Problems from Combinatorial and Discrete Geometry Homework #2 – Helly type theorems and counting incidences hints 10.11.2014, deadline 24.11.2014

- 1. A family $\mathcal{C} = \{C_1, \ldots, C_n\}$ of convex sets in the plane has a (p, q)property if $n \geq p$ and from every *p*-tuple of sets of \mathcal{C} we can always
 choose *q* with a nonempty intersection. The piercing number $s(\mathcal{C})$ of
 the family \mathcal{C} is the cardinality of a minimal set of points from *X* such
 that every $C_i \in \mathcal{C}$ contains at least one point from *X*.
 - (a) Prove that if C is a finite family of axis parallel closed rectangles with a (4, 3)-property, then $s(C) \leq 2$. [3]
 - (b) Find a family C of some axis parallel closed rectangles with a (3, 2)-property for which s(C) = 3. [2]
- 2. (a) Let $r < \frac{\pi}{3}$ and let A be a set of at least three points on a sphere such that every three points from A can be covered by a spherical disk with a radius r. Prove that all points from A can be covered by a spherical disk with a radius r. [4+hint] Sphere is a boundary of a ball in \mathbb{R}^3 . Spherical disk with a center in x and a radius r is a set of points of the sphere, which are when looking from the center of the ball, in a degree distance at most r from x.
 - (b) Prove that in the case (a) the condition $r < \frac{\pi}{3}$ cannot be replaced by $r < \frac{\pi}{2}$. [2]
- 3. Find an *n*-point set in \mathbb{R}^4 with $\Omega(n^2)$ unit distances. [3]
- 4. In a drawing of a graph G, vertices of G correspond to distinct points in the plane and edges of G are represented by continuous curves connecting corresponding vertices. A crossing of two edges is their common point which does not represent a vertex. We assume that no three edges have a common crossing, every pair of edges has at most finite number of points in common and no edge contains other vertices than its own ending vertices. For every finite graph G show that in any drawing of G, which has the smallest number of crossings, no two edges contains more than one point in common. [2]

Information about practicals can be found at http://kam.mff.cuni.cz/kvg