
have the same color. Folkman [6] proved the existence of such H. The
general case, for an arbitrary number of colors, r, instead of just two, was
settled affirmatively by Nešetřil and Rödl [10].

An alternate problem is one where we consider coloring the vertices
instead of the edges of H. Folkman also proved that there is a Kn+1-free
graph such that any r-coloring of its vertices yields a monochromatic copy
of Kn. Together with Rödl [4] we considered the more general problem of
determining F (r,G), the least order of H such that ω(H) = ω(G) and any
r-coloring of the vertices of H yields a monochromatic and induced copy
of G. Note that in addition to the condition that G and H have the same
clique number, they also required that the monochromatic copy of G be
induced. Some special cases of this function were considered previously by
several researchers (see, e.g., [7, 8, 9]). For example, in [4], with Rödl we
proved that

F (r,Kn) ≤ cn2(log n)4

for some constant c = c(r). Recently, Ramadurai, Rödl and I [3] obtained
a more general result. Conditioning on the clique number of G of order n
we showed that

F (r,G) ≤ cn3

ω(G)
(log n)5 (1)

for some c = c(r).
Very recently, together with Ramadurai [2] we extended those results to

hypergraphs.
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A hypergraph G is a pair (V, E), where V is a set of vertices, and E ⊆ 2V

is a set of hyperedges. The order of a hypergraph is the size of its vertex set.
A hypergraph G = (V, E) is k-uniform if every edge e ∈ E has cardinality
exactly k. The clique number of G, denoted by ω(G), is the order of the
largest clique contained in G.

Let r be a given number of colors and G be a k-uniform hypergraph of
order n. We define the (induced) Folkman number F (r,G) of G to be the
minimum order of a k-uniform hypergraph H with ω(H) = ω(G) such that
every r coloring of the vertices of H yields a monochromatic and induced
copy of G.

With Ramadurai [2] we showed that the Folkman numbers for hyper-
graphs are almost quadratic. For all natural numbers r ≥ 1 and k ≥ 3 there
is a constant c such that

F (r,G) ≤ cn2(log n)2,

for any k-uniform hypergraph G of order n. Note that this upper bound is
always better than the one for graphs (cf. (1)). Moreover, there is a G0 such
that the order of magnitude of F (r,G0) is at least n2.

One can also consider a slightly different problem and take the asymp-
totic in number r of colors. In [2] we complemented the previous results as
follows. For every k and n there is a constant c such that for any k-uniform
hypergraph G of order n and any number r of colors

F (r,G) ≤ cr2.

Recently, with Mubayi [1] we showed that in the special case when G is the
complete k-uniform hypergraph

F (r,Kkn) ≤ cr(log r)
1

k−2 ,

where c = c(k, n).
In view of the current bounds on F (r,G), the following questions might

be of some interest:

(P1) Is there a family of hypergraphs {Gn} for which F (r,Gn) is asymptot-
ically larger than n2?

(P2) Is there a hypergraph G of a fixed order n such that F (r,G) = Ω(r2)?
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graphs, Discrete Math. 236 (2001), 245–262.

[9] N. Nenov, Application of the corona-product of two graphs in Ramsey
theory, Annuaire Univ. Sofia Fac. Math. Inform. 79 (1985), 349–355 (in
Russian).
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Prague problems for complete triple systems

András Gyárfás
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences

gyarfasa@gmail.com

1. Ramsey number of loose triangles. Let C3
3 denote the loose 3-

uniform triangle, three triples abc, cde, efa. The k-color Ramsey number
Rk(C3

3 ) is the smallest n for which in every k-coloring of the triples of an
n-element set V , there is a monochromatic C3

3 . It was proved in [1] that
for r ≥ 3, k + 5 ≤ Rk(C3

3 ) ≤ 3k. Can one improve by 1 the lower or upper
bound? (R2(C3

3 ) = 7, R3(C3
3 ) = 8) and we suspect that the lower bound is

the truth for every k.)
2. Domination in rooted triple systems. A rooted triple system is the
set of all triples of V such that each triple T has a root vertex v ∈ T . A set
X ⊂ V is a dominating set if for every u /∈ X there exists a v ∈ X and a
w ∈ V such that v is the root of the triple uvw. I have two conjectures, 1:
for any k there are k-paradoxical rooted triple systems, i.e. which cannot
be dominated by k vertices. 2: if a rooted triple system has property H
then it can be dominated by at most 2012 vertices, H: in any four vertices
of V at least two triples have the same root.

References

[1] A. Gyárfás, G. Raeisi, The Ramsey number of loose triangles and quad-
rangles in hypergraphs, Electronic J. of Combinatorics, 19(2) (2012)
N30.
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Simple Treewidth

Kolja Knauer 1

Technical University Berlin
knauer@math.tu-berlin.de

Joint work with Torsten Ueckerdt 2.

1 Introduction

A k-tree is a graph that can be constructed starting with a (k+1)-clique and
in every step attaching a new vertex to a k-clique of the already constructed
graph. The treewidth tw(G) of a graph G is the minimum k such that G is
a partial k-tree, i.e., G is a subgraph of some k-tree [7].

We consider a variation of treewidth, called simple treewidth. A simple
k-tree is a k-tree with the extra requirement that there is a construction
sequence in which no two vertices are attached to the same k-clique. (Equiv-
alently, a k-tree is simple if it has a tree representation of width k in which
every (k − 1)-set of subtrees intersects at most 2 tree-vertices.) Now, the
simple treewidth stw(G) of G is the minimum k such that G is a partial
simple k-tree, i.e., G is a subgraph of some simple k-tree.

We have encountered simple treewidth as a natural parameter in ques-
tions concerning geometric representations of graphs, i.e., representing graphs
as intersection graphs of geometrical objects where the quality of the repre-
sentation is measured by the complexity of the objects. E.g., we have shown
that the maximal interval-number([3]) of the class of treewidth k graphs is
k + 1, whereas for the class of simple treewidth k graphs it is k, see [6].
Another example is the bend-number([4]), which for treewidth 3 graphs is 4
and for simple treewidth 3 graphs is 3, see [5] and a corresponding statement
for higher values is conjectured in [4].

The aim of this note is to compare these two parameters and to motivate
simple treewidth by indicating that it endows treewidth with a topological
flavor. We pose several interesting open problems.

1The research was supported by DFG grant FE-340/8-1 as part of ESF project GraDR
EUROGIGA

2Karlsruhe Institute of Technology. ueckerdt@gmail.com.
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2 Properties of simple treewidth

Let us first observe, that both parameters cannot differ too much.

Observation 2.1. For every G we have tw(G) ≤ stw(G) ≤ tw(G) + 1.

Proof. The first inequality is clear. For the second inequality we show that
every k-tree G is a subgraph of a simple (k + 1)-tree H. Whenever in the
construction sequence of G several vertices {v1, . . . , vn} are attached to the
same k-clique C we consider C ∪{v1} as a (k+ 1)-clique in the construction
sequence for H. Attaching vi to C can be interpreted as attaching vi to
C∪{vi−1} and omitting the edge {vi−1, vi}. This way we avoid that several
vertices are attached to the same k-clique by considering (k+1)-cliques.

Simple treewidth endows the notion of treewidth with a more topological
flavor, as indicated for small k in the table below:

≤ 1 ≤ 2 ≤ 3
stw paths outerplanar planar & tw ≤ 3, [2]
tw forest series-parallel tw ≤ 3

A linkless embedding of G is an embedding into R3 with the property
that no two cycles of G form a link, see [9].

Observation 2.2. If stw(G) ≤ 4 then G has a linkless embedding.

Proof. It suffices to show that simple 4-trees have linkless embeddings, since
edge-deletion does not destroy the linkless embedding. Therefore consider
K5 embedded in R3 as a tetrahedron plus a vertex in its interior. In each
step of the construction sequence every available 4-clique is represented by
a tetrahedron with empty interior, where we insert the new vertex. It is
easy to see that the resulting embedding is linkless.

Non-simple 4-trees do not have linkless embeddings, which is easy to see
using the forbidden-minor chracterization of linkless embeddable graphs [8].

Problem 2.3. stw(G) ≤ 4⇔ G is linkless embeddable and tw(G) ≤ 4.

Simple treewidth also has connections to discrete geometry. In [1] a
stacked polytope is defined to be a polytope admitting a triangulation whose
dual graph is a tree. In that paper it is proved that a full-dimensional
polytope P ⊂ Rd is stacked if and only if tw(G(P )) ≤ d, were G(P ) denotes
the 1-skeleton of P . Indeed, we strongly suspect:
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Problem 2.4. A graph G is the 1-skeleton of a stacked d-polytope if and
only if stw(G) = d and G is d-connected.

One can show that the class of simple treewidth at most k graphs is
minor-closed. A proof of the following statement would imply that for
planar graphs with treewidth at least 3 treewidth and simple treewidth
coincide.

Problem 2.5. If G has no K3,k-minor and tw(G) = k then stw(G) = k.
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For a countable relational structure A, the class of all finite structures
that embed into A is called the age of A and we denote it by age(A). A class
K of finite structures is an age if there is countable structure A such that
K = age(A). It is easy to see that a class K of finite structures is an age if
and only if K is an abstract class (that is, closed for isomorphisms), there
are at most countably many pairwise nonisomorphic structures in K, K
has the hereditary property (HP), and K has the joint embedding property
(JEP). An age K is a Fräıssé age (= Fräıssé class = amalgamation class) if
K satisfies the amalgamation property (AP).

For every Fräıssé age K there is a unique (up to isomorphism) countable
homogeneous structure A such that K = age(A). We say that A is the
Fräıssé limit of K.

Let L be a relational language and let ∝ /∈ L be a new binary relational
symbol. Let L∝ = L ∪ {∝}. We say that an L∝-relational structure A is
ordered if the interpretation ∝A of ∝ in A is a linear order on A, the base
set of A. Given an L-structure A, in this paper we consider various inter-
pretations of ∝ in A. In order to make it easier to follow which particular
interpretation of ∝ we have in mind, we write A< to indicate that < is
an interpretation of ∝ we are currently interested in. Therefore, it makes
sense to write a statement like A< ∼= A@ because both A< and A@ are
L∝-structures (with possibly different interpretations of ∝). Moreover, we
shall always write A to denote the L-reduct of A<. Conversely, if A is an
L-structure and < is a liner order on A, then A< denotes the corresponding
L∝-structure, while A> denotes the same structure endowed with the dual
of <.

If K is a class of L-structures, by K∗ we denote the class of ordered
L∝-structures obtained by expanding structures from K by linear orders in
some unspecified way, but so that

• for every A< ∈ K∗ we have A ∈ K, and

• for every A ∈ K there is at least one linear order < on A such that
A< ∈ K∗.
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A class K∗ of ordered L∝ structures is a Ramsey class if for allA,B ∈ K∗
and every k > 1 there is a C ∈ K∗ such that C −→ (B)Ak . If K∗ is a Ramsey
class of finite ordered L∝-structures which is closed under isomorphisms
and taking substructures, and has the joint embedding property, then K∗
is a Fräıssé age [2]. In that case we say that K∗ is a Ramsey age. So, every
Ramsey age is a Fräıssé age.

We say that K∗ has the ordering property over K if the following holds:
for every A ∈ K there is a B ∈ K such that A< ↪→ B@ for every linear
order < on A such that A< ∈ K∗, and every linear order @ on B such that
B@ ∈ K∗. We say that B is a witness for the ordering property for A.

Definition 0.1. An L-structure A has the expansion-by-linear-orders prop-
erty (ELOP) if age(A<) = age(A@) for arbitrary linear orders <, @ on A.

In this talk we exibit examples of structures which have ELOP.
To start with, note that (Q, <) does not have ELOP. Moreover, we by

endowing (Q, <) with an additional linear order one can get ℵ0 distinct ages
(J. Hubička).

By K∀ we denote the class of all ordered L∝-structures A< where A ∈ K
and < is a linear order on A (that is, we take L-structures from K and
expand them with all possible linear orders). It is easy to show the following:
if C is a countable structure, K = age(C) and if K∀ has the ordering property
over K, then C has ELOP.

Particular examples of structures with ELOP include the following: the
random graph, the random digraph (the Fräıssé limit of the class of all finite
digraphs), the random poset, the rational Urysohn space (the Fräıssé limit
of the class of all finite metric spaces with rational distances), the rational
Urysohn sphere (the Fräıssé limit of the class of all finite metric spaces with
rational distances 6 1), and the random rational ultrametric space.
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Let p(k) denote the partition function of k. For each k ≥ 2, we describe
a list of p(k)− 1 quasirandom properties that a k-uniform hypergraph can
have. Our work connects previous notions on hypergraph quasirandom-
ness, beginning with the early work of Chung and Graham and Frankl-Rödl
related to strong hypergraph regularity, the spectral approach of Friedman-
Wigderson, and more recent results of Kohayakawa-Rödl-Skokan and Conlon-
Hàn-Person-Schacht on weak hypergraph regularity and its relation to count-
ing linear hypergraphs.

For each of the quasirandom properties that are described, we define a
hypergraph eigenvalue analogous to the graph case and a hypergraph exten-
sion of a graph cycle of even length whose count determines if a hypergraph
satisfies the property. Our work can therefore be viewed as an extension to
hypergraphs of the seminal results of Chung-Graham-Wilson for graphs.

27



Empty pentagons in point sets with
collinearities

Michael S. Payne1

The University of Melbourne
m.payne3@pgrad.unimelb.edu.au
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The Erdős-Szekeres Theorem [4], a classical result in discrete geometry,
states that for every integer k there is a minimum integer ES(k) such that
every set of at least ES(k) points in general position in the plane contains k
points in convex position. Erdős [3] asked whether a similar result held for
empty k-gons (k points in convex position with no other points inside their
convex hull). Horton [8] answered this question in the negative by showing
that there are arbitrarily large point sets in general position that contain
no empty heptagon. On the other hand, Harborth [7] showed that every set
of at least 10 points in general position contains an empty pentagon. More
recently, Nicolás [11] and Gerken [6] independently settled the question for
k = 6 by showing that sufficiently large point sets in general position always
contain empty hexagons; see also [10, 14].

These questions are not interesting if the general position condition is
abandoned completely, since a collinear point set contains no three points
in convex position. However, considering point sets with a bounded number
of collinear points does lead to interesting generalisations of these problems.
First some definitions are needed. A point set X in the plane is in weakly
convex position if every point in X lies on the boundary of conv(X), the
convex hull of X. A point x ∈ X is a corner of X if conv(X \ {x}) 6=
conv(X). The set X is in strictly convex position if every point in X is

1This research was supported by the DAAD and the Go8 within the Australia–
Germany Joint Research Co-operation Scheme 2011/12 as part of the project Problems
in geometric graph theory (Kennz. 50753217). The full version of this paper is available
at http://arxiv.org/abs/1207.3633.

2Monash University.
3Carleton University.
4Université Libre de Bruxelles.
5Freie Universität Berlin.
6Charles University.
7The University of Melbourne.
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a corner of X. A weakly (respectively strictly) convex k-gon is a set of k
points in weakly (respectively strictly) convex position. It is well known
that the Erdős-Szekeres theorem generalises for point sets with bounded
collinearities; see [1] for proofs. One generalisation states that every set of
at least ES(k) points contains a weakly convex k-gon. For strictly convex
position, the generalisation states that for all integers k and ` there exists a
minimum integer ES(k, `) such that every set of at least ES(k, `) points in
the plane contains ` collinear points or a strictly convex k-gon.

Our work addresses the case of empty pentagons in point sets with
collinearities. A subset X of a point set P is an empty k-gon if X is a
strictly convex k-gon and P ∩ conv(X) = X. Abel et al. [1] showed that

every finite set of at least ES( (2`−1)`−1
2`−2 ) points in the plane contains an

empty pentagon or ` collinear points. The function ES(k) is known to grow
exponentially [4, 5], so this bound is doubly exponential in `. See [13, 2]
for more on point sets with no empty pentagon. We prove the following
theorem without applying the Erdős-Szekeres Theorem.

Theorem 0.1. Let P be a finite set of points in the plane. If P contains at
least 328`2 points, then P contains an empty pentagon or ` collinear points.

This quadratic bound is optimal up to a constant factor since the (` −
1) × (` − 1) square grid has (` − 1)2 points and contains neither an empty
pentagon nor ` collinear points.

The proof of Theorem 0.1 is broken into two main steps. For contradic-
tion, we assume that P has no empty pentagon and no ` collinear points.
The first step is to show that P does not contain more than 8` points in
weakly convex position. The second step is to analyse the structure of the
convex layers of P . By the first step, if P has many points there must be
many layers, all with less than 8` points. The main idea is to study the
inner layers and show that if there are enough layers, the structure of the
inner layers puts a limit on the number of points in the outer layers. This
leads to an overall bound on the number of points.

One open problem is to characterise the finite point sets with no empty
pentagon. The known examples of such sets are described in [2]. In partic-
ular, we may ask:

Problem 0.2. Does every finite set of n points in the plane with no empty
pentagon contain a subset of Ω(n) points that has the order type of a set
that is the intersection of the integer lattice with a convex region?
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All the known point sets with no empty pentagon satisfy this property.
Abel et al. [1] asked if a result similar to Theorem 0.1 holds for empty

hexagons in point sets with collinearities.

Problem 0.3. Let P be a finite set of points in the plane. For what values
of ` does there exist an integer f(`) such that if P contains at least f(`)
points, then P contains an empty hexagon or ` collinear points?

It is not clear how to adapt the proofs of Nicolás [11] and Gerken [6] to
deal with collinearities, so this seems to be quite a difficult problem. Of
course, the result of Horton [8] completely answers the analogous question
for empty k-gons with k ≥ 7.

We take this opportunity to mention an important related conjecture of
Kára, Pór and Wood [9]. Two points in a point set P are said to be visible
if there is no other point of P on the line segment between them.

Conjecture 0.4 (Big-Line-Big-Clique [9]). There exists a function f(k, `)
such that every finite set of at least f(k, `) points in the plane contains k
pairwise visibile points or ` collinear points.

Theorem 0.1 and its predecessor due to Abel et al. [1] show that this con-
jecture is true for k = 5 and all `. It is open for k ≥ 6 and ` ≥ 4. For more
on the Big-Line-Big-Clique conjecture see [12].
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1 Introduction

A hypergraph is called an r×r grid, Gr×r, if it is isomorphic to a pattern of r
horizontal and r vertical lines, i.e., a family of sets {A1, . . . , Ar, B1, . . . , Br}
such that Ai ∩ Aj = Bi ∩ Bj = ∅ for 1 ≤ i < j ≤ r and |Ai ∩ Bj | = 1
for 1 ≤ i, j ≤ r. Three sets C1, C2, C3 form a triangle, T3 if they pairwise
intersect in three distinct singletons, |C1 ∩C2| = |C2 ∩C3| = |C3 ∩C1| = 1,
C1 ∩ C2 6= C1 ∩ C3. A hypergraph is linear, if |E ∩ F | ≤ 1 holds for every
pair of edges.

In this paper we construct large linear r-hypergraphs which contain no
grids. Moreover, a similar construction gives large linear r-hypergraphs
which contain neither grids nor triangles. For r ≥ 4 our constructions are
almost optimal. For the triangle-free case we modify Behrend’s construction
to get the result. These investigations are motivated by Brown-Erdős-Sós
conjecture and coding theory.

2 Avoiding grids in linear hypergraphs

Theorem 2.1. For r ≥ 4 there exists a real cr > 0 such that there are

linear r-uniform hypergraphs F on n vertices containing no grids and

|F| > n(n− 1)

r(r − 1)
− crn8/5.

The Turán number of the r-uniform hypergraph H, denoted by ex(n,H),
is the size of the largest H-free r-graph on n vertices. If we want to empha-
size r, then we write exr(n,H). Let I≥2 be (more precisely Ir≥2) the class

1Research supported in part by OTKA Grant K68322.
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of hypergraphs of two edges and intersection sizes at least two. This class
consists of r− 2 non-isomorphic hypergraphs, Ij , 2 ≤ j < r, Ij := {Aj , Bj}
such that |Aj | = |Bj | = r, |Aj ∩ Bj | = j. Using these notations the above
Theorem can be restated as follows.

n(n− 1)

r(r − 1)
− crn8/5 < exr(n, {I≥2,Gr×r}) ≤

n(n− 1)

r(r − 1)
(2.1)

holds for every n, r ≥ 4. In the case of r = 3 we only have

Ω(n1.8) = ex3(n, {I≥2,G3×3}) ≤
1

6
n(n− 1). (2.2)

Conjecture 2.2. The asymptotic (2.1) holds for r = 3, too.

— Even more, for any given r ≥ 3 there are infinitely many Steiner systems

avoiding Gr×r.
— Probably there exists an n(r) such that, for every admissible n > n(r)

(this means that (n− 1)/(r − 1) and
(
n
2

)
/
(
r
2

)
are both integers) there exists

a grid-free S(n, r, 2).

3 Neither grids nor triangles

A perfect matching is a subfamily M of the set system F such that the
members of M cover every element of V (F) exactly once. Our main result
is a construction.

Theorem 3.1. For r ≥ 4 there exist an n0(r) and βr > 0 such that

ex(n, {I≥2,T3,Gr×r}) > n2e−βr

√
logn (3.1)

holds for n ≥ n0(r). In other words, there exists a linear r-uniform hyper-

graph F which contains neither grids nor triangles and |F| ≥ n2 exp [−βr
√

log n].

In addition, if r divides n, then F can be decomposed into perfect matchings,

especially it is regular.
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For the case r = 3 we have the same with a much weaker lower bound

ex(n, {I≥2,T3,G3×3}) > n1.6e−β3

√
logn. (3.2)

Note that |F| = o(n2) by [2] the lower bound (3.1) is almost optimal.
This result slightly improves the Erdős-Frankl-Rödl [2] construction in two
ways. We make the hypergraph regular, and avoid not only triangles but
grids, too.

Problem 3.2. Determine the order of magnitude of ex(n,Gr×r).

In the proofs we use tools from combinatorial number theory and discrete
geometry. Let rk(q) be the maximum number of integers which can be
selected from {1, . . . , q} containing no k-term arithmetic progression. Call
a set M ⊂ [q] r-sum-free if the equation

c1m1 + c2m2 = (c1 + c2)m3

has no solutions with m1,m2,m3 ∈M and c1, c2 are positive integers with
c1 + c2 ≤ r except the one with m1 = m2 = m3.

Lemma 3.3. (Generalized Behrend) For arbitrary positive integer r there

exists a γr > 0 such that for any integer q one can find an r-sum-free subset

M ⊆ {0, 1, ..., q} such that |M | > qe−γr
√
log q.

The case r = 2 (and c1 = c2 = 1) is the original statement of Behrend [1].
Ruzsa also notes that an upper bound O(q/(log q)αr ) for the general case
can be proved.

Call a set of numbers A6-free if it does not contain a subset of the form

{x− a− b, x− b, x− a, x+ a, x+ b, x+ a+ b}

for some a, b > 0, a 6= b. Call it A4-free if it does not contain a fourtuple of
the form {x−2a, x−a, x+a, x+2a} for some a > 0, and call it APk-free if it
contains no k-term arithmetic progression. Let r(n, P1, P2, . . . ) denote the
maximum number of integers which can be selected from {1, . . . , n} avoiding
the patterns P1, P2, . . . . With this notation r3(n) := r(n,AP3).

Since anA4-free set has no 5-term arithmetic progression we get r(n,A4) ≤
r5(n) = o(n) by Szemerédi’s theorem. A 4-sum-free sequence is A4-free as
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well (one has, e.g., 1× (x−2a)+3× (x+2a) = 4× (x+a)), thus Lemma 3.3
gives a lower bound showing

r(n,A4) = n1−o(1).

Lemma 3.4.
2

5
r3(n)3/5 < r(n,A6, A4, AP3).

Conjecture 3.5. There is an ε > 0 such that

n3/5+ε < r(n,A6)

holds for large enough n. Possibly the order of magnitude of this function

is n1−o(1).

Unfortunately, the recent general construction of Shapira [3] does not
seem to be applicable here. (We are thanksfull for I. Ruzsa (Budapest) and
J. Wolf (Paris) for this observation.)
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1 Introduction

We use [1] for terminology and notation not defined here and consider finite
and simple graphs only. If Kn is edge-coloured in a given way and a sub-
graph H contains no two edges of the same colour, then H will be called a
totally multicoloured (TMC) or rainbow subgraph of Kn and we shall say
that Kn contains a TMC or rainbow H. For a graph H and an integer n,
let f(n,H) denote the maximum number of colours in an edge-colouring of
Kn with no TMC H. The numbers f(n,H) are called anti-ramsey numbers
and have been introduced by Erdős, Simonovits and Sós [2].

We now define rb(n,H) as the minimum number of colours such that any
edge-colouring of Kn with at least rb(n,H) = f(n,H) + 1 colours contains
a TMC or rainbow subgraph isomorphic to H. The numbers rb(n,H) will
be called rainbow numbers.

For a given family H of finite graphs ext(n,H) =: max{|E(G)| | H 6⊂
G if H ∈ H}, that is, let ext(n,H) be the maximum number of edges a graph
G of order n can have if it has no subgraph fromH. The graphs attaining the
maximum for a given n are called extremal graphs. The numbers ext(n,H)
are called Turán numbers [9].

For a given graph H, let H be the family of all graphs which are obtained
by deleting one edge from H. If G is a graph of order n having no subgraph
isomorphic to H, then a TMC copy of G and one extra colour for all remain-
ing edges (of Kn) has no TMC subgraph H. Hence, f(n,H) ≥ ext(n,H)+1.
Moreover,

ext(n,H) + 2 ≤ f(n,H) + 1 = rb(n,H) ≤ ext(n,H).

The lower bound is sharp for some graph classes. This has been shown
if H is a complete graph on k ≥ 3 vertices in [6, 8] and if H is a matching
with k edges and n ≥ 2k + 1 in [3, 8].

Erdős, Simonovits and Sós [2] showed that f(n,H)/
(
n
2

)
→ 1 − 1

d as
n → ∞, where d + 1 = min{χ(H − e) | e ∈ E(H)}, and that f(n,H) −
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ext(n,H) = o(n2). Hence the rainbow numbers are asymptotically known
if min{χ(H − e) | e ∈ E(H)} ≥ 3. If min{χ(H − e) | e ∈ E(H)} ≤ 2, then
the situation is quite different.

2 Rainbow numbers for bulls and diamonds

For cycles the following result (which has been conjectured by Erdős, Si-
monovits and Sós [2]) has been shown by Montellano-Ballesteros and Neum-
ann-Lara [7].

Theorem 2.1. [7] Let n ≥ k ≥ 3. Then rb(n,Ck) = b n
k−1c

(
k−1
2

)
+
(
r
2

)
+

d n
k−1e, where r is the residue of n modulo k − 1.

Gorgol [4] has considered a cycle Ck with a pendant edge, denoted C+
k ,

and computed all rainbow numbers.

Theorem 2.2. [4]
rb(n,C+

k ) = rb(n,Ck), for n ≥ k + 1.

However, if we add two (or more) edges to a cycle Ck, the situation
becomes surprisingly interesting.

Theorem 2.3. Let F be a graph of order n ≥ k ≥ 3 containing a cycle Ck.
If F has cyclomatic number v(F ) ≥ 2, then rb(n, F ) has no upper bound
which is linear in n.

We first consider the graph D = K4 − e, which is called the diamond.
This graph contains a C3 and has cyclomatic number v(D) = 2. Montellano-
Ballesteros [5] has shown an upper bound for the rainbow number of the
diamond.

Theorem 2.4. [5] For every n ≥ 4,

ext(n, {C3, C4}) + 2 ≤ rb(n,D) ≤ ext(n, {C3, C4}) + (n+ 1).

Using this we can show the following theorem.

Theorem 2.5. rb(n,D) = Θ(n
3
2 ).

If v(F ) = 1, then the situation is quite different. Let B be the unique
graph with 5 vertices and degree sequence (1, 1, 2, 3, 3), which is called the
bull. Here we have been able to compute all rainbow numbers for the bull.

Theorem 2.6. rb(5, B) = 6 and rb(n,B) = n+ 2 for n ≥ 6.
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Coloring problems on interval hypergraphs
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1 Introduction

Twenty years ago, Voloshin [9, 10] opened a new dimension for the coloring
theory of hypergraphs, by introducing mixed hypergraphs. The point was
that, beside the classical condition of excluding monochromatic edges, a
further type of edges was introduced, which are not allowed to be totally
multicolored. The two kinds of restrictions make the situation quite com-
plex; some hypergraphs are not colorable [8], while among the colorable
ones the possible numbers of colors are practically unrestricted [6]. More
precisely, for every finite set S ⊂ N \ {1} there exists a mixed hypergraph
H such that H admits a coloring with exactly k colors if and only if k ∈ S.
Moreover, as proved in [7], also the number of different proper color parti-
tions can be prescribed for every k ∈ S. Similar results were obtained for
r-uniform hypergraphs in [2] and [11].

The structure class of mixed hypergraphs has been extended to several
levels, the first of them being the color-bounded hypergraphs [1], in which the
number of colors is bounded from below and from above in each edge. The
most general model of locally restricted hypergraph coloring is called pattern
hypergraph [5]; then every edge has a given collection of partitions, and a
coloring is feasible if and only if its color classes split each edge according
to one of the partitions allowed for that edge.

Disregarding the arbitrarily definable condition sets of pattern hyper-
graphs, the most general class studied so far is that of stably bounded hy-
pergraphs [3]. Then, beside the number of colors occurring in an edge, also
the number of occurrences of the most frequent color in an edge is bounded
from above and from below. In the current note we collect some problems
on algorithmic complexity, which remain open after the recent paper [4].

1This research was supported in part by the Hungarian Scientific Research Fund, grant
OTKA 81493.

2University of Pannonia, Veszprém, Hungary. bujtas@dcs.uni-pannon.hu.

39



2 Stably bounded hypergraphs

Formally, we consider hypergraphsH = (X, E) with vertex set X = {x1, . . . ,
xn} and edge set E = {E1, . . . , Em}, assuming Ei 6= ∅ for all 1 ≤ i ≤ m.
Stably bounded hypergraph means that four functions s, t,a, b : E → N are
also given, such that 1 ≤ s(Ei) ≤ t(Ei) ≤ |Ei| and 1 ≤ a(Ei) ≤ b(Ei) ≤ |Ei|
hold for all Ei ∈ E . A proper vertex coloring of H = (X, E , s, t,a, b) is a
mapping ϕ : X → N which satisfies the following conditions for every edge
Ei ∈ E .

(i) The number of distinct colors in Ei is at least s(Ei) and at most t(Ei).

(ii) The number of vertices in Ei on which the most frequent color of Ei
occurs is at least a(Ei) and at most b(Ei).

The hypergraph H = (X, E , s, t,a, b) is colorable if it admits at least
one proper coloring. If H is colorable, then its upper chromatic number
is defined as the maximum possible number of colors in a proper vertex
coloring of H, denoted by χ(H), and its lower chromatic number is the
minimum number of colors in a proper vertex coloring.

If, for all Ei ∈ E , one or more of the four conditions

s(Ei) = 1 ; t(Ei) = |Ei| ; a(Ei) = 1 ; b(Ei) = |Ei|

hold, then the corresponding functions are non-restrictive and can be dis-
regarded. In this way we obtain functional subclasses; for instance, an
(S,T)-hypergraph is one where a and b are non-restrictive, i.e. only s and t
can be restrictive. Analogously, in an A-hypergraph only a can be restric-
tive. The corresponding subclass can be defined for any subset of s, t,a, b
in a similar way.

3 Open problems on interval hypergraphs

Interval hypergraph means that there is an order v1, . . . , vn of the vertices
such that each Ei ∈ E consists of consecutive vertices in this order. The
time complexity of many algorithmic questions has been settled in [4]. At
the time of writing this summary, the following cases remain unsolved.

Problem 3.1. Determine the complexity of the problems of

1. deciding the colorability of (S,T)-hypergraphs;

2. determining the lower chromatic number of (S,A)-hypergraphs;
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3. determining the lower chromatic number of (S,T,A)-hypergraphs;

4. determining the upper chromatic number of A-hypergraphs;

5. determining the upper chromatic number of (T,A)-hypergraphs;

6. determining the upper chromatic number of (S,T)-hypergraphs;

7. determining the upper chromatic number of (T,B)-hypergraphs;

8. determining the upper chromatic number of (S,T,B)-hypergraphs;

under the assumption that the input is restricted to interval hypergraphs.
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The removal lemma for products of systems
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In [6] the authors showed a removal lemma for linear systems on abelian
groups provided a coprimality condition between the order of the group and
the determinantal of maximal order of the matrix. The result extended the
removal lemma for groups introduced by Green in [4] to linear systems of
equations for abelian groups, following the extensions to the non-abelian
case [5], for finite fields [7, 8] or to compact abelian groups [2].

Following the lines of [6], we present a notion of representability, com-
patible with product structures, that allows us to show a removal lemma.
Moreover, the representability result for product structures, allows us to
eliminate the condition regarding the determinantal for [6, Theorem 1].

Definition 0.1 (Representable system). Let G be a finite set. Let A be a
property on Gm, A : Gm → {0, 1}. Let S(A,G) = {x ∈ Gm : A(x) = 1}.
A pair of colored hypergraphs (K,H) is said to represent (A,G) if the
following holds:

• K and H are s-uniform m-colored hypergraphs. H has m edges with
different colors and h > s vertices. Each edge in K bears a label in
G. s and h are bounded by functions depending on m.

• The labels of the edges of each copy of H in K, ordered by colors,
form an element of S(A,G).

• For each solution x = (x1, . . . , xm) ∈ S(A,G) there exist a set Q(x)
that equipartitions the copies of H in K related to x and, for each
q ∈ Q(x) and each i ∈ [1,m], there exist an edge set E(x, i, q) ⊂ E(K)
of edges coloured i, labeled xi, with |E(x, i, q)| = c|K|s/|G|, for some
c lower bounded by a function of m, with the following property. For
each edge e ∈ E(x, i, q), there are p copies of H in K related to the
solution x through q containing e. p is independent on x, i, q or e.
|Q(x)| is independent of x.

• Any copy of H in K related to x through q, intersects E(x, i, q) for
all i ∈ [1,m].
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This definition captures the conditions to allow the transference of the
removal lemma for colored hypergraphs [1] to algebraic settings using the
arguments in [5, 8, 7, 6]. In particular, the representation for [6, Theorem 1]
uses |Q(x)| = 1 and p = 1. Although the prime examples are the linear
systems, Definition 0.1 is open to other relational systems.

Let A1 and A2 be two systems on m variables on G1 and G2 respectively.
Then (A1, A2) : Gm1 ×Gm2 → {0, 1} with (A1, A2)(x, y) = 1 ⇐⇒ A1(x) = 1
and A2(y) = 1 is said to be the independent product of A1 and A2. The
independent product of representable systems is representable.

Lemma 0.2 (Representability of the product of systems). Let A1, A2 be
representable systems on m variables over G1 and G2 respectively. Then
the independent product ((A1, A2), (G1, G2)) is representable.

The construction starts by blowing up K1 and K2 (each vertex of K1

turns into |K2| vertices and viceversa), and the edges are the preimages of
the edges by the projection from the blown up hypergraph to the original.
Finally, we take the union of K1 and K2, as well as H1 and H2, respecting
the colours of the edges, and check that the new hypergraph pair represents
the independent product.

Let A be a k × m, m ≥ k, integer matrix and let Dk(A) denote the
k-th determinantal of A. There is a matrix A′, with Dk(A′) = 1, such that
S(A′, G) ⊂ S(A,G) for any finite abelian group G. In particular, S(A,G)
is the union of systems A′x = b, for different independent vectors b (see [6,
Section 5]). Lemma 0.2 can be used to remove the determinantal condition
from [6, Theorem 1], by observing that the solution set (A,G) is the product
of the solution sets of the maximal p-subgroups in G.

Indeed, the result for products allows us to combine the representations
of the solution sets for each of the maximal p-subgroups of G with p|Dk(A)
and the solutions set of the remaining factor (which has order coprime with
Dk(A)). The representation for each of the p-groups involve representing
(A,Ztpi) for i ∈ [1, d], for some d depending on A, and combining it with

the representation of (A,Lp) = (A,
∏r
i>d Z

ti
pi) using again Lemma 0.2. Fur-

thermore, the product lemma is used to represent (A,Lp) by combining

the representations for (A,L′p) = (A,Z
∏r

i>d ti

pd
⊂
∏r
i>d Z

ti
pi) with the one of

(A′, Lp) using that any solution to A′x = b, x ∈ Lp for some b, is a sum of
a solution to A′x = b, x ∈ L′mp , and a solution to A′x = 0, x ∈ Lmp .

In all the cases, we use additional variables y to paramaterize the dif-
ferent systems A′x = b, for different independent vectors b. The condition
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on d is rather technical and strongly depends on the construction of the
auxiliary matrix A′ from [6, Lemma 10] when the additional variables y are
used.
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