Problems from Combinatorial and Discrete Geometry Homework #3 - Polytopes and duality

hints 1.12.2014, deadline do 8.12.2014

- 1. For a set $X \subseteq \mathbb{R}^d$, we define the set dual to X, denoted by X^* , as $X^* = \{y \in \mathbb{R}^d : \langle x, y \rangle \leq 1 \text{ for all } x \in X\}.$
 - (a) Let $C \subseteq \mathbb{R}^d$ be a convex set. Prove that C^* is bounded if and only if the origin 0 lies in the interior of C. [2]
 - (b) Let $C = \operatorname{conv}(X) \subseteq \mathbb{R}^d$. Prove that $C^* = \bigcap_{x \in X} \mathcal{D}_0^-(x)$ where $\mathcal{D}_0^-(x) = \{y \in \mathbb{R}^d : \langle x, y \rangle \leq 1\}.$ [2]
 - (c) Show that for any set $X \subset \mathbb{R}^d$, $(X^*)^*$ equals the closure of $\operatorname{conv}(X \cup \{0\})$. [2]
 - (d) Using the previous parts together with that fact that every H-polytope is also a V-polytope, prove that every V-polytope can be expressed as an intersection of finitely many half-spaces. In other words, show that every V-polytope is a H-polytope. [1]
- 2. Find a compact convex $C \subseteq \mathbb{R}^3$ for which $ex(C) = \{x \in C : conv(C \setminus \{x\}) \neq C\}$ is not closed. [3]
- 3. Show that every polytope $P \subset \mathbb{R}^d$ can be expressed as an orthogonal projection of some k-dimensional regular simplex in \mathbb{R}^n for suitable k, n. (An orthogonal projection is a mapping π from \mathbb{R}^n to a subspace $M \cong \mathbb{R}^d$ that is embedded in \mathbb{R}^n such that for every $x \in \mathbb{R}^n$ the vector $\pi(x) x$ is orthogonal to M.) [4+hint]

Information about practicals can be found at http://kam.mff.cuni.cz/kvg