Problems from Combinatorial and Discrete Geometry
 Homework \#3 - Polytopes and duality

hints 1.12.2014, deadline do 8.12.2014

1. For a set $X \subseteq \mathbb{R}^{d}$, we define the set dual to X, denoted by X^{*}, as $X^{*}=\left\{y \in \mathbb{R}^{d}:\langle x, y\rangle \leq 1\right.$ for all $\left.x \in X\right\}$.
(a) Let $C \subseteq \mathbb{R}^{d}$ be a convex set. Prove that C^{*} is bounded if and only if the origin 0 lies in the interior of C.
(b) Let $C=\operatorname{conv}(X) \subseteq \mathbb{R}^{d}$. Prove that $C^{*}=\bigcap_{x \in X} \mathcal{D}_{0}^{-}(x)$ where $\mathcal{D}_{0}^{-}(x)=\left\{y \in \mathbb{R}^{d}:\langle x, y\rangle \leq 1\right\}$.
(c) Show that for any set $X \subset \mathbb{R}^{d},\left(X^{*}\right)^{*}$ equals the closure of $\operatorname{conv}(X \cup$ $\{0\}$).
(d) Using the previous parts together with that fact that every H polytope is also a V-polytope, prove that every V-polytope can be expressed as an intersection of finitely many half-spaces. In other words, show that every V-polytope is a H-polytope.
2. Find a compact convex $C \subseteq \mathbb{R}^{3}$ for which $\operatorname{ex}(C)=\{x \in C: \operatorname{conv}(C \backslash$ $\{x\}) \neq C\}$ is not closed.
3. Show that every polytope $P \subset \mathbb{R}^{d}$ can be expressed as an orthogonal projection of some k-dimensional regular simplex in \mathbb{R}^{n} for suitable k, n. (An orthogonal projection is a mapping π from \mathbb{R}^{n} to a subspace $M \cong \mathbb{R}^{d}$ that is embedded in \mathbb{R}^{n} such that for every $x \in \mathbb{R}^{n}$ the vector $\pi(x)-x$ is orthogonal to M.)
