Exercises for Combinatorial and Computational Geometry

Homework \#1 - Convex sets

hints 27.10.2014, deadline 3.11.2014
Please choose a nickname that will be used in the list of scores on the webpage of the practicals. If you have already chosen a nickname, you can just sign your solutions with either your name or your nickname.

1. Prove that the convex hull of every bounded closed set $M \subset \mathbb{R}^{2}$ is closed.
2. Prove Carathéodory's theorem (you may use Radon's lemma).
3. Let $M=\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{d+1}, y_{d+1}\right\}$ be a set of points in \mathbb{R}^{d}. Prove that M can be partitioned into two subsets A and B such that each one of these subsets contains exactly one point from $\left\{x_{i}, y_{i}\right\}$ for every $i=1,2, \ldots, d+1$ and the convex hulls of A and B have a nonempty intersection. (You may use the fact that the $(d+1)$-tuple of vectors $x_{i}-y_{i}$ is linearly dependent and then use an approach similar to the proof of Radon's theorem.)
4. Let M be a finite set of at least four points from the plane that are colored red and blue. For every 4 -tuple V of points from M there is a line which strictly separates red points of V from the blue points of V. Prove that it is possible to strictly separate all the red points from M from the blue points of M.
5. Let $X_{1}, X_{2}, \ldots, X_{d+1}$ be finite point sets in \mathbb{R}^{d} such that the origin lies in $\operatorname{conv}\left(X_{i}\right)$ for every $i \in\{1,2, \ldots, d+1\}$. Prove that there exist $(d+$ 1) points $x_{i} \in X_{i}, i \in\{1,2, \ldots, d+1\}$, such that the origin lies in $\operatorname{conv}\left(\left\{x_{1}, x_{2}, \ldots, x_{d+1}\right\}\right)$.
[4+hint]
