Exercises for Combinatorial and Computational Geometry Homework \#5 - Voronoi diagrams and arrangements

deadline 5.1.2015

1. Let P be a finite point set in the plane with no three points collinear and no four points cocircular. Define a graph DT (called Delaunay triangulation) on P as follows: two points a, b are connected by an edge if and only if there exists a circular disk with both a and b on the boundary and no point of P in its interior.
(a) Prove that $D T$ is a triangulation - a plane graph where every face except of the outer-face is a triangle.
(b) Prove that $D T$ is the dual graph to the graph of the Voronoi diagram of the set P.
2. Arrangement A of hyperplanes in \mathbb{R}^{d} is simple, if the intersection of every k hyperplanes from A is $(d-k)$-dimensional for $k=2,3, \ldots, d+1$. For $k=0,1, \ldots, d$, prove that the number of k-faces in a simple arrangement of hyperplanes in \mathbb{R}^{d} equals

$$
\sum_{i=d-k}^{d}\binom{n}{i}\binom{i}{d-k} .
$$

3. Let $P=\left\{p_{1}, p_{2} \ldots p_{n}\right\}$ be a point set in the plane. Let us say that points x, y have the same view of P if the points of P are visible in the same cyclic order from them. If rotating light rays emanate from x and from y, the points of P are lit in the same order by these rays. We assume that neither x nor y is in P and that neither of them can see two points of P in occlusion.

Show that the maximum possible number of points with mutually distinct views of P is $O\left(n^{4}\right)$.
4. (a) How many d-dimensional cells are there in the arrangement of the $\binom{d}{2}$ hyperplanes in \mathbb{R}^{d} with equations $x_{i}=x_{j}$, where $1 \leq i<j \leq d$?
(b) How many d-dimensional cells are there in the arrangement of the $\binom{d}{2}$ hyperplanes in \mathbb{R}^{d} with equations $x_{i}+x_{j}=0$ and $x_{i}=x_{j}$ for all $1 \leq i<j \leq d$?

