# Noon lecture

list of noon lectures ( 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | future lectures)

On 28.05.2015 at 12:20 in S6, there is the following noon lecture:

# On the number of maximal intersecting k-uniform families

## Balazs Patkos

## Abstract

We study the function M(n,k) which denotes the number of maximal k-uniform intersecting families over an n-element ground set. Improving a bound of Balogh et al. on M(n,k), we determine the order of magnitude of log M(n,k) by proving that for any fixed k, M(n,k)=n^theta((2k \choose k)) holds. Our proof is based on Tuza's set pair approach. The main idea is to bound the size of the largest possible point set of a cross-intersecting system. We also introduce and investigate some related functions and parameters.

This is a joint work with Zoltan L. Nagy.

list of noon lectures ( 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | future lectures)

Webmaster: kamweb.mff.cuni.cz Modified: 19. 10. 2010