Problems from Combinatorial and Discrete Geometry

Homework \#4 - Cyclic polytopes and Voronoi diagrams

hints 15.12.2014, deadline 22.12.2014

1. Generalization of the Erdős-Szekeres Theorem for d-dimensional cyclic polytopes.
(a) Let x_{1}, \ldots, x_{n} be points in \mathbb{R}^{d}. Let y_{i} denote the vector arising by appending 1 as the $(d+1)$ st component of x_{i}. Show that if the determinant of all matrices with columns $y_{i_{1}} \ldots, y_{i_{d+1}}$, for all choices of indices $i_{1}<\cdots<i_{d+1}$, have the same non-zero sign, then x_{1}, \ldots, x_{n} form the vertex set of a convex polytope combinatorially equivalent to the n-vertex cyclic polytope in \mathbb{R}^{d}.
[4+hint]
(b) Show that for any integers n and d there exists N such that among any N points in \mathbb{R}^{d} in general position, one can choose n points forming the vertex set of a convex polytope combinatorially equivalent to the n-vertex cyclic polytope in \mathbb{R}^{d}.
2. Let V be a set of n points on the moment curve $\left\{\left(t, t^{2}, \ldots, t^{d}\right) \in \mathbb{R}^{d}: t \in\right.$ $\mathbb{R}\}$. Let W be a subset of V containing at most $\left\lfloor\frac{d}{2}\right\rfloor$ elements. Show that $\operatorname{conv}(W)$ is a face of $\operatorname{conv}(V)$. Determine the number of $\leq k$-dimensional faces of d-dimensional cyclic polytope for $k=0,1, \ldots,\left\lfloor\frac{d}{2}\right\rfloor$.
3. (a) Show that for $n \geq 2$ the Voronoi diagram of a $2 n$-point set $A_{2 n}:=$ $\{(i, 0,0): i=1,2 \ldots n\} \cup\{(0, n, j): j=1,2 \ldots n\}$ in \mathbb{R}^{3} has at least $c n^{2}$ vertices, where c is some positive constant.
(b) Show that for $n \geq k$ the Voronoi diagram of a $2 n$-point set in $\mathbb{R}^{2 k-1}$ can have up to $c_{k} n^{k}$ vertices, where c_{k} is some positive constant. [2]

Information about practicals can be found at http://kam.mff.cuni.cz/kvg

