Problems from Combinatorial and Discrete Geometry Homework \#2 - Helly type theorems and counting incidences

 hints 10.11.2014, deadline 24.11.20141. A family $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$ of convex sets in the plane has a (p, q) property if $n \geq p$ and from every p-tuple of sets of \mathcal{C} we can always choose q with a nonempty intersection. The piercing number $s(\mathcal{C})$ of the family \mathcal{C} is the cardinality of a minimal set of points from X such that every $C_{i} \in \mathcal{C}$ contains at least one point from X.
(a) Prove that if \mathcal{C} is a finite family of axis parallel closed rectangles with a $(4,3)$-property, then $s(\mathcal{C}) \leq 2$.
(b) Find a family \mathcal{C} of some axis parallel closed rectangles with a $(3,2)$-property for which $s(\mathcal{C})=3$.
2. (a) Let $r<\frac{\pi}{3}$ and let A be a set of at least three points on a sphere such that every three points from A can be covered by a spherical disk with a radius r. Prove that all points from A can be covered by a spherical disk with a radius r.
[4+hint]
Sphere is a boundary of a ball in \mathbb{R}^{3}. Spherical disk with a center in x and a radius r is a set of points of the sphere, which are when looking from the center of the ball, in a degree distance at most r from x.
(b) Prove that in the case (a) the condition $r<\frac{\pi}{3}$ cannot be replaced by $r<\frac{\pi}{2}$.
3. Find an n-point set in \mathbb{R}^{4} with $\Omega\left(n^{2}\right)$ unit distances.
4. In a drawing of a graph G, vertices of G correspond to distinct points in the plane and edges of G are represented by continuous curves connecting corresponding vertices. A crossing of two edges is their common point which does not represent a vertex. We assume that no three edges have a common crossing, every pair of edges has at most finite number of points in common and no edge contains other vertices than its own ending vertices. For every finite graph G show that in any drawing of G, which has the smallest number of crossings, no two edges contains more than one point in common.

Information about practicals can be found at http://kam.mff.cuni.cz/kvg

