
Chapter 6

Halving segments

Definition 6.1. Given a set P of n points in the plane in general position,
a segment s connecting two points of P is called a halving segment or a
halving edge if each open halfplane determined by s contains ⌊(n − 2)/2⌋
or ⌈(n − 2)/2⌉ points of P . That is, the number of points of P on the left
side of s is the same as the number of points of P on the right side of s if
n is even, or the two numbers differ by 1 if n is odd. The line extending a
halving segment is called a halving line.

Observe that in a set of n points in convex position in the plane, there
are exactly n/2 halving segments if n is even, and n halving segments if n is
odd.

6.1 Upper bounds

What is the maximum possible number of halving segments of a set of n
points in the plane? Lovász [47] obtained the upper bound O(n3/2), which
was later improved by Pach, Steiger and Szemerédi [57] to O(n3/2/ log∗ n).
The best known bound is O(n4/3), first proved by Dey [19]. First we present
Lovász’ approach.

Theorem 6.2 (Lovász, 1971 [47]). For n even, the maximum number of halv-
ing segments in a set of n points in the plane in general position is O(n3/2).

Proof. It is an easy exercise to show that the geometric graph G formed by
halving segments has the following property: for every vertex v and every
pair of halving segments s1, s2 (edges of G) incident to v, the cone opposite to
the convex cone determined by s1 and s2 contains another halving segment
incident with v. By the same property, if the segments s1, s2 are consecutive
around v, the opposite cone contains, in fact, exactly one halving segment
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incident with v. Also, every vertex has at least one halving segment incident
to it. If we assume that no two vertices of G lie on a vertical line, it follows
that the degree of every vertex is odd and the number of neighbors of v that
are to the left of v differs from the number of right neighbors by 1.

The crucial observation is that every vertical line intersects at most n/2
halving segments. To show this, start with a vertical line p that crosses k
halving segments. Assume without loss of generality that p has at most n/2
vertices on its left. Start translating p to the left. The number of halving
segments intersected by p changes only when p passes through a vertex,
and then it changes by exactly 1. After at most n/2 such changes all the
vertices will be to the right of p, so p will not intersect any halving segment.
Therefore, k ≤ n/2.

To finish the proof, draw vertical lines p1, p2, . . . , p⌈√n ⌉ so that in every
region between pi and pi+1, to the left of p1, and to the right of p⌈√n ⌉, there
are at most

√
n vertices. The number of halving segments crossing at least

one of the lines pi is O(n
√
n), since every vertical line intersects O(n) halving

segments. The number of halving segments that are disjoint with all the lines
pi is O(n

√
n), since each of the ⌈√n ⌉ + 1 regions contains only O(n) pairs

of vertices.

The following remarkable identity combined with the crossing lemma
gives an improvement on the Lovász’ bound.

Theorem 6.3 (Andrzejak et al., 1998 [7]). Let n be an even positive integer.
Let G be the geometric graph determined by the halving segments of n points
in the plane in general position. Let k be the number of crossings in G. Then
we have

k +
∑

v∈V (G)

(

(d(v) + 1)/2

2

)

=

(

n/2

2

)

.

Idea of the proof. Start with n points in convex position and move them
continuously one by one to the vertices of G. In convex position there are
n/2 halving segments, every two of them cross, and each of the n points is
incident with exactly one halving segment, so the equality holds. During the
continuous motion of the vertices, the elementary changes to the graph of
halving segments do not affect the validity of the identity.

Theorem 6.4. For n even, the maximum number of halving segments in a
set of n points in general position in the plane is O(n4/3).

Proof. Let G be the graph of halving segments. Theorem 6.3 implies that
cr(G) = O(n2). However, by the crossing lemma either e(G) = O(n) or
cr(G) = Ω(e3/n2). In any case, e(G) = O(n4/3).
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Figure 6.1: Inductive construction for halving segments. Two of the “new”
3n/2 halving segments are drawn.

6.2 Lower bounds

Theorem 6.5 (Strauss, 1973 [23]). For n even, there are sets of n points in
general position in the plane with Ω(n log n) halving segments.

Proof. The construction is done by induction. Suppose we have a construc-
tion with n points and h(n) halving segments. Then we can build a con-
figuration with 3n points and h(3n) ≥ 3h(n) + cn halving segments, for a
certain constant c > 0, as follows. We squash the configuration of n points
to make it look almost like a segment, we take three copies of it and ar-
range them in three directions separated by 120◦ as in Figure 6.1. We have
h(3n) ≥ 3h(n) + 3n/2, which gives h(n) = Ω(n log n). when h is nondecreas-
ing. It is a simple exercise to show that from a configuration of n points
with s halving segments one can create a configuration of n + 2 points with
s halving segments.

The lower bound has been significantly improved: Tóth [70] constructed
a set of n points with neΩ(

√
logn) halving segments. Nivasch [51] simplified

the construction and improved the lower bound to Ω(ne
√
ln 4

√
lnn/ lnn). (We

use “log” for the binary logarithm and “ln” for the natural logarithm.)

Theorem 6.6 (Nivasch, 2008 [51]). For n even, there are sets of n points in

general position in the plane with Ω(ne
√
ln 4

√
lnn/ lnn) halving segments.
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Instead of a set of points, we construct a dual set of lines. We use the
following notion of duality.

Definition 6.7. Given a point p = (c, d) ∈ R
2, the dual (or the dual line)

of p is the (non-vertical) line p∗ = {(x, y) ∈ R
2; y = cx − d}. Given a non-

vertical line ℓ = {(x, y) ∈ R
2; y = ax − b}, the dual (or the dual point) of

ℓ is the point ℓ∗ = (a, b) ∈ R
2.

The following observation is left as an exercise.

Observation 6.8. Suppose that p is a point in R
2 and ℓ is a non-vertical

line in R
2. Then

a) (p∗)∗ = p and (ℓ∗)∗ = ℓ,

b) p ∈ ℓ if and only if ℓ∗ ∈ p∗,

c) p lies above ℓ if and only if p∗ lies below ℓ∗.

Definition 6.9. A finite set L of lines in the plane forms an arrangement

of lines A(L), which is the decomposition of the plane into vertices, edges
and cells, where the vertices are the intersection points of the lines, the
edges are the open segments or rays of the lines that remain after removing
the vertices, and the cells are the 2-dimensional open regions that are the
connected components of R2 \ (

⋃

L). The vertices, edges and cells are also
called 0-, 1- and 2-dimensional faces of the arrangement, respectively.

The level of a point p with respect to a set of lines L (or with respect to
an arrangement A(L)) is the number of lines of L that lie strictly below p.
The level of a face of A(L) is the level of an arbitrary point of the face with
respect to A(L).

The following observation follows from Observation 6.8.

Observation 6.10. Let n be even and let P be a set of n points in the plane
in general position. Let L be the set of n dual lines of the points of P , and
suppose that L is in general position, that is, no two lines of L are parallel,
no three lines of L pass through the same point. Moreover, suppose that no
line of L is vertical. Then the dual of a halving line of P is a vertex of A(L)
of level n/2− 1.

We will call the vertices of A(L) of level n/2− 1 the middle-level ver-

tices. Similarly, the cells of A(L) of level n/2 will be called themiddle-level

cells. By Observation 6.10, constructing a point set with many halving lines
is equivalent to constructing an arrangement of lines with many middle-level
vertices.
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Proof of Theorem 6.6

First we describe the construction, then we verify its correctness, and finally
we count the middle-level vertices.

The construction

We construct an infinite sequence L0, L1, L2, . . . of sets of non-vertical lines
in the plane in general position. Every line in every Lm, m ≥ 0, is of one of
two types: plain or bold. For every Lm, we construct a set Vm of middle-
level vertices of A(Lm) such that each of them lies in the intersection of a
plain line and a bold line. The set Vm does not necessarily contain all the
middle-level vertices with this property. The construction depends on free
parameters a0, a1, a2, . . . , which we choose as a0 = 0 and am = 2m for m ≥ 1.

The base case, L0, consists of a plain line ℓ0, a bold line b0, and a vertex
v0 in their intersection. We set V0 = {v0}.

Now we describe the inductive step, which is the heart of the construction.
Letm ≥ 0 and suppose that Lm and Vm have been constructed. We construct
Lm+1 and Vm+1 as follows.

Each plain line ℓ ∈ Lm is replaced by a bundle of am+1 plain lines parallel
and close to ℓ separated by a very small distance εm > 0. The new lines are
then slightly perturbed into general position, but only so little that within
a square containing Vm, their displacement is almost imperceptible and they
still appear almost parallel. Each bold line b ∈ Lm is replaced by a bundle of
am+1+1 plain lines parallel and close to b separated by a very small distance
δm > 0 that is much smaller than εm. Again, the new lines are then slightly
perturbed into general position. We will call this step a uniform replacement.

For every vertex v ∈ Vm, the uniform replacement creates an am+1 ×
(am+1 + 1) grid Gv in place of v; see Figure 6.2. We then draw a new bold
line b′v along the diagonal of the grid, so that its crossings with the lines of
the two bundles alternate. We add these 2am+1 + 1 vertices of Lm+1 to the
set Vm+1. We assume that δm is so small compared to εm, that b′v is very
close to the original bold line in Lm that contained v.

The correctness

We need to verify that all the vertices in Vm+1 are, indeed, middle-level
vertices of A(Lm+1). We will show a stronger property, which is needed to
show this by induction. We say that a point v is strongly balanced in
a subset L of Lm if the number of plain lines in L above v is equal to the
number of plain lines in L below v, and the number of bold lines in L above
v is equal to the number of bold lines in L below v.
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v
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Figure 6.2: A uniform replacement creating the grid Gv from v, and a new
bold line b′v. The vertex v of Vm is replaced by 2am + 1 vertices in Vm+1.
Here am = 3.

Lemma 6.11. For every m ≥ 0, all vertices in Vm are strongly balanced in
Lm.

Proof. We proceed by induction on m. For m = 0, the vertex v0 in L0 is
strongly balanced in L0, since there are no lines of L0 above or below it. For
the induction step, let m ≥ 0 and suppose that the lemma is true for all
vertices of Vm. We will prove it for the vertices of Vm+1.

Each bold line b in Lm contains 2am + 1 vertices of Vm. Moreover, the
slopes of the plain lines passing through these vertices alternate between
larger and smaller than the slope of b, since these plain lines form a grid
in the construction. Let v ∈ Vm. Let b be the bold line and ℓ the plain
line containing v. Let b′v be the bold line of Lm+1 through the grid Gv. Let
w ∈ Vm+1 ∩ b′v. Let v1, v2, . . . , v2am be the vertices of Vm ∩ b other than v,
and let b′1, b

′
2, . . . , b

′
2am be the corresponding bold lines in Lm+1.

Partition Lm+1 into three sets, S1, S2 and S3, as follows. Let S1 be the set
of all lines of Lm+1 created from lines other than ℓ or b (the set S1 contains
both plain and bold lines). By induction, v is strongly balanced in Lm. This
implies that after the uniform replacement, w is strongly balanced in S1.

Let S2 be the set of lines of the grid Gv and the line b′v; see Figure 6.2.
The location of b′v along the diagonal of the grid implies that w is strongly
balanced in S2.

Let S3 = {b′1, b′2, . . . , b′2am}. These lines, together with b′v, are created
from b, and also satisfy the property that their slopes alternate between
larger and smaller than the slope of b. If there are an even number of the
points v1, v2, . . . , v2am to the right of v (and even number to the left of v),
half of the corresponding lines b′i is above v (and thus above w) and the
other half below v (and thus below w). If there are an odd number of points
v1, v2, . . . , v2am to the right of v (and odd number to the left of v), the two
lines b′i and b′j corresponding to the points vi and vj closest to v from left
and right, respectively, have both larger or both smaller slope than b. But
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this means that one of the lines b′i, b
′
j is above v (and w) and the other

below v (and w). The rest follows from the previous even case. This shows
that w is strongly balanced in S3. Altogether, w is strongly balanced in
S1 ∪ S2 ∪ S3 = Lm+1.

Computations

For m ≥ 0, let nm = |Lm| and fm = |Vm|. Recall that a0 = 0 and am = 2m

for m ≥ 1. From the construction of L0 we have n0 = 2 and f0 = 1. By the
construction of Vm+1, we have

fm+1 = (2am+1 + 1) · fm.

Now we count the number of lines in Lm+1. For every i ≥ 1, the number
of bold lines in Li is equal to the number of vertices in Vi−1, which is equal
to fi−1. The number of plain lines in Li is thus ni − fi−1. By the uniform
replacement, it follows that the number of plain lines in Lm+1 is am+1 · (nm−
fm−1) + (am+1 + 1) · fm−1 = am+1nm + fm−1. The number of bold lines in
Lm+1 is fm. Together, the number of lines in Lm+1 is

nm+1 = am+1nm + fm + fm−1.

Now by a straightforward induction, we have

fm = f0 · (2a1 + 1)(2a2 + 1) · · · (2am + 1) = (22 + 1)(23 + 1) · · · (2m+1 + 1).

It is an easy exercise to show that fm = Θ
(

2(m
2+3m)/2

)

. Plugging this into
the recursion for nm, we get

nm = 2m · nm−1 +Θ(fm−1) = 2m · nm−1 +Θ
(

2(m
2+m)/2

)

.

Let n′
0, n

′
1, n

′
2, . . . be a sequence satisfying the recursion n′

m = 2m · n′
m−1 +

k · 2(m2+m)/2, where k is a constant. It is a straightforward exercise to verify
that n′

m = 2(m
2+m)/2 · (n′

0 + km). Since the sequence nm is “sandwiched”
between two sequences of the type n′

m just with a different constant k, we
conclude that nm = Θ

(

m · 2(m2+m)/2
)

. This further implies that

log nm = logm+
m2 +m

2
+ Θ(1)

⇒ 2 lognm = m2 +m+ 2 logm+Θ(1) =
(

m+Θ(1)
)2

⇒ m =
√

2 lognm −Θ(1)
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and also that

fm
nm

= Θ(2m/m).

Combining the last two expressions we get

fm = Θ
(

nm · 2
√
2 lognm−Θ(1)/

(
√

2 lognm −Θ(1)
)

)

= Θ
(

nm · 2
√
2 lognm/

√

log nm

)

= Θ
(

nm · eln 2
√
2
√
lnnm/

√
ln 2/

√

lnnm

)

= Θ
(

nm · e
√
ln 4

√
lnnm/

√

lnnm

)

.

We have finished the proof of Theorem 6.6 for n = nm. To prove it for
all even n, we need to “fill the gaps” between consecutive members of the
sequence nm [70]. For this, we need to observe that if a set of n points in
the plane in general position has s halving segments, then we can add two
points so that the resulting set still has at least s halving segments (thus
the maximum number of halving segments is a nondecreasing function for
even n). But this is not enough, since the sequence nm grows very fast. So
we use a second observation, stating that if a set of n points in the plane
has s halving segments and a is a positive integer, then there is a set of an
points in the plane with at least as halving segments. This will be sufficient
to interpolate the lower bound on the number of halving segments for even
values of n and finish the proof of the theorem. This, including the two
observations, is left as an exercise.



Bibliography

[1] E. Ackerman, On the maximum number of edges in topological graphs
with no four pairwise crossing edges, Discrete Comput. Geom. 41(3)
(2009), 365–375.

[2] E. Ackerman, On topological graphs with at most four crossings per
edge, unpublished manuscript, http://sci.haifa.ac.il/~ackerman/
publications/4crossings.old, 2013.

[3] E. Ackerman and G. Tardos, On the maximum number of edges in
quasi-planar graphs, J. Combin. Theory Ser. A 114(3) (2007), 563–571.

[4] P. K. Agarwal, B. Aronov, J. Pach, R. Pollack and M. Sharir, Quasi-
planar graphs have a linear number of edges, Combinatorica 17(1)
(1997), 1–9.
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crossings do matter, J. Graph Algorithms Appl. 16(3) (2012), 759–782.

[29] R. Fulek and J. Pach, A computational approach to Conway’s thrackle
conjecture, Comput. Geom. 44(6-7) (2011), 345–355.

[30] F. L. Gall, Powers of tensors and fast matrix multiplication,
arXiv:1401.7714 (2014).

[31] H. Gazit and G. Miller, Planar separators and the Euclidean norm,
Algorithms (Tokyo, 1990), 338–347, Lecture Notes in Comput. Sci., 450,
Springer, Berlin, 1990.

[32] W. Goddard, M. Katchalski and D. J. Kleitman, Forcing disjoint seg-
ments in the plane, European J. Combin. 17(4) (1996), 391–395.

[33] R. K. Guy, A combinatorial problem, Nabla (Bull. Malayan Math. Soc)
7 (1960), 68–72.
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