
Fast Parallel Fixed-Parameter Algorithms via
Color Coding

Max Bannach1,2, Christoph Stockhusen1, and Till Tantau1

1 Institute for Theoretical Computer Science
Universität zu Lübeck
Lübeck, Germany
{bannach,stockhus,tantau}@tcs.uni-luebeck.de

2 Graduate School for Computing in Medicine and Life Sciences
Universität zu Lübeck

Abstract
Fixed-parameter algorithms have been successfully applied to solve numerous difficult problems
within acceptable time bounds on large inputs. However, most fixed-parameter algorithms are in-
herently sequential and, thus, make no use of the parallel hardware present in modern computers.
We show that parallel fixed-parameter algorithms do not only exist for numerous parameterized
problems from the literature – including vertex cover, packing problems, cluster editing, cutting
vertices, finding embeddings, or finding matchings – but that there are parallel algorithms work-
ing in constant time or at least in time depending only on the parameter (and not on the size
of the input) for these problems. Phrased in terms of complexity classes, we place numerous
natural parameterized problems in parameterized versions of AC0. On a more technical level, we
show how the color coding method can be implemented in constant time and apply it to embed-
ding problems for graphs of bounded tree-width or tree-depth and to model checking first-order
formulas in graphs of bounded degree.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases color coding, parallel computation, fixed-parameter tractability, graph
packing, cutting ` vertices, cluster editing, tree-width, tree-depth, model checking

1 Introduction

The classical objective of parameterized complexity theory is to determine for a parame-
terized problem whether it can be solved by an algorithm running in time f(k) · nc, where
f is some function, k is a parameter, n is the input length, and c is some constant. Such
algorithms are nowadays routinely used to solve large instances for NP- or even PSPACE-
hard problems within acceptable amounts of time. Nevertheless, “acceptable” is not the
same as “small” and one would like to further reduce the runtime by using multiple cores
to speed up the computation. For this, one needs parallel fixed-parameter algorithms, but
most fixed-parameter algorithms have been devised with a sequential computation model
in mind. Indeed, the most important tool of parameterized complexity theory, namely ker-
nelization, is inherently sequential: It asks us to repeatedly apply rules to an input, each
time modifying the input slightly and making it a little smaller, until the input’s size only
depends on the parameter. There is no straightforward way of parallelizing such algorithms
since later modifications strongly depend on what happened earlier, forcing us to apply the
typically very large number of kernelization steps in a sequential manner.

© M. Bannach, C. Stockhusen, and T. Tantau;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

50
9.

06
98

4v
1

 [
cs

.C
C

]
 2

3
Se

p
20

15

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Fast Parallel Fixed-Parameter Algorithms via Color Coding

Our Contributions. The purpose of the present paper is to show that not only do parallel
fixed-parameter algorithms exist for many natural, well-studied problems from the literature;
for certain problems there are even parallel algorithms that require only constant time in
a concurrent-read, concurrent-write pram model (so the runtime is totally independent of
the input) or at least time depending only on the parameter (so the length of the input is
irrelevant). In all cases, the work done by the algorithms is still f(k) · nc, that is, the same
as the time bound for sequential fixed-parameter algorithms.1 Phrased more formally, our
objective is to identify parameterized problems that lie in the complexity classes para-ACO(1)
and para-ACf(k) (formal definitions will be given later).

In order to tackle the parallel parameterized complexity of natural problems like the ver-
tex cover problem, we introduce three technical tools. The first and foremost is color coding:
all of our proofs employ this technique at least indirectly and we show that the universal
coloring families that lie at the heart of the technique can be computed in constant time.
Second, numerous natural “packing problems” are special cases of the following embedding
problem: Given graphs H and G, find a (not necessarily induced) subgraph of G that is iso-
morphic to H. We give new bounds on the complexity of this problem when H has bounded
tree-width or bounded tree-depth; and these bounds later translate directly to bounds on
different packing problems. Third, we translate an algorithmic meta-theorem of Flum and
Grohe [16] to the parallel world: We show that model checking first-order properties of
graphs can be done in parallel in time depending only on the parameters (actually, only on
the locality rank of the formula), where the parameters are the to-be-checked formula and
the degree of the graph.

We then apply the tools to a wide variety of natural graph problems, namely packing
problems, covering problems, clustering problems, and separation problems. For packing
problems the objective is to determine whether a given graph G contains k vertex-disjoint
copies of some fixed graph H like, say, a triangle. Even for triangles, this problem is already
NP-complete, but when k is considered as a parameter, the triangle packing problem lies in
FPT [15]. We show that there is a constant-time, fpt-work algorithm for triangle packing –
and indeed for packing any graph of fixed size. The covering problems we study include the
vertex cover problem and its partial version. We present a constant parallel time algorithm
for the first problem and an algorithm for the second needing time depending only on the
parameter. These results nicely reflect on a theoretical basis the “empirical” observation
that p-vertex-cover is one of the “easiest” parameterized problems and that the partial
version is a bit harder to solve. For clustering problems, also known as cluster editing
problems, the objective is to transform a graph by adding or deleting few edges into a
collection of “clusters” – which are just cliques in the simplest case. We present a constant
time, fpt-work algorithm for cluster editing. For graph separation problems the objective
is to “cut away” a special part of a graph using few vertices. We show that certain versions
of these problems can be solved by a parallel fixed-parameter algorithm in time depending
only on the parameter and fpt work (while other versions are known to be W[1]-hard).

1 The work done by a parallel algorithm is the total number of computational steps made by all compu-
tational units during a computation. Since “all work needs to be done,” in practice the runtime of a
parallel algorithm is its work divided by the number of available cores. In particular, the work done by
a parallel algorithm should not exceed the runtime of a sequential algorithm for the same problem. In
our case, this means that in order to compete with sequential algorithms running in “fpt time,” our
parallel algorithm must not only be fast, but may only do “fpt work.”

M. Bannach, C. Stockhusen, and T. Tantau 3

Related Work. There is a growing body of literature reporting on the practicalities of
implementing fixed-parameter algorithms in parallel [1]. In contrast, there are only few
results addressing parallel fixed-parameter tractability on a theoretical level (as we do in
the present paper), see for instance Cesati and Di Ianni [9]. Since it is well-known from
classical complexity theory that problems solvable in logarithmic space can be parallelized
well, previous research on parameterized logarithmic space contributes to our understanding
of which parameterized problems can be parallelized in principle. This research was started
by Cai, Chen, Downey, and Fellows [8]. First (quite technical) complete problems for pa-
rameterized logarithmic space where later introduced by Chen, Flum, and Grohe [11], and
by Flum and Grohe [16]. A more structural study of parameterized space and circuit classes
(which addresses parallelization more directly) was later made by Elberfeld and the last two
authors [14]. Parameterized Circuit Complexity was also studied by Downey et al. with
respect to the Weft Hierarchy [13]. Recently, Chen and Müller [10] connected color cod-
ing and parameterized space in an algorithm for finding embedding of bounded tree-depth
graphs in parameterized logarithmic space (a result which we strengthen considerably in
Corollary 3.7).

The first use of the color coding technique can be traced back to Alon, Yuster, and
Zwick [2]. They used the technique to provide an FPT-algorithm that decides whether there
is an embedding of a graph H of bounded tree-width into another graph G, where H is the
parameter.

Organization of This Paper. In Section 2 we give formal definitions of the classes of
problems solvable by parallel fixed-parameter algorithms. While most of our definitions and
classes are standard, the class of problems solvable in “time depending on the parameter
and fpt work” seems to be new. In Section 3 we introduce our three technical tools –
color coding, embeddings, and model checking – and prove the results mentioned earlier.
In Section 4 we study the complexity of the natural parameterized graph problems and
establish new upper bounds on their complexities. Due to lack of space, proofs have been
moved to the appendix; we give proof sketches for some of them in the main text.

2 Classes of Fixed-Parameter Parallelism

For our definition of parallel fixed-parameter tractability, we mostly use the standard ter-
minology of parameterized complexity theory, see for instance [17]: A parameterized prob-
lem is a tuple (Q, κ) of a language Q ⊆ Σ∗ over an alphabet Σ and a parameterization
κ : Σ∗ → N that maps instances to parameter values. In the classical definition, Downey
and Fellows [12] require the parameterization to be computable, while Flum and Grohe [17]
require it to be computable in polynomial time. Elberfeld and the last two authors require it
to be computable in logarithmic space [14] and mention that it would be better if the param-
eterization is first-order computable (FO-computable) or, equivalently, to be computable by
logarithmic-time-uniform constant depth circuits [24]. Since we will only deal with param-
eterized circuit classes that lie within parameterized logarithmic space, we will require all
parameterizations to be FO-computable. We denote parameterized problems with a leading
“p-” as in p-vertex-cover and, when the parameter may be unclear, add it as an index as
in p|H |-emb.

A parameterized problem is fixed-parameter tractable if it can be decided in time f(κ(x))·
|x|c for any input x, where f is some computable function and c a constant. An equivalent
definition is that there exists a set R ∈ P, where P denotes the class of languages decidable

4 Fast Parallel Fixed-Parameter Algorithms via Color Coding

in polynomial time, such that x ∈ Q iff
(
x, 1f (κ(x))

)
∈ R. The first definition of fixed-

parameter tractability gave rise to the class name FPT in the literature, while the second
definition gives rise to the name para-P for the same class. The advantage of the second
definition is that we can replace the class P in the definition by arbitrary complexity classes
and arrive at classes like parameterized logarithmic space, para-L, or parameterized constant
depth circuits, para-AC0. These parameterized classes inherit their inclusion structure from
the classical classes, so we have

para-AC0 (para-TC0 ⊆ para-NC1 ⊆ para-L ⊆ para-NL ⊆ para-AC1 ⊆ para-P.

It is not quite obvious, but the class para-AC0 already captures one of the types of
algorithms mentioned in the introduction, namely “constant time, fpt-work,” while none
of the above classes seems to capture “parameter time, fpt-work.” For this reason and in
order to explicitly spell out what para-AC0 contains, we provide a new definition:2

I Definition 2.1 (Classes of Parallel Fixed-Parameter Tractability). Let d : N2 → N be a
depth bounding function and w : N2 → N be a width bounding function which both map
each pair of an input length and a parameter to a number. We define para-AC[d,w] as the
class of parameterized problems (Q, κ) for which there exists a dlogtime-uniform3 family
(Cn,k)n,k∈N of AC-circuits (only not-, and-, and or-gates are allowed, and- and or- gates
may have unbounded fan-in) such that:
1. For all x ∈ Σ∗, the circuit C|x|,κ(x) evaluates to 1 on input x if, and only if, x ∈ Q.
2. The depth of each Cn,k is at most d(n, k).
3. The size of each Cn,k is at most w(n, k).

In the present paper we exclusively study parallel algorithms with “fpt-work” and are
therefore only interested in the case where w is member of the family W of functions of the
form f(k) ·nc for a computable function f and a constant c. We introduce for arbitrary fam-
ilies D of functions d : N2 → N the abbreviation para-ACD for

⋃
d∈D,w∈W para-AC[d,w]. For

constant depth bounding functions the resulting class para-ACO(1) is the same as the class
para-AC0.4 For arbitrary i > 0 we obtain para-AC{ f(k)+c·logi n | f : N→N∧c∈N } = para-ACi(in
slight abuse of notation we will write such classes simply as para-ACf(k)+O(logi n)).

When the depth bounding function just depends on the parameter, so d(n, k) = f(k), we
get a new class para-ACf(k) that we abbreviate with para-AC0↑. This class does not seem to
arise from substituting some classical class for P in the definition of para-P. In particular,
this class seems to be incomparable with all classes between para-TC0 and para-NL. It is,
however, clearly contained in para-AC1, and is strictly more powerful then para-AC0 as we
will see later. This class captures the problems solvable in “parameter time, fpt-work” and
we have

para-AC0 (para-AC0↑ ⊆ para-AC1.

Let us define for arbitrary i ≥ 0 the class para-ACi↑ as para-ACf(k)·O(logi n). Notice that we
have by definition the inclusion structure para-ACi ⊆ para-ACi↑ ⊆ para-ACi+ε.

2 The definition can trivially be adjusted to use TC-circuits or NC-circuits, but we will not need them.
3 We use dlogtime-uniform families since they are equivalent to first-order definable families and con-
stitute one of the strongest forms of uniformity [4].

4 Since the designation para-AC0 has been used in previous publications and is a bit shorter, we will use
it in the following.

M. Bannach, C. Stockhusen, and T. Tantau 5

3 Technical Tools

3.1 Color Coding in Constant Parallel Time
The idea of color coding is best understood by a concrete application, for instance to the well-
known matching problem: Given an undirected graph G and a number k, does G contain
k edges such that no two of them share any endpoints? Directly solving this problem is
not easy since the known polynomial-time algorithms for it are rather involved. Consider,
however, what happens when we randomly color the graph with k colors and then check
whether the vertices of each color class contain at least one edge. Clearly, if this is the case,
there is a matching of size k – and if there is no such matching, then no coloring will pass
the test.

We now formalize the idea behind color coding and then show how the colorings can be
computed in constant time. It turns out that one can derandomize the computation of a
coloring: instead of random colorings we use sets of colorings such that for every set of k
vertices and “desired” colors for them, at least one coloring colors the vertices as desired:

I Definition 3.1 (Universal Coloring Families). For natural numbers n, k, and c, an (n, k, c)-
universal coloring family is a set Λ of functions λ : {1, . . . , n} → {1, . . . , c} such that for
every subset S ⊆ {1, . . . , n} of size |S| = k and for every mapping µ : S → {1, . . . , c} there
is at least one function λ ∈ Λ with ∀s ∈ S : µ(s) = λ(s).

The matching problem can be solved easily when we have access to a (n, 2k, k)-universal
coloring family: If there is a matching of size k, the family will contain some coloring that
colors the two endpoints of the first edge with color 1, the endpoints of the second edge
with color 2, and so on. Thus there is, indeed, a matching of size k in the graph if for at
least one coloring every color class contains an edge. Since we can easily check in parallel
for all colorings whether this is the case for one of them, the complexity of pk-matching
hinges critically on the complexity of computing the universal coloring family and the size of
this family. The next theorem shows that (n, k, c)-universal coloring families of reasonable
size can be computed “in constant time and work f(k, c) · nO(1),” which implies that pk-
matching ∈ para-AC0 holds:

I Theorem 3.2. There is a dlogtime-uniform family (Cn,k,c)n,k,c∈N of AC-circuits without
inputs such that each Cn,k,c
1. outputs an (n, k, c)-universal coloring family (coded as a sequence of function tables),
2. has constant depth (independent of n, k, or c), and
3. has size at most O(n log c · ck2 · k4 log2 n).

Sketch of Proof. The family of universal coloring functions we construct is based on the
concept of k-perfect hash functions [17], that, after slight modifications, provide us with
the desired coloring properties. The crucial part is to implement them using circuits that
are dlogtime-uniform. However, we can achieve this, since the numbers n, k, and c are
encoded in unary and the operations required to compute the functions are only additions,
multiplications, and modulo operations. J

Investigating a parameterized version of matching may seem a bit strange at first sight
– matching is even known to be solvable in randomized polylogarithmic parallel time. How-
ever, the exact parallel time complexity is still open in the classical setting while from a
parameterized perspective, we just saw that the matching can be solved very quickly in
parallel. Another problem that one would maybe not expect to be studied in the param-
eterized setting, but which will be useful in a number of situations, is p-threshold. The

6 Fast Parallel Fixed-Parameter Algorithms via Color Coding

inputs are a bitstring b ∈ {0, 1}n and a parameter t. The question is whether there are at
least t many 1’s in b. Clearly, the unparameterized version is complete for TC0, and using
the fact that the problem lies in AC0 for polylogarithmic thresholds [23] yields the fact that
its parameterized version lies in para-AC0. However, this result requires profound result of
circuit complexity and is rather involved, but using color coding we can give a very simple
proof of this fact:

I Lemma 3.3. p-threshold ∈ para-AC0.

3.2 Finding Embeddings of Graphs of Bounded Tree-Width and Depth
A different way of looking at the matching problem is to see it as an embedding problem:
Instead of trying to find k edges in a graph G that have no endpoints in common, we can
try to “embed” the graph H = kK2, consisting of k isolated edges, into G. The advantage
of this different point of view is, of course, that it generalizes nicely:

I Problem 3.4 (p-emb(H) for some class H of undirected graphs).
Instance: Two undirected graphs H = (VH , EH) ∈ H and G = (VG, EG).
Parameter: H
Question: Is there a injective homomorphism φ : VH → VG, that is, is H isomorphic to a

(not necessarily induced) subgraph of G?

For arbitrary H, the problem is easily be seen to be W[1]-hard by a reduction from p-
clique. However, for restricted H, the problem becomes fixed-parameter tractable. The
best results so far are by Chen and Müller [10] who show that when H has bounded tree-
depth, p-emb(H) ∈ para-L; whenH has bounded path-width, p-emb(H) is the para-L-reduc-
tion closure of the distance problem in graphs, parameterized by the distance; and when H
has bounded tree-width, p-emb(H) is the para-L-reduction closure of the embedding problem
for trees, parameterized by the tree-size. In contrast to these results, Amano showed for
the unparameterized setting, in which we consider the size of H to be a constant, that the
problem can be solved in AC0 with similar techniques [3]. We improve considerably on
the first result of Chen and Müller by proving that embeddings of graphs of bounded tree-
depth can actually be computed in para-AC0. We complement their other results, without
improving them, by showing that for graphs of bounded tree-width (and, thereby, also for
bounded path-width) the embedding problem lies in para-AC0↑.

In order to formulate our results, we first need to review the definition of a tree-
decomposition, see [17] for a more detailed introduction. A tree-decomposition of a graph
H = (V,E) is a tree T together with a mapping ι from the nodes of T to subsets (called
bags) of V such that (1) for every edge {u, v} ∈ E there is some bag containing u and v, that
is, there is some x ∈ V with {u, v} ⊆ ι(x) and (2) for every vertex x ∈ V the set of nodes
of T whose bags contain x forms a connected subset of T . The width of tree-decomposition
is the size of its largest bag minus 1, its depth is the maximum of the width and the depth
of T . Define tw(H) as the minimum width any tree-decomposition of H must have; define
td(H) similarly for the tree-depth.

I Theorem 3.5. Given two graphs H = (VH , EH) and G = (VG, EG) together with a tree-
decomposition (T, ι) of H. An embedding of H into G can be computed by an AC-circuit of
depth O

(
depth(T)

)
and size f(|VH |) ·O

(
|VG|width(T)), if such an embedding exists.

Sketch of Proof. Color the vertices ofH uniquely and compute a (|VG|, |VH |, |VH |)-universal
coloring family. Starting from the leaves of the tree-decomposition, merge compatible partial

M. Bannach, C. Stockhusen, and T. Tantau 7

homomorphisms for the vertices of the bags until we reach the root of the decomposition,
and, thus, obtain a homomorphism for H. The number of iterative steps required for this
equals the depth of the tree-decomposition. J

If H is a parameter, we can compute a width- or depth-bounded tree-decomposition (T, ι)
of H in a preprocessing step. This implies the following corollaries:

I Corollary 3.6. Let H be the class of all graphs of tree-width at most d for some constant d.
Then p-emb(H) ∈ para-ACf(|H|) ⊆ para-AC0↑.

I Corollary 3.7. Let H be the class of all graphs of tree-depth at most d for some constant d.
Then p-emb(H) ∈ para-AC0.

We make two remarks at this point: First, one cannot generalize Theorem 3.5 to clique-
width since the embedding problem for cliques, which have clique-width 1, is already hard
for W[1]. Second, the theorem and the corollary also hold for relational structures H and G
and if we bound the tree-width of H’s Gaifman graph. Since paths have tree-width 1, the
complexity of one of the canonical problems for color-coding – the pk-path problem – can
be determined: pk-path ∈ para-AC0↑. This allows us to give a short proof of the following
lemma on the complexity of the distance problem for directed graphs where the distance is
the parameter (one can also prove this lemma directly quite easily):

I Lemma 3.8. pd-distance ∈ para-ACf(d) ⊆ para-AC0↑.

A known fact from circuit complexity states that a polynomial-sized AC-circuit that
decides whether a given graph G contains a path of length at most d between to vertices s
and t requires depth Ω(log log d) [5]. This implies pd-distance 6∈ para-AC0.

I Corollary 3.9. para-AC0 (para-AC0↑.

3.3 First-Order Model Checking
Our last result in this section on tools is an algorithmic meta-theorem: We show that the
model checking problem for first-order logic on graphs of bounded degree lies in para-AC0↑.
We build strongly on a previous result by Flum and Grohe [16], who showed that this model
checking problem lies in para-L, but differ in three regards: First, we use color coding in
our proof, which simplifies the argument somewhat, second, we identify the parameterized
distance problem on bounded degree graphs as the only part of the computation that is
presumably not in para-AC0, and, third, we observe that the degree of the graphs can be
made a parameter and need not be considered constant.

I Problem 3.10 (pφ,δ-mc(FO)).
Instance: A logical structure A and a first-order formula φ.
Parameter: The (size of) the formula φ and the maximum degree δ of A’s Gaifman graph.
Question: A |= φ?

I Theorem 3.11. pφ,δ-mc(FO) ∈ para-ACf(φ+δ) ⊆ para-AC0↑.

Sketch of Proof. By Gaifman’s Theorem [20] we can rewrite the given formula as a for-
mula φ′ in Gaifman normal form. Thus, what essentially remains is to check whether the
structure (which we can interpret as a graph) contains k disjoint “balls” of size bounded in
the parameter (due to the maximum degree of the underlying Gaifman graph) that satisfy
the subformulas in φ′. To find these substructures, we make use of color coding and apply
Lemma 3.8 to compute the corresponding connecting components. Finally, we only have to
model check the resulting parameter-sized substructures. J

8 Fast Parallel Fixed-Parameter Algorithms via Color Coding

We conclude with the remark that the depth of the circuits constructed in the above
theorem just depends on the degree δ of the graph and on the radius r of the balls, which
measure how “local” the formula φ is. The smallest r for which φ can be rewritten as
in the proof is known as the locality rank lr(φ) and the proof actually shows that pφ,δ-
mc(FO) ∈ para-ACO(δlr(φ)).

4 Fast Parallel Fixed-Parameter Algorithms for Natural Problems

The tools we have developed are now applied to a number of natural parameterized problems
found in the literature.

Packing Problems. We have already pointed out that the parameterized matching problem
can be seen as an embedding problem, where the objective is to embed the graph H = kK2,
consisting of k disjoint copies of a single edge, into a graph G. Embedding multiple disjoint
copies of the same graph into another graph is also known as “packing”. Clearly, instead of
edges we can also pack other things as long as taking any number of copies of these “other
things” still has bounded tree-depth. For instance, we can try to “pack” k different triangles
into G, that is, we can check whether there are k vertex-disjoint triangles in G. Unlike the
matching problem, triangle packing is known to be NP-complete.

I Theorem 4.1. p-triangle-packing ∈ para-AC0.

Proof. Just observe that a graph H consisting of any number of disjoint copies of a triangle
has tree-depth 3. The claim follows from Corollary 3.7. J

Indeed, for any fixed graph H0 the packing problem p-H0-packing lies in para-AC0,
where the question is whether we can find k disjoint copies ofH0 in G and k is the parameter:

I Theorem 4.2. p-H0-packing ∈ para-AC0 for every fixed graph H0.

Further variants arise when, instead of a single graph H0, we are given a whole multiset
of graphs as inputs and we must find disjoint copies of all of them in G. Again, as long
as there is a fixed bound on the size of the graphs, the tree-depth of their disjoint union is
bounded and, hence, the packing problem lies in para-AC0.

The complexity of packing problem changes when the to-be-packed graphs no longer
have constant size as in the following problem:

I Problem 4.3 (pk,l-cycle-packing).
Instance: An undirected graph G and two numbers k and l.
Parameter: k and l
Question: Are there k vertex-disjoint cycles in G, each having length l?

The graph H = kCl consisting of k copies of a cycle of length l no longer has bounded
tree-depth; it does have tree-width 2, however. Thus, by Theorem 3.5 we get:

I Theorem 4.4. pk,l-cycle-packing ∈ para-ACf(k+l) ⊆ para-AC0↑.

The same result obviously also holds for pk,l-path-packing and it also holds for p-
forest-packing, where we are given a forest as input and the parameter is the total
numbers of vertices in it. We conclude with the remark that these ideas cannot be extended
to packing graphs whose tree-width is not bounded: Already embedding cliques, let alone
packing them, is W[1]-hard.

M. Bannach, C. Stockhusen, and T. Tantau 9

Covering Problems. In covering problems we must choose vertices in a graph (or some-
times hypergraph) such that all (p-vertex-cover) or some (p-partial-vertex-cover)
of the edges are “covered,” that is, they intersect with the set of chosen vertices. The best-
known covering problem is undoubtedly p-vertex-cover, whose complexity has been scru-
tinized extensively in parameterized complexity theory. We now prove p-vertex-cover ∈
para-AC0; a fact that nicely reflects on a theoretical basis the “empirical” observation that
p-vertex-cover is one of the “easiest” parameterized problems. The problem was one of
the first shown to lie in para-P, was then shown to lie in para-L by Cai et al. [8], then in
para-TC0 by Elberfeld and the last two authors [14].

I Theorem 4.5. p-vertex-cover ∈ para-AC0.

Partial covering problems ask us not to cover all edges, but only t of them:

I Problem 4.6 (pk,t-partial-vertex-cover).
Instance: An undirected graph G = (V,E) and two numbers k and t.
Parameter: k, t
Question: Is there a set S ⊆ V of cardinality |S| at most k such that the cardinality of{

{u, v} ∈ E | u ∈ S ∨ v ∈ S
}
is at least t?

Another version is pt-exact-partial-vertex-cover, where the size of S is no longer
restricted, but the cardinality of

{
{u, v} ∈ E | u ∈ S ∨ v ∈ S

}
must be exactly t.

These problems, which are generally considered to be harder than the plain vertex cover
problem, lie in the class para-AC0↑. Our proofs make an interesting use of Theorem 3.11.
Recall that this “meta-theorem” states that all first-order properties of graphs, parameter-
ized by the first-order property and the maximum degree of the graph, can be decided in
para-AC0↑. Covering properties can be expressed using first-order formulas – but we make
no requirement concerning the degree of the input graph. The trick is to first reduce the
inputs to graphs of bounded degree and then apply the meta theorem. Such a two-step
approach is typically in advanced applications of algorithmic meta-theorems.

I Theorem 4.7. pk,t-partial-vertex-cover ∈ para-ACf(k+t) ⊆ para-AC0↑.

I Theorem 4.8. pt-exact-partial-vertex-cover ∈ para-ACf(t) ⊆ para-AC0↑.

We conclude with the remark that the above results on finding vertex coverings for
graphs cannot easily be extended to hypergraphs since for hypergraphs covering problems
are typically hard for at least W[1].

Clustering Problems. Clustering algorithms have a wide variety of applications, for ex-
ample in computational biology where we want to cluster genes and proteins or process
transcription data [7]. A basic clustering problem for graphs is the following:

I Problem 4.9 (pk,`-cluster-editing).
Instance: An undirected graph G = (V,E) and a numbers ` and k.
Parameter: `, k
Question: Can we add and / or delete up to k edges to or from G such that the resulting

graph consists of ` connected components, each of which is a clique?

A variant is pk-many-cluster-editing, where we just require that the edited graph consists
of cliques and do not prescribe the number of clusters beforehand. This variant has been
extensively studied, most notably by Gramm et al. [21] and Böcker [6] who showed its

10 Fast Parallel Fixed-Parameter Algorithms via Color Coding

fixed-parameter tractability. For the first version, algorithms based on color coding result
in reasonable running times, but where recently be outperformed by other approaches [19].
However, using a color coding approach is useful when we consider parallel algorithms:

I Theorem 4.10. pk,`-cluster-editing ∈ para-AC0.

I Corollary 4.11. pk-many-cluster-editing ∈ para-AC0.

We remark that if ` is not no longer considered a parameter in cluster editing, the
problem complexity increases only moderately:

I Corollary 4.12. pk-cluster-editing ∈ para-TC0.

Theorem 4.10 has another interesting corollary: Let pk,p-complete-p-partite-editing
be the problem of determining whether in a graph G we can add and / or remove up to k
edges such that the resulting graph is complete p-partite, that is, its vertex set can be
partitioned into exactly p non-empty sets such that there is an edge between two vertices if,
and only if, they belong to two different sets. Since the complement of a complete p-partite
graph is exactly a collection of p cliques, we get the following corollary:

I Corollary 4.13.
1. pk,p-complete-p-partite-editing ∈ para-AC0.
2. pk-complete-p-partite-editing ∈ para-TC0.

Finally, instead of looking for just one complete p-partite graph, we can look for several
at the same time:

I Problem 4.14 (pk,p-multipartite-cluster-editing).
Instance: An undirected graph G = (V,E), a natural number k, and a sequence of natural

numbers p1, p2, . . . , p`.
Parameter: k, p = p1 + · · ·+ p`
Question: Can we add or delete k edges of G such that the resulting graph consist of

d connected components C1 to C` such that each Ci is a complete pi-partite
graph?

I Theorem 4.15.
1. pk,p-multipartite-cluster-editing ∈ para-AC0

2. pk,`-multipartite-cluster-editing ∈ para-TC0.

Graph Separation Problems. Graph separation problems are problems where we ask to
separate a set of ` vertices from the remaining graph by deleting at most k other vertices.
They play a key role in many real-world network applications like finding communities or
isolating dangerous vertices. While this problem is well-known to be NP-complete in the
unparameterized setting and W[1]-hard in the parameterized setting for parameters k, `,
and k + `, the complexity of the problem changes dramatically if we require the separated
set of vertices to be connected:

I Problem 4.16 (pk,`-cutting-`-connected-vertices).
Instance: An undirected graph G = (V,E) and two natural numbers k and `.
Parameter: k, `
Question: Is there a partitioning of V into three sets X, S, and Y with |X| = ` and |S| ≤ k

such that X is connected and for all {x, y} ∈ E with x ∈ X we have y 6∈ Y ?

M. Bannach, C. Stockhusen, and T. Tantau 11

Marx [22] showed that this problem is fixed-parameter tractable; Fomin, Golovach, and Ko-
rhonen [18] studied a similar version, namely pk,`-cutting-at-most-`-vertices, in which
the set X is not required to be connected and may be of size at most `, i. e., 1 < |X| ≤ `,
and for which Fomin et al. gave an FPT-algorithm based on color coding. The main idea is
to colorize the given graph with two colors such that the vertices of the set X get colored
with the first color and the vertices in S get the second color. Thus, we only have to find
the solution within the vertices of the first color. This algorithm can be implemented in
para-AC0↑ and, moreover, works for pk,`-cutting-`-connected-vertices as well.

I Theorem 4.17.
1. pk,`-cutting-`-connected-vertices ∈ para-ACf(`) ⊆ para-AC0↑.
2. pk,`-cutting-at-most-`-vertices ∈ para-ACf(`) ⊆ para-AC0↑.

We conclude with the remark that both problems can also be solved with algorithms sim-
ilar to the ones presented above if we consider the terminal versions of these problems [18],
i. e., there is a special terminal vertex t which has to be part of X. For this, we have to
modify the above algorithms to consider only blue components that contain t.

5 Conclusion

We have seen that many natural parameterized problems can be solved in constant parallel
time or in parallel time depending only on the parameters while doing only “fpt work.” We
stress that our results are of a theoretical nature and do not directly give practical parallel
implementations for the problems presented; but they show that such implementations are
possible in principle for them. The core technique used in all proofs (at least indirectly) was
color coding, which can be done in constant time and which is already used in practice.

This paper did not address lower bounds. While for para-AC0 this is not problematic
since this class lies at the bottom of almost any hierarchy of parameterized classes, some
problems in para-AC0↑ might well “fall down” to para-AC0. Here we only know a explicit
lower bound for the distance problem, which does not lie in para-AC0. Establishing lower
bounds for other problems in para-AC0↑ is therefore a reasonable research goal.

References
1 F. N. Abu-Khzam, M. A. Langston, P. Shanbhag, and C. T. Symons. Scalable Parallel

Algorithms for FPT Problems. Algorithmica, 45(3):269–284, 2006.
2 N. Alon, R. Yuster, and U. Zwick. Color-Coding. Journal of the ACM, 42(4):844–856,

1995.
3 Kazuyuki Amano. k-Subgraph Isomorphism on AC0 Circuits. Computational Complexity,

19(2):1016–3328, 2010.
4 David A. Mix Barrington and Neil Immerman. On uniformity within NC1. Journal of

Computer and System Sciences, 41(3):274–306, 1990.
5 Paul Beame, Russell Impagliazzo, and Toniann Pitassi. Improved depth lower bounds for

small distance connectivity. Computational Complexity, 7(4):325–345, 1998.
6 S. Böcker. A Golden Ratio Parameterized Algorithm for Cluster Editing. In Proceedings

of the Twenty-Second International Workshop on Combinatorial Algorithms, volume 7056
of IWOCA ’11, pages 85–95. Springer Berlin Heidelberg, 2011.

7 S. Böcker and J. Baumbach. Cluster Editing. In Proceedings of the Ninth Conference on
Computability in Europe, volume 7921 of CiE ’13, pages 33–44. Springer Berlin Heidelberg,
2013.

12 Fast Parallel Fixed-Parameter Algorithms via Color Coding

8 L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. Advice Classes of Parameterized
Tractability. Annals of Pure and Applied Logic, 84(1):119–138, 1997.

9 Marco Cesati and Miriam Di Ianni. Parameterized parallel complexity. In Proceedings of the
Fourth International Euro-Par Conference, volume 1470 of Euro-Par ’89, pages 892–896.
Springer Berlin Heidelberg, 1998.

10 H. Chen and M. Müller. The Fine Classification of Conjunctive Queries and Parameterized
Logarithmic Space. ACM Transactions on Computation Theory, 7(2):7:1–7:27, 2014.

11 Y. Chen, J. Flum, and M. Grohe. Bounded Nondeterminism and Alternation in Pa-
rameterized Complexity Theory. In Proceedings of the Eighteenth IEEE Conference on
Computational Complexity, CCC ’03, pages 13–29. IEEE Computer Society, Los Alamitos,
California, 2003.

12 R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer, 1999.
13 Rodney G. Downey, Michael R. Fellows, and Kenneth W. Regan. Parameterized Circuit

Complexity and the W Hierarchy. Theoretical Computer Science, 191(1–2):97–115, 1998.
14 M. Elberfeld, C. Stockhusen, and T. Tantau. On the Space Complexity of Parameterized

Problems: Classes and Completness. Algorithmica, 71(3):661–701, 2014.
15 M. Fellows, P. Heggernes, F. Rosamond, C. Sloper, and J. A. Telle. Finding k Disjoint

Triangles in an Arbitrary Graph. In Proceedings of the Thirtieth International Workshop
on Graph-Theoretic Concepts in Computer Science, volume 3353 ofWG ’04, pages 235–244.
Springer Berlin Heidelberg, 2004.

16 J. Flum and M. Grohe. Describing Parameterized Complexity Classes. In Proceedings of
the Nineteenth Annual Symposium on Theoretical Aspects of Computer Science, volume
2285 of STACS ’02, pages 359–371. Springer Berlin Heidelberg, 2002.

17 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, Heidelberg, Germany,
2006.

18 F. V. Fomin, P. A. Golovach, and J. H. Korhonen. On the Parameterized Complexity of
Cutting a Few Vertices from a Graph. In Proceedings of the Thirty-Eight International
Symposium of Mathematical Foundations of Computer Science, volume 8087 of MFCS ’13,
pages 421–432. Springer, Heidelberg, Germany, 2013.

19 F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger. Tight Bounds for
Parameterized Complexity of Cluster Editing. In Proceedings of the Thirtieth International
Symposium on Theoretical Aspects of Computer Science, volume 20 of STACS ’13, pages
30–43. International Symposium on Theoretical Aspects of Computer Science, 2013.

20 H. Gaifman. On Local and Non-Local Properties. In Proceedings of the Herbrand Sympo-
sium, Logic Colloquium ’81, pages 105–135. North Holland, 1982.

21 J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-Modeled Data Clustering:
Fixed-Parameter Algorithms for Clique Generation. In Proceedings of the Fifth Italian Con-
ference of Algorithms and Complexity, volume 2653 of CIAC ’03, pages 108–119. Springer
Berlin Heidelberg, 2003.

22 D. Marx. Parameterized Graph Separation Problems. Theoretical Computer Science,
351(3):394–406, 2006.

23 I. Newman, P. Ragde, and A. Wigderson. Perfect Hashing, Graph Entropy, and Circuit
Complexity. In Proceedings of the Fifth Annual Structure in Complexity Theory Conference,
pages 91–99. IEEE Computer Society, Los Alamitos, California, 1990.

24 H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

M. Bannach, C. Stockhusen, and T. Tantau 13

A Technical Appendix: Proofs

For the readers convenience, the claims of the proofs given in this appendix are repeated
before the proofs.

Claim of Theorem 3.2. There is a dlogtime-uniform family (Cn,k,c)n,k,c∈N of AC-circuits
without inputs such that each Cn,k,c
1. outputs an (n, k, c)-universal coloring family (coded as a sequence of function tables),
2. has constant depth (independent of n, k, or c), and
3. has size at most O(n log c · ck2 · k4 log2 n).

Proof. Define

λp,a(x) = (a · x mod p) mod k2,

Λ′n,k =
{
λp,a | p is a prime with p < k2 logn and a ∈ {0, . . . , p− 1}

}
,

Λn,k,c =
{
ω ◦ λp,a | ω : {0, . . . , k2 − 1} → {1, . . . , c}, p < k2 logn, a ∈ {0, . . . , p− 1}

}
.

It is well-known that Λ′n,k is a family of k-perfect hash functions, i. e., for every subset
S ⊆ {1, . . . , n} with |S| = k it contains a function that is injective on S, see [17]. Therefore,
given a subset S and a function µ : S → {1, . . . , c}, some member of λp,a ∈ Λ′n,k will map
the members of S injectively to a subset S′ of {0, . . . , k2 − 1} and, then, some function
ω : {0, . . . , k2 − 1} → {1, . . . , c} will map S′ in such a way that ω ◦ λp,a equals µ on S.
Consequently the set Λn,k,c is an (n, k, c)-universal coloring family. Notice that we use
all p < k2 logn in the definition of Λn,k,c and, thus, including the prime numbers only
indirectly. The sizes of the two sets can be bounded by |Λ′n,k| ≤ (k2 · logn)2 and |Λn,k,c| ≤
ck

2 · (k2 · logn)2 = ck
2
k4 log2 n. Each function in Λn,k,c can clearly be encoded in n log2 c

bits.
For the construction of circuits Cn,k,c observe that they have no inputs and must just

output Λn,k,c in a fixed encoding. Thus, we can, in principle, hardwire the complete output
of Cn,k,c into a depth-0 circuit. The tricky part is, of course, arguing that the circuit family is
dlogtime-uniform. However, this is surprisingly simple: Having a look at the definition of
Λn,k,c, we see that computing the ith bit of its encoding only involves simple computations
consisting of additions, multiplications, and modulo operations on i and the numbers n,
k, and c. Now, dlogtime-uniformity means that we have time logarithmic in the unary
encodings of these numbers and hence polynomial time in their binary encodings. Since
addition, multiplication, and modulo are clearly polynomial-time computable, we get the
claim. J

Claim of Lemma 3.3. p-threshold ∈ para-AC0.

Proof. On input of a bitstring b of length n and a number t, use Theorem 3.2 to compute
an (n, t, t)-universal coloring family. Now, if b contains at least t many 1’s, then there is
a coloring of the positions of b such that each color class contains at least one 1. Thus, it
suffice to test in parallel for all colorings whether this is the case. J

Claim of Theorem 3.5. Given two graphs H = (VH , EH) and G = (VG, EG) together with a
tree-decomposition (T, ι) of H. An embedding of H into G can be computed by an AC-circuit
of depth O

(
depth(T)

)
and size f(|VH |) ·O

(
|VG|width(T)), if such an embedding exists.

14 Fast Parallel Fixed-Parameter Algorithms via Color Coding

Proof. Let N denote the set of nodes of T . For a node n of T , let Tn be the subtree of T
rooted at n and let Nn be the set of its vertices. Color G by a (|VG|, |VH |, |VH |)-universal
coloring family using Theorem 3.2 and test all members of this family in parallel. To simplify
the notation, let us identify the |VH | colors in each coloring with the vertices of VH .

Let us call a subset X ⊆ VG colorful if all vertices of X have a different color; let Y ⊆ VH
be the set of these colors and let µX : Y → X map each color y in Y to the vertex x in X
having this color. Note that if there is an embedding φ of H into G, for at least one coloring
there is a µX = φ such that X = φ(VH) ⊆ VG is the image of VH .

Let us call a colorful subset I ⊆ VG of size at most width(T) + 1 good for a node n
of T if there is a colorful superset J ⊇ I of vertices of VG such that µJ is an injective
homomorphism µJ :

⋃
m∈Nn ι(m) → J . In other words, I can be extended to a solution of

the embedding problem for the tree rooted at n.
Clearly, since the size of the ι(n)’s and the I’s are restricted by the width(T) + 1, for a

leaf n of T we can decide whether a subset is good for some node of T using only a constant
number of AC-layers of width bounded by a function in width(T). Also observe that the
number of subsets of VG of size at most width(T) + 1 is bounded by |VG|width(T)+1 and,
thus, we can consider all of them in parallel in each layer of an AC-circuit.

We must now show that we can decide, using only as many layers as the depth of T ,
whether H has an embedding in G. In a first layer, we first determine for each leaf n of T
the set of all good sets I for n. In the inductive step, consider a node n such that for all its
children we have already determined which sets are good for them. Let I be a colorful set
for which we must determine whether it is good for n. We claim that this is the case when
two conditions are met:
1. The set I is “a correct embedding itself,” meaning that µI is an injective homomorphism

µI : ι(n)→ I.
2. The children of n “can be made consistent with I,” meaning that for each child c of n

in T , there is a colorful set Ic ⊆ VG that is good for c and µI and µIc are identical on
ι(n) ∩ ι(c).

To see that these tests suffice in order to test whether I is good for n, just observe that
by the definition of a tree-decomposition, all bags that contain a particular vertex h of VH
must form a connected subset of T . Our second condition ensures that when a given vertex
g ∈ VG has been picked as the image of h in some I, the same vertex must have been picked
in all children and, thus, a partial homomorphism on I can be extended to a homomorphism
on the vertices in the whole tree rooted at n.

To conclude the proof, we just observe that the two tests can clearly be implemented
with a constant number of AC-layers. J

Claim of Lemma 3.8. pd-distance ∈ para-ACf(d) ⊆ para-AC0↑.

Proof. Determining whether there is a path of length d from s to t in G is the same as
asking whether the path Pd of length d can be embedded into a directed graph G with the
start and end of the path marked appropriately so that they must be mapped to s and t,
respectively. Since paths have tree-width 1, Theorem 3.5 and the second remark following
it give the claim. J

Claim of Theorem 3.11. pφ,δ-mc(FO) ∈ para-ACf(φ+δ) ⊆ para-AC0↑.

Proof. The first part of our proof is identical to the one given by Flum and Grohe in [16]: Let
φ be a formula given as input. For simplicity of presentation, we assume that the structure

M. Bannach, C. Stockhusen, and T. Tantau 15

A is actually an undirected graph G = (V,E) of maximum degree δ. Let d(a, b) denote the
distance of two vertices in G and let Nr(a) = { b ∈ V | d(a, b) ≤ r } be the ball around a

of radius r in G. Let G[Nr(a)] denote the subgraph of G induced on Nr(a). By Gaifman’s
Theorem [20] we can rewrite φ as a Boolean combination of formulas of the following form:

∃x1 · · · ∃xk
(∧

i 6=j ψdist>2r(xi, xj) ∧
∧
i ψ(xi)

)
where ψdist>2r(xi, xj) is a standard formula expressing that d(xi, xj) > 2r and ψ is r-local,
meaning that for all a ∈ V we have G |= ψ(a) ⇐⇒ G[Nr(a)] |= ψ(a). What remains to be
done is to determine whether there are k vertices a1 to ak in G such that the balls Nr(ai)
do not intersect and G[Nr(ai)] |= ψ(ai) holds for them.

At this point, we digress from the line of argument of Flum and Grohe, who now give a
slightly involved space-efficient algorithm for determining the existence of such ai without
having to write them down (which is not possible in parameterized logarithmic space).
Instead, we use color coding at this point: Introduce colors 1 to k. Since the maximum
degree δ is a parameter and r depends only on a parameter, the maximum size M of any
Nr(a) is bounded by the parameter. This means that there is an (|V |,Mk, k + 1)-universal
coloring family such that for the vertices ai from above at least one coloring has the following
property: All vertices in Nr(ai) have the same color i. This means that each Nr(ai) is
contained in a monochromatic connected component of G having color i.

It remains to test whether for each color i there is a vertex ai such that Nr(ai) has
color i and G[Nr(ai)] |= ψ(ai) holds. For this, let some candidate ai be given. We need
to determine for a given vertex b whether d(ai, b) ≤ r where the distance is computed in
the subgraph of G induced by the vertices of color i. In other words, we need to solve the
problem pd,δ-undirected-distance, which is parameterized over the distance d and the
maximum degree δ and which can be solved in para-ACf(r) by Lemma 3.8.5 Once the set
Nr(a) of vertices reachable from a vertex a in at most r steps has been determined, we
can create an isomorphic copy of G[Nr(a)] consisting just of an |Nr(a)| × |Nr(a)| adjacency
matrix in para-AC0: Number the vertices of G in some manner (for instance, in the order
they appear in the input), which also induces an ordering on the vertices of Nr(a). The
entry in row i and column j of the matrix is a 1 if the ith and the jth vertex in Nr(a) are
connected by an edge in EG. Determining which vertex is the ith vertex of Nr(a) can be
done by a para-AC0 circuit by Lemma 3.3.

Given the adjacency matrix of G[Nr(a)], we can clearly decide in para-AC0 whether
G[Nr(a)] |= φ, since the size of G[Nr(a)] depends only on the original input parameters. J

Claim of Theorem 4.5. p-vertex-cover ∈ para-AC0.

Proof. Let us reiterate the steps of the well-known Buss kernelization: Let G be an input
graph and let k be the size of the sought vertex cover. First, we can determine, in parallel,
all vertices v that have degree at least k + 1 and, as observed by Buss, all of these vertices
must be part of any vertex cover of size at most k. Remove these vertices from G in parallel
and then remove all isolated vertices. Buss’ second observation is that if the remaining graph
has more than k(k + 1) vertices, no vertex cover of size k exists. Thus, we get a quadratic
problem kernel.

5 Flum and Grohe argue that the undirected distance problem can be solved in space f(r, δ) +O(logn),
since we just need r log2 δ bits to describe a path of length r starting at a vertex a and can iterate over
all possible paths with that many bits.

16 Fast Parallel Fixed-Parameter Algorithms via Color Coding

Elberfeld et al. [14] observe that the essential parallel steps of the algorithm are the
following: (1) Check whether the degree of a vertex is at least k. (2) Checking whether
there are at most k such vertices. (3) Checking whether there are at most k(k + 1) vertices
that are not only connected to the high-degree vertices. (4) Computing the subgraph induced
by these k(k + 1) vertices.

While Elberfeld et al. conclude at this point that the computation can be implemented
by para-TC0 circuits (“we just have to count”), Lemma 3.3 shows that the computation can
be implemented using a para-AC0 circuit: All counting involves thresholds depending only
of the parameter. J

Claim of Theorem 4.7. pk,t-partial-vertex-cover ∈ para-ACf(k+t) ⊆ para-AC0↑.

Proof. On input of a graph G, first test whether there is a vertex of degree at least t. If
so, we can accept since this vertex alone already constitutes the desired cover. Otherwise,
we know that the graph has a maximum degree bounded by the parameter and we can apply
Theorem 3.11 to the following first-order formula, which depends only on k and t:

∃x1 · · · ∃xk︸ ︷︷ ︸
the size-k cover

∃a1∃b1 · · · ∃at∃bt︸ ︷︷ ︸
the t covered edges

(
φdist(a1, b1, . . . , at, bt) ∧

∧t
i=1
(
E(ai, bi) ∧

∨k
j=1 ai = xj

))
.

Here, φdist is a standard formula expressing that {a1, b1}, . . . , {at, bt} are distinct sets. J

Claim of Theorem 4.8. pt-exact-partial-vertex-cover ∈ para-ACf(t) ⊆ para-AC0↑.

Proof. We again wish to apply Theorem 3.11, but now the preprocessing step is a bit more
complicated: Vertices of degree higher than t no longer constitute a solution, indeed, these
vertices cannot be selected as part of a solution. However, we also cannot simply remove
them as we did in the proof of Theorem 4.5 since parts of their neighbors might be chosen
and the edges attached to them are then part of the t covered edges. The trick is to replace
all vertices v of degree d > t by d new vertices and to add an edge from each of the former
neighbors of v to exactly one of these d new vertices. (It is not difficult to implement these
replacement steps in constant depth by also adding some unnecessary isolated vertices.) Let
us color all “new” vertices red.

Once the graph has been preprocessed, it will once more have degree bounded in the
parameter and we can apply Theorem 3.11 to a formula stating “there exist k vertices and
t distinct edges such that the k vertices are not red, the t edges always have one endpoint
among the k vertices and all edges of the graph having an endpoint among the k vertices
are among the t edges.” J

Claim of Theorem 4.10. pk,`-cluster-editing ∈ para-AC0.

Proof. Let G = (V,E) and k be given as input. For the moment, assume that G can
be clustered after k edge modifications and let C = {C1, . . . , C`} be a solution, that is, a
partitioning of V such that R = { {u, v} | u ∈ Ci, v ∈ Cj , i 6= j }∩E (these edges need to be
removed) and A = { {u, v} | u, v ∈ Ci }\E (these edges need to be added) together have size
is at most k. Define M =

⋃
R ∪

⋃
A as the set of all vertices attached to edges that need

to be modified. Let us call a cluster Ci partly modified if Ci 6⊆ M , and completely modified
if Ci ⊆M .

Our objective is to determine the clusters Ci without knowing them. Towards this aim,
we apply color coding for an (n, 2k+ `, 2)-universal coloring family with the colors blue and
orange. If a clustering C exsists, at least one coloring has the following two properties:

M. Bannach, C. Stockhusen, and T. Tantau 17

1. All vertices in M are colored blue. (Hence, all completely modified clusters will be
completely blue.)

2. In each partly modified cluster D, at least one vertex D \M is colored orange. Let d be
the smallest such vertex with respect to the ordering of the vertices in the input.

To identify the partly modified clusters, we consider only orange vertices. Since all
vertices in M are colored blue, edges incident to orange vertices will not change. Adjacent
orange vertices will therefore belong to the same cluster and non-adjacent ones will belong
to different clusters. Hence, we can identify the vertex d in each partly modified cluster: It
is an orange vertex that is not adjacent to a smaller orange vertex. Observe that in G the
vertex d has the following property:

(∗) All vertices connected to d form a partly modified cluster D.

Thus, the orange vertices that are not adjacent to smaller orange vertices induce a set
of partly modified clusters. We count their number and count the total number m1 of
modifications needed to form them. Since m1 ≤ k must hold, we can compute m1 in
constant parallel time by Lemma 3.3.

It remains to consider the number of modifications needed to form the completely mod-
ified clusters. However, the total number of vertices in these clusters is at most 2k; so
after conceptually removing all vertices that are part of partly modified clusters, at most 2k
vertices may remain. We can compute the subgraph induced by these vertices in constant
time (using the same argument as in the proof of Theorem 3.11 for the construction of the
subgraph induced on Nr(a)) and then solve this kernel in constant time, yielding a minimum
number m2 of modifications needed to create the completely covered clusters. We accept
when m1 + m2 ≤ k and the number of partly modified clusters and completely modified
clusters is `. J

Claim of Corollary 4.11. pk-many-cluster-editing ∈ para-AC0.

Proof. The argument is similar to the one from Theorem 4.10, but we first apply a prepro-
cessing to find components of G that are already cliques. Since the number of sought clusters
(cliques) is not limited, no optimal solution will ever modify edges adjacent to vertices in
such a clique and, thus, we can conceptually remove them from the input. To identify these
vertices, let us call a vertex cliquish if all its neighbors are pairwise connected in G; a prop-
erty that we can easily test in constant time. The set X of cliquish vertices contains exactly
all vertices of clusters already present in G.

The argument now continues as in Theorem 4.10, only we (1) completely ignore the
vertices in X and (2) look for up to ` = 2k partly or completely modified clusters rather
than exactly ` such clusters. J

Claim of Corollary 4.12. pk-cluster-editing ∈ para-TC0.

Proof. Our argument starts as in the proof of Corollary 4.11: We identify components that
are already cliques. However, this time, we only add such a component to X if (1) its size
is larger than k because, then, it cannot be part of any editing or if (2) there are 2k such
components of the same size s ≤ k earlier in the input6, because we can apply any necessary

6 A component A is “earlier in the input than a component B” if there is a vertex in A whose position
in the input is before all vertices in B.

18 Fast Parallel Fixed-Parameter Algorithms via Color Coding

modifications to these 2k earlier components. Now, we count the number x of clusters in
X (this is the only place where we need a TC0 circuit). If `′ := ` − x > 2k + k(k + 1)/2,
we know the coloring cannot lead to a solution. Otherwise, we ask whether the graph G

without X together with the numbers `′ and k is an instance of pk,`-cluster-editing. J

Claim of Theorem 4.15.
1. pk,p-multipartite-cluster-editing ∈ para-AC0

2. pk,`-multipartite-cluster-editing ∈ para-TC0.

Proof. The start of our proof is identical to the one of Theorem 4.10 and we use the same
terminology. The first difference concerns the property (∗) from the proof: When all clusters
are cliques, an orange vertex in such a clique immediately identifies all vertices in it, namely
as the set of its neighbors. For p-partite graphs, this is more difficult and we use a new
definition of equivalence: Let us call two orange vertices equivalent if they are adjacent
in G or if they have the same neighborhood in G. On orange vertices, this is, indeed, an
equivalence relation and some vertices d will have the property that they are minimal with
respect to this relation. For such vertices, we make a new observation:

(∗∗) The partly modified cluster containing d consists of d, all orange vertices equiv-
alent to d, all blue vertices connected to any of these vertices, and possibly some
additional vertices from M .

The “additional vertices from M” arise for instance in a bipartite cluster when one shore
contains only blue vertices and the other contains some blue and some orange vertices. Then
the blue vertices of the second shore do not have any orange neighbors. Let Y be the set of
all vertices that are “definitely identified” by rule (∗∗), that is, the set of all orange vertices
and together with its neighborhood. If |V | − |Y | > 2k we can stop, since only vertices from
M may be missing from Y . We can also stop when the number of identified partly modified
clusters is more than `.

We can now identify all partly modified clusters D – except that some of the vertices
inM may still be lacking –, but we do not yet know which one is C1, which one is C2, and so
on. We try out, in parallel, all possible injective mappings from the identified clusters to the
set of indices {1, . . . , `} together with all possible ways of mapping the at most 2k vertices in
V \Y to {1, . . . , `}. Each pair of mappings determines a possible clustering {C1, . . . , C`} and
we can now (1) compute the number of edge removals that are necessary to remove all edges
between clusters and (2) use Corollary 4.13 to determine the minimal number of editing
operations necessary to make the ith cluster Ci a complete pi-partite graph in para-AC0

or para-TC0, depending on whether the values of the pi are parameters or not. We accept
when the total number of modifications is at most k. J

Claim of Theorem 4.17.
1. pk,`-cutting-`-connected-vertices ∈ para-ACf(`) ⊆ para-AC0↑.
2. pk,`-cutting-at-most-`-vertices ∈ para-ACf(`) ⊆ para-AC0↑.

Proof. We begin with the first item. For this, we make use of a family of (n, k + `, 2)-
universal coloring functions. If G contains a set X of ` vertices that can be separated from
the remaining vertices by removing a set S of at most k vertices, then the family of coloring
functions contains a coloring such that the vertices of X are colored with the first color, say
blue, and the vertices of the set S are colored with the second color, say orange. Hence,
we iterate over these colorings, and for each coloring we try to find X and S by searching

M. Bannach, C. Stockhusen, and T. Tantau 19

connected components of blue vertices in the graph. For this, we iterate over all vertices x
of the graph and each time check whether it is part of a set X with the desired properties:

We can find out whether a vertex y has distance at most d from x in the blue subgraph in
para-ACf(d) by Lemma 3.8. If there is some y at distance `+1, we know that the component
containing x is too large and we can stop. Otherwise, we can identify all vertices y reachable
from x inside the blue component in para-ACf(`). If the number of such vertices in ` (we
can test this even in constant depth using Lemma 3.3), test whether the number of orange
vertices connected to any such y is at most k (again, this test can be done in constant time).

To prove the second item, we proceed in a similar way, but instead of searching for
connected components of size `, we search for a blue component of size at most ` that has
at most k orange neighbors. J

	1 Introduction
	2 Classes of Fixed-Parameter Parallelism
	3 Technical Tools
	3.1 Color Coding in Constant Parallel Time
	3.2 Finding Embeddings of Graphs of Bounded Tree-Width and Depth
	3.3 First-Order Model Checking

	4 Fast Parallel Fixed-Parameter Algorithms for Natural Problems
	5 Conclusion
	A Technical Appendix: Proofs

