Problems from Combinatorial and Discrete Geometry

Homework #4 - Cyclic polytopes and Voronoi diagrams hints 15.12.2014, deadline 22.12.2014

- 1. Generalization of the Erdős-Szekeres Theorem for *d*-dimensional cyclic polytopes.
 - (a) Let x_1, \ldots, x_n be points in \mathbb{R}^d . Let y_i denote the vector arising by appending 1 as the (d + 1)st component of x_i . Show that if the determinant of all matrices with columns $y_{i_1} \ldots, y_{i_{d+1}}$, for all choices of indices $i_1 < \cdots < i_{d+1}$, have the same non-zero sign, then x_1, \ldots, x_n form the vertex set of a convex polytope combinatorially equivalent to the *n*-vertex cyclic polytope in \mathbb{R}^d . [4+hint]
 - (b) Show that for any integers n and d there exists N such that among any N points in \mathbb{R}^d in general position, one can choose n points forming the vertex set of a convex polytope combinatorially equivalent to the *n*-vertex cyclic polytope in \mathbb{R}^d . [3]
- 2. Let V be a set of n points on the moment curve $\{(t, t^2, \ldots, t^d) \in \mathbb{R}^d : t \in \mathbb{R}\}$. Let W be a subset of V containing at most $\lfloor \frac{d}{2} \rfloor$ elements. Show that $\operatorname{conv}(W)$ is a face of $\operatorname{conv}(V)$. Determine the number of $\leq k$ -dimensional faces of d-dimensional cyclic polytope for $k = 0, 1, \ldots, \lfloor \frac{d}{2} \rfloor$. [3]
- 3. (a) Show that for $n \ge 2$ the Voronoi diagram of a 2n-point set $A_{2n} := \{(i,0,0) : i = 1, 2...n\} \cup \{(0,n,j) : j = 1, 2...n\}$ in \mathbb{R}^3 has at least cn^2 vertices, where c is some positive constant. [3]
 - (b) Show that for $n \ge k$ the Voronoi diagram of a 2*n*-point set in \mathbb{R}^{2k-1} can have up to $c_k n^k$ vertices, where c_k is some positive constant. [2]

Information about practicals can be found at http://kam.mff.cuni.cz/kvg