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Consider a random graph process where vertices are chosen 
from the interval [0, 1], and edges are chosen independently 
at random, but so that, for a given vertex x, the probability 
that there is an edge to a vertex y decreases as the distance 
between x and y increases. We call this a random graph with 
a linear embedding.
We define a new graph parameter Γ∗, which aims to measure 
the similarity of the graph to an instance of a random graph 
with a linear embedding. For a graph G, Γ∗(G) = 0 if and 
only if G is a unit interval graph, and thus a deterministic 
example of a graph with a linear embedding.
We show that the behaviour of Γ∗ is consistent with the 
notion of convergence as defined in the theory of dense 
graph limits. In this theory, graph sequences converge to 
a symmetric, measurable function on [0, 1]2. We define an 
operator Γ which applies to graph limits, and which assumes 
the value zero precisely for graph limits that have a linear 
embedding. We show that, if a graph sequence {Gn} converges 
to a function w, then {Γ∗(Gn)} converges as well. Moreover, 
there exists a function w∗ arbitrarily close to w under the box 
distance, so that limn→∞ Γ∗(Gn) is arbitrarily close to Γ(w∗).
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1. Introduction

Consider the following random graph model on n vertices. Vertices are randomly 
chosen from the interval [0, 1] according to a given distribution. Then, for each pair of 
vertices x, y, independently, an edge is added with probability w(x, y), where w : [0, 1]2 →
[0, 1] is a symmetric, measurable function.

In this article, we are interested in the special case where w is increasing towards the 
diagonal. Specifically, for x < y, w(x, y) decreases as y increases or x decreases. Such a 
random graph has a linear geometric interpretation: vertices are embedded in the line 
segment [0, 1], and live in a probability landscape where link probabilities decrease as 
the linear distance between points increases. We will refer to this as a random graph 
with a linear embedding.

Consider now the problem of recognizing graphs produced by a random graph process 
with a linear embedding. If the labels of the vertices are provided, this question may be 
answered by regular statistical methods. When only the isomorphism type of the graph 
is given, the question becomes more complicated. We address the question of how to 
recognize graphs whose structure is consistent with that of a random graph with a linear 
embedding.

Recognition is easy in the special case of unit interval graphs, or one-dimensional 
geometric graphs. Here, the selection of vertices is random, but the edge formation is 
deterministic. In other words, the function w governing edge formation only takes values 
in {0, 1}. In this paper, we introduce a graph parameter Γ∗ which aims to measure the 
similarity of the graph to an instance of a random graph with a linear embedding. We 
show that Γ∗ of a given graph equals zero if and only if the graph is a one-dimensional 
geometric graph (Proposition 3.4). We then consider the behaviour of Γ∗ when it is 
applied to convergent sequences of graphs {Gn}, where convergence is defined as in the 
theory of graph limits as developed by Lovász and Szegedy in [20].

In this theory, convergence is defined based on homomorphism densities, and the limit 
is a symmetric, measurable function. The theory is developed and extended to sequences 
of random graphs by Borgs et al. in [6,8,7] and is explored further by Lovász and others 
(see for example [5,9,22]. See also the recent book [19]). As shown by Diaconis and 
Janson in [14], the theory of graph limits is closely connected to the probabilistic theory 
of exchangeable arrays. A different view, where the limit object is referred to as a kernel, 
is provided by Bollobás, Janson and Riordan in [1,2]. The connection with the results of 
Borgs et al. and an extension of the theory to sparse graphs are presented in [4].

Homomorphism densities characterize the isomorphism type of a (twine-free) graph. 
A graph sequence {Gn} converges if and only if all of the homomorphism densities of 
the graphs Gn converge. Moreover, the limits of all these homomorphism densities can 
be obtained from a symmetric, measurable function w on [0, 1]2 which represents the 
“limit object”. Thus, w encapsulates the local structure of the graphs in the sequence. 
Conversely, the randomly growing graph sequence obtained from w, according to the 
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process described earlier, will asymptotically exhibit the same homomorphism densities, 
and thus have a similar structure.

Let {Gn} be a sequence of graphs converging to a symmetric, measurable function w. 
(One may think of this sequence as an instance of a randomly growing graph sequence 
generated by w.) Can we recognize whether this sequence is generated by a random graph 
process with a linear embedding? To answer this question, we introduce a parameter Γ, 
which applies to symmetric, measurable functions. For such a function w, Γ(w) = 0
if and only if the function w is diagonally increasing (Proposition 4.2). A random graph 
process with a linear embedding is simply one for which the corresponding function w
satisfies Γ(w) = 0.

The main result in this paper regards the relation between Γ∗ as applied to a con-
vergent graph sequence {Gn}, and Γ applied to the limiting function w. Firstly, every 
graph G can also be regarded as a {0, 1}-valued function wG. It is not hard to prove 
that, for a given graph G, Γ∗(G) and Γ(wG) are asymptotically equal (Theorem 5.1 and 
Corollary 5.2). A harder question concerns the relation between the sequence of Γ∗-values 
of the graphs, {Γ∗(Gn)}, and the Γ-value of the limiting function, Γ(w). This question is 
addressed in Section 6. To obtain any continuity type results, we need to address the fact 
that functions w representing the limit of a converging graph sequence are not unique. 
Moreover, Γ can attain different values for different functions representing the same limit 
object. Thus, we introduce Γ̃ as the infimum of Γ(w), where the infimum is taken over 
equivalence classes of functions that all have box distance 0 to each other. Note that 
every equivalence class consists of functions that all represent the same limit object.

Our main result (Theorem 6.4) shows that Γ̃ is continuous. It follows that, for a graph 
sequence {Gn} converging to a function w, the sequence {Γ∗(Gn)} converges to Γ̃(w), 
the infimum of Γ(w∗) over all functions w∗ which represent the limit of the converging 
sequence {Gn}. Thus, there exists a function w∗ arbitrarily close to w under the box 
distance, so that limn→∞ Γ∗(Gn) is arbitrarily close to Γ(w∗).

Our findings justify the conclusion that, for large graphs, Γ∗(G) does give an indication 
of compatibility of G with a random graph model with linear embedding. In particular 
for a converging graph sequence {Gn}, we have Γ∗(Gn) → 0 as n → ∞ if and only if
{Gn} converges to a function w which has Γ-value arbitrarily small (Corollary 6.5).

The approach we take in this paper was inspired by a paper by Bollobás, Janson 
and Riordan on monotone graph limits (see [3]). In that paper, a graph parameter Ω is 
introduced, which assumes value zero precisely for threshold graphs. It is then shown that 
a converging sequence of graphs for which Ω tends to zero has a limit that is a monotone
function. Thus, monotone graph limits can be seen as generalizations of threshold graphs.

The flavour of the results in this paper is similar to those on monotone graph limits. 
Namely, we show that diagonally increasing graph limits can be seen as generalizations 
of unit interval graphs. However, monotone functions have “nice” properties that do not 
carry over to diagonally increasing functions. So there are significant differences where the 
proofs are concerned. Specifically, the equivalence class of functions obtained by applying 
measure preserving maps to a given function w contains at most one monotone function. 
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This is not true for diagonally increasing functions, which is why we need to introduce 
the parameter Γ̃, which complicates the statement and proof of the main result. Another 
major difference is that, for monotone functions, L1-distance and box distance are equiv-
alent. This however is not true for diagonally increasing functions. Thus we need to use 
entirely different methods to prove our continuity result than the ones developed in [3].

Diaconis, Holmes and Janson also consider the limits of threshold graphs (see [12]), 
and the limits of interval graphs (see [13]). Note that the one-dimensional geometric 
graphs studied in our paper are a special class of interval graphs; namely unit interval 
or proper interval graphs. However, the authors of [13] focus on different properties and 
generalizations of interval graphs, and their results do not apply to the problems we 
consider here.

Finally, we say a few words about the motivation behind this paper. Our results show 
that a graph parameter, Γ∗, applied to graphs of increasing size, can help recognize 
graphs that are “close” to a diagonally increasing function, and thus resemble a random 
graph with a linear embedding. Therefore, we can interpret Γ∗ as a parameter that helps 
recognize the (one-dimensional) spatial embedding underlying the graph.

The question of recognizing graphs that have a spatial embedding is motivated by the 
study of real-life complex networks. If one assumes that such networks are the manifes-
tation of an underlying reality, then a useful way to model these networks is to take a 
latent space approach. In this approach, the formation of the graph is informed by the 
hidden spatial reality. The graph formation is modelled as a stochastic process, where 
the probability of a link occurring between two vertices decreases as their metric distance 
increases.

The spatial reality can be used to represent attributes of the vertices which are in-
accessible or unknown, but which are assumed to inform link formation. For example, 
in a social network, vertices may be considered as members of a social space, where the 
coordinates represent the interests and background of the users. Given only the graph, 
such a spatial model allows us to mine the underlying spatial reality. This approach 
was taken by Hoff et al. in [17]. In most cases, spatial models are formed on spaces of 
dimension at least two, but a one-dimensional (linear) spatial model, the niche model, 
is proposed in [24] to model food webs. Our result can be interpreted as a step towards 
the recognition of graphs that can be well-modelled by a linear spatial model.

This paper is organized as follows. In Section 2, we briefly review the results from the 
theory of graph limits. In Section 3, we give precise definitions for the concepts of spatial 
embedding and linear embedding for a random graph model, introduce the graph param-
eter Γ∗, and show that it characterizes one-dimensional geometric graphs. In Section 4, 
we introduce a continuous analogue of Γ∗, called Γ, which applies to symmetric mea-
surable functions. In Section 5 we show that, for any graph G, Γ∗(G) is asymptotically 
equal to the value of Γ applied to the {0, 1}-valued function representing G. In Section 6
we introduce the generalized parameter Γ̃. Our main result is Theorem 6.4 which shows 
that Γ̃ is continuous. In Corollary 6.5, we interpret this continuity result for converging 
graph sequences.
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2. Preliminaries: graph limits

In this section we summarize the basic definitions and results from the theory of 
graph limits, insofar as they are relevant to this paper. For more background, the reader 
is referred to the papers referenced in the introduction. A thorough study of the subject 
can be found in [19]. In this section, we follow the terminology of [20].

Let F and G be two simple graphs, i.e. graphs without loops or multiple edges. Let 
V (F ) and V (G) be vertex sets of F and G respectively. A map V (F ) → V (G) is called 
a homomorphism from F to G if it maps adjacent vertices in F to adjacent vertices 
in G. Let hom(F, G) be the number of homomorphisms of F into G. The homomorphism 
density of F into G is defined as

t(F,G) = hom(F,G)
|V (G)||V (F )| .

The homomorphism density can be interpreted as the probability that a random mapping 
V (F ) → V (G) is a homomorphism.

Let {Gn} be a sequence of simple graphs such that |V (Gn)| → ∞. We can define a 
notion of convergence based on homomorphism densities.

Definition 2.1. We say that the sequence {Gn} converges if for every simple graph F , 
the sequence {t(F, Gn)} converges.

This definition of convergence is non-trivial only for dense graphs, i.e. for graph se-
quences {Gn} with the property that |E(Gn)| = Ω(|V (Gn)|2). When {Gn} consists of 
sparse graphs, then for all graphs F with at least one edge, t(F, Gn) → 0.

As shown in [6], the notion of convergence of graph sequences is closely connected 
to a certain metric space described as follows: Let W0 denote the set of all measurable 
functions w : [0, 1]2 → [0, 1] which are symmetric, i.e. w(x, y) = w(y, x) for every 
x, y ∈ [0, 1]. The elements of W0 are called graphons. We also denote by W the space of 
all the bounded symmetric measurable functions from [0, 1]2 to R. We can extend the 
definition of homomorphism densities to W as follows. For each function w ∈ W, let

t(F,w) =
∫

[0,1]k

∏
ij∈E(F )

w(xi, xj)dx1 . . . dxk, (1)

where V (F ) = {1, 2, . . . , k}.
A simple graph G, with vertex set V (G) = {1, 2, . . . , n} and adjacency matrix A, can 

be represented by a function wG ∈ W0, which takes values in {0, 1}. Split the interval 
[0, 1] into n equal intervals I1, I2, . . . , In. Now for (x, y) ∈ Ii × Ij , let

wG(x, y) =
{
Ai,j for i �= j

. (2)

1 for i = j
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Our definition of wG differs slightly from that given in [20] since we give the diagonal 
blocks Ii × Ii value one, not zero. The advantage of this choice becomes apparent when 
we discuss “diagonally increasing” functions. It is a convenience and is not essential for 
the results.

Note that a graph can be represented by many different functions wG. Each labelling 
of the vertices of G results in a permutation of the rows and columns of the adjacency 
matrix, and leads to a trivially different function. Since a graph represents an entire 
isomorphism class, we need to introduce an equivalent notion for functions in W. Recall 
that a map φ : [0, 1] → [0, 1] is measure-preserving if for every measurable set X ⊆ [0, 1], 
the pre-image φ−1(X) is measurable with the same measure as X. Let Φ be the set of all 
invertible maps φ : [0, 1] → [0, 1] such that both φ and its inverse are measure-preserving. 
Any φ ∈ Φ acts on a function w ∈ W by transforming it into a function wφ, where 
wφ(x, y) = w(φ(x), φ(y)).

The notion of the convergence of a graph sequence can be better understood if W is 
equipped with a distance derived from the cut-norm, introduced in [15] and defined as 
follows: For all w ∈ W,

‖w‖� = sup
S,T⊂[0,1]

∣∣∣ ∫
S×T

w(x, y)dxdy
∣∣∣, (3)

where S and T are measurable subsets of [0, 1]. We then define the cut-distance of two 
functions w1 and w2 in W by

δ�(w1, w2) = inf
φ∈Φ

‖w1 − wφ
2 ‖� = inf

φ∈Φ
sup

S,T⊂[0,1]

∣∣∣ ∫
S×T

(w1 − wφ
2 )
∣∣∣. (4)

This yields the definition of the cut-distance of two (unlabelled) graphs G and G′, defined 
as

δ�(G,G′) = δ�(wG, wG′). (5)

The choice of term “distance” rather than “metric” is due to the fact that δ�(G, G′) can 
be zero for different graphs G and G′, for example when G′ is the k-fold blow-up of G
(see [6] for more details).

It is shown in Theorem 3.8 of [6] that a graph sequence {Gn} converges whenever 
the corresponding sequence of functions wGn

is δ�-Cauchy. Moreover, to a convergent 
graph sequence {Gn}, one assigns a “limit object” represented by a function w ∈ W0
(not necessarily integer-valued, or corresponding to a graph). More precisely, for every 
convergent sequence {Gn}, there exists w in W0 such that the homomorphism densities 
t(F, Gn) converge to the homomorphism densities t(F, w) for every finite simple graph F . 
If this is the case, we say {Gn} converges to w, and write Gn → w. Such a function w
encodes the common structure of the graphs of the sequence. For more details, see [20]. 
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In this paper, we use the following characterization of convergent graph sequences which 
is given in [6].

Theorem 2.2. (See [6].) A sequence {Gn} converges to a function w in W0 if and only 
if δ�(wGn

, w) → 0. Furthermore, if this is the case, and ‖V (Gn)‖ → ∞, then there is a 
way to label the vertices of the graphs Gn such that ‖wGn

− w‖� → 0.

The limit object of a convergent graph sequence is unique up to measure-preserving 
transformations. Namely w and w′ are limits of a convergent graph sequence {Gn} if and 
only if wφ = w′ ψ almost everywhere for some measure-preserving maps φ, ψ : [0, 1] →
[0, 1] (or equivalently whenever δ�(w, w′) = 0). Note that cut-distance does not define a 
metric on W, as two different functions can have δ�-distance zero. We say two functions 
w′, w ∈ W0 are equivalent, and we write w′ ≈ w, if δ�(w′, w) = 0. Identifying equivalent 
functions w and w′ in W, we consider the cut-distance as a metric on the quotient space 
W/ ≈, denoted by W̃. Similarly, we define the set W̃0 of unlabelled graphons. It was 
shown in [21] that W̃0 is in fact a compact metric space.

Finally, given any function w ∈ W0, and integer n, we define the random graph G(n, w)
to be the probability space of graphs on vertex set {1, 2, . . . , n} obtained through the 
following stochastic process: Each vertex j receives a value xj , drawn independently and 
uniformly at random from [0, 1]. For each pair i < j, independently, vertices i and j are 
then linked with conditional probability w(xi, xj). In [20], it is shown that, asymptotically 
almost surely, for any finite graph F , the homomorphism density t(F, G) for a graph G
produced by G(n, w) is arbitrarily close to t(F, w). Thus, a graph sequence {Gn}, where 
for each n, Gn is produced by G(n, w), almost surely converges to w.

3. Linear embeddings and the parameter Γ∗

In this section, we will define a graph parameter Γ∗ which is zero precisely when the 
graph is a unit interval graph, or one-dimensional geometric graph, and thus has a natural 
linear embedding. In subsequent sections we will then introduce a related parameter Γ
which applies to functions in W0. Using graph limits, we will show a close relationship 
between the two parameters, especially when applied to convergent graph sequences.

First, we need precise definitions of the concepts discussed in the introduction. Follow-
ing the convention, see for example [18], we use both random graph and random graph 
model to denote a discrete probability space where the sample space is the set of all 
graphs on a given vertex set. The notation u ∼ v signifies “u is adjacent to v”. The link 
probability for a given pair of vertices u, v is the probability of the event u ∼ v.

Given a convex region S ⊆ R
k equipped with a metric d derived from one of the Lp

norms, we define a symmetric function f : S × S → [0, 1] to be a spatial link function
if for every a ∈ [0, 1] and for every x ∈ S, the region Ra(x) = {y : f(x, y) ≥ a} is 
a convex set containing x. Thus, if we move a point y away from a given point x along a 
ray starting at x, then f(x, y) decreases as the distance from x increases. This does not 
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mean that f(x, y) is always decreasing as the distance d(x, y) is increasing, however. For 
example, if S = [0, 1], one can define a spatial link function f as follows:

f(x, y) =
{ 1 − |x− y| if x + y ≥ 1,
x + y − |x− y| otherwise.

Then for f(1
2 , 

1
2 + δ) = 1 − δ, and f(1

2 , 
1
2 − δ) = 1 −2δ. In both cases, the link probability 

decreases as δ increases, but the rate is different for values on different sides of 1
2 .

Let k be a positive integer, and S be a convex region in Rk. Let d denote a metric 
derived from one of the Lp norms on S. Fix n ∈ N. For a spatial link function f and 
a probability measure μ on S, we define a spatial random graph SG(S, d, f, μ, n) to be 
a random graph with vertex set {1, 2, . . . , n} formed according to the following process. 
Each vertex j receives a value xj , drawn from S according to the probability distribution 
given by μ. For each pair i < j, independently, vertices i and j are then linked with a 
conditional probability which equals f(xi, xj).

Definition 3.1. A random graph on the vertex set {1, 2, . . . , n} has a spatial embedding
into a given metric space (S, d) if there exist a probability distribution μ and a link 
probability function f so that the random graph corresponds to the spatial random 
graph SG(S, d, f, μ, n) (i.e. gives the same probability distribution on the sample space 
of all graphs with vertex set {1, 2, . . . , n}). A linear embedding is a spatial embedding 
into (R, | · |).

The notion of spatial embedding can be seen as a “fuzzy” version of a random geo-
metric graph. A graph G is called a geometric graph on a bounded region S ⊆ R

k with 
metric d if there exists an embedding π of the vertices of G in S, and a threshold value 
r > 0, such that for every two vertices u and v of G, u is adjacent to v if and only 
if d(π(u), π(v)) ≤ r. Geometric graphs have been studied extensively; see for example 
[10,11,23]. The random geometric graph RG(S, n, r) is the geometric graph which results 
if the embeddings of the vertices are chosen randomly from S. Random geometric graphs 
clearly have a spatial embedding. Link probabilities in this case can only be 1 or 0. Pre-
cisely, the spatial link function f is given by f(x, y) = 1 if d(x, y) ≤ r, and f(x, y) = 0
otherwise. For all a ∈ [0, 1], Ra(x) equals the closed ball around x of radius r, so clearly 
f is a spatial link function. In this paper, we restrict ourselves to geometric graphs on the 
one-dimensional space (R, | ·|) and will refer to these as one-dimensional geometric graphs.

We introduce first a graph parameter Γ∗, which characterizes geometric graphs in 
(R, | · |). One-dimensional geometric graphs are also known as unit interval graphs. The 
correspondence becomes clear if we associate each vertex u of a one-dimensional geomet-
ric graph with the interval [π(u) − 1

2 , π(u) + 1
2 ], where π is the geometric embedding. 

(We can always assume, without loss of generality, that r = 1.) Now vertices u and v are 
adjacent precisely when the associated intervals overlap.

It is well known that unit interval graphs are characterized by the consecutive 1s 
property of the vertex-clique matrix (see [16]). Restating this property, it follows that 
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a graph G is one-dimensional geometric if and only if there exists an ordering ≺ on the 
vertex set of G such that

∀v, z, w ∈ V (G), v ≺ z ≺ w and v ∼ w ⇒ z ∼ v and z ∼ w. (6)

To be self-contained, we present a direct proof below.

Proposition 3.2. A graph G is a one-dimensional geometric graph (unit interval graph) 
if and only if there exists an ordering ≺ on V (G) that satisfies (6).

Proof. The forward direction is clear. To prove the converse, we proceed by induction. 
Suppose that for every graph G with k < n vertices, if V (G) satisfies (6) for an or-
dering ≺, then there exists a linear embedding π of vertices of G, with the additional 
conditions that π is injective, and that the distance between adjacent vertices is strictly 
less than one. Also, we assume that the embedding respects the ordering ≺, so u ≺ v

implies that π(u) < π(v).
Suppose that G is a graph with n vertices, and there exists an ordering ≺ on vertices 

of G which satisfies (6).
Let {v1, . . . , vn} be the vertices of G labelled such that vi ≺ vj whenever i < j. The 

ordering ≺ restricted to V (G) \ {vn} satisfies Condition (6) for G − vn. Thus, by the 
induction hypothesis, G − vn has a linear embedding π of V (G) \ {vn} into the real 
line which satisfies the additional conditions. Suppose that m is the smallest index such 
that vm is adjacent to vn. Let � = max{π(vn−1), π(vm−1) +1}, and consider the interval 
(�, π(vm) + 1). By the induction hypothesis, π(vm−1) < π(vm), and, since vm and vn
are adjacent, so are vm and vn−1, and thus π(vn−1) < π(vm) + 1. This implies that 
� < π(vm) + 1, and thus the interval is non-empty. Moreover, every point in the interval 
has distance greater than one to all embeddings of non-neighbours of vn, and distance 
less than one to all embeddings of neighbours of vn. Therefore, choosing π(vn) in this 
interval results in a linear embedding of V (G) with the desired properties, and we are 
done. �

Using Condition (6), we define a parameter Γ∗ on graphs which identifies the one-
dimensional geometric graphs. Let G be a graph with a linear order ≺ on its vertices. 
For every v ∈ V (G), we define the down-set D(v) and the up-set U(v) of v as follows:

D(v) = {x ∈ V (G) : x ≺ v} and U(v) = {x ∈ V (G) : v ≺ x}.

For every vertex v, the collection of all the neighbours of v is denoted by N(v).

Definition 3.3. Let A ⊆ V (G), and ≺ be a linear order of the vertex set of G. We define

Γ∗(G,≺, A) = 1
|V (G)|3

∑
u≺v

[
|N(v) ∩A ∩D(u)| − |N(u) ∩A ∩D(u)|

]
+

+ 1
|V (G)|3

∑[
|N(u) ∩A ∩ U(v)| − |N(v) ∩A ∩ U(v)|

]
+,
u≺v
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where

[x]+ =
{
x if x > 0
0 otherwise

.

We also define

Γ∗(G,≺) = max
A⊆V (G)

Γ∗(G,≺, A),

and

Γ∗(G) = min
≺

Γ∗(G,≺),

where the minimum is taken over all the linear orderings of V (G).

Proposition 3.4. A graph G is one-dimensional geometric if and only if Γ∗(G) = 0.

Proof. Let G be a one-dimensional geometric graph, and A be an arbitrary subset of 
V (G). Let ≺ be a linear ordering that satisfies Condition (6). Fix an arbitrary pair of 
vertices u ≺ v of G. By Condition (6), if z belongs to N(v) ∩A ∩D(u) then z is adjacent 
to u as well. Thus |N(v) ∩A ∩D(u)| ≤ |N(u) ∩A ∩D(u)|. Similarly, |N(u) ∩A ∩U(v)| ≤
|N(v) ∩A ∩ U(v)|, which implies that Γ∗(G, ≺) = 0. Thus Γ∗(G) = 0.

Conversely, let G be a graph such that Γ∗(G) = 0. Let ≺ be the linear order of V (G)
such that Γ∗(G, ≺) = 0. Let u ≺ v be an arbitrary pair of adjacent vertices of G, and 
take z so that u ≺ z ≺ v. Since Γ∗(G, ≺, A) = 0 for all A ⊆ V (G), choosing A = {v}
gives that 1 = |N(u) ∩{v} ∩U(z)| ≤ |N(z) ∩{v} ∩U(z)|. This implies that z is adjacent 
to v. Similarly, one can show that z is adjacent to u. Thus Condition (6) is satisfied 
for G, and G is a geometric graph. �

Next, we extend Condition (6) to functions in W0. The generalization is obtained 
by considering functions representing graphs, as introduced in the previous section. Let 
G be a one-dimensional geometric graph with a linear ordering ≺ of its vertices that 
satisfies Condition (6). Let wG be the function in W0 that represents G with respect to 
the labelling of V (G) obtained from the linear ordering ≺. It follows that wG(x, z) = 1
and x ≤ y ≤ z imply that wG(x, y) = 1 and wG(y, z) = 1. We generalize this property 
as follows:

Definition 3.5. A function w ∈ W is diagonally increasing if for every x, y, z ∈ [0, 1], we 
have:

(1) x ≤ y ≤ z ⇒ w(x, z) ≤ w(x, y),
(2) y ≤ z ≤ x ⇒ w(x, y) ≤ w(x, z).
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A function w in W is diagonally increasing almost everywhere if there exists a diagonally 
increasing function w′ which is equal to w almost everywhere.

Combining Definitions 3.1 and 3.5, it is clear that a symmetric function w is a spatial 
link function on [0, 1] if and only if w is diagonally increasing. In the following remark, 
we show that a w-random graph has a “reasonable” linear embedding whenever w is 
equivalent to a diagonally increasing function.

Remark. Note that the random graphs G(n, w) and G(n, w′) are the same, i.e. they 
are identical as probability distributions, if w ≈ w′. To see this, let Prw(F ) denote the 
probability assigned to a simple graph F on vertex set {1, 2, . . . , } in G(n, w). Clearly,

Prw(F ) =
∫ ∏

i∼j

w(xi, xj)
∏
k�l

(1 − w(xk, xl)) =
∑
F ′

(−1)|e(F
′)|−|e(F )|t(F ′, w),

where the sum is taken over all graphs F ′ on vertex set {1, 2, . . . , n} which contain F as 
their subgraph. Our claim clearly follows from Corollary 3.10 of [6], which we state below:

For two graphons w and w′ we have δ�(w, w′) = 0 if and only if t(F, w) = t(F, w′) for 
every simple graph F .

Thus, if w is equivalent to a diagonally increasing function, then for any integer n > 1, 
the random graph G(n, w) has a linear embedding.

The converse is also true, under certain conditions. Namely, suppose G(n, w) has a 
linear embedding SG([0, 1], | · |, f, μ, n). Also suppose that μ is a continuous probabil-
ity distribution (i.e. absolutely continuous with respect to Haar measure), that assigns 
nonzero measures to open intervals in [0, 1]. Let F be the cumulative distribution func-
tion of μ on [0, 1]. Then, if x is sampled uniformly from [0, 1], F (x) is sampled according 
to μ. Let w′(x, y) = f(F (x), F (y)), where f is the spatial link function. An argument 
similar to our previous discussion implies that for every simple graph H, the densities 
t(H, w) and t(H, w′) are the same. Thus, δ�(w, w′) = 0. Moreover, w′ is diagonally in-
creasing, since F is increasing and f is a spatial link function. Therefore w is equivalent 
to a diagonally increasing function.

Clearly, a graph is a one-dimensional geometric graph if and only if it has a function 
representative in W0 which is diagonally increasing. (Remember that we assume the 
function representative to have all blocks on the diagonal equal to 1.) Indeed, the func-
tion representative will be the function wG where the vertices are ordered according to 
a linear ordering that satisfies Condition (6). More important is the connection between 
diagonally increasing functions and linear embeddings, which follows in the next section.

4. The parameter Γ on W

Next, we introduce a parameter Γ which generalizes the graph parameter Γ∗ to func-
tions in W. We will see that Γ identifies the diagonally increasing functions.
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Definition 4.1. Let A denote the collection of all measurable subsets of [0, 1]. Let w be a 
function in W, and A ∈ A. We define

Γ(w,A) =
∫ ∫

y<z

[ ∫
x∈A∩[0,y]

(w(x, z) − w(x, y)) dx
]
+dydz

+
∫ ∫

y<z

[ ∫
x∈A∩[z,1]

(w(x, y) − w(x, z)) dx
]
+dydz.

Moreover, Γ(w) is defined as

Γ(w) = sup
A∈A

Γ(w,A),

where the supremum is taken over all the measurable subsets of [0, 1].

It follows directly from the definitions that any function w ∈ W which is almost 
everywhere diagonally increasing has Γ(w) = 0. The converse also holds, as is stated in 
the following proposition.

Proposition 4.2. Let w be a function in W. The function w is diagonally increasing 
almost everywhere if and only if Γ(w) = 0.

Before we give the proof, we introduce some notations which will be used later. Let 
w ∈ W0, and A and B be measurable subsets of [0, 1]. We define w̃(A, B) to be the 
average of w on A ×B, i.e.

w̃(A,B) = 1
μ(A)μ(B)

∫
A×B

w(x, y)dxdy,

where μ is the Lebesgue measure on [0, 1]. Let n be a positive integer. For each 0 ≤ i ≤
n − 1, let Ii = [ in , 

i+1
n ]. We define the symmetric functions wn, w+

n , and w−
n on [0, 1]2 as 

follows.

wn
i,j = w̃(Ii, Ij) for 0 ≤ i, j ≤ n− 1,

wn(x, y) = wn
i,j if (x, y) ∈ Ii × Ij ,

w−
n (x, y) =

⎧⎪⎨⎪⎩
wn

i−1,j+1 if (x, y) ∈ Ii × Ij and 1 ≤ i ≤ j ≤ n− 2
0 if (x, y) ∈ I0 × Ij

0 if (x, y) ∈ Ii × In−1,

w+
n (x, y) =

⎧⎪⎨⎪⎩
wn

i+1,j−1 if (x, y) ∈ Ii × Ij and i ≤ j − 2
1 if (x, y) ∈ Ii × Ii
1 if (x, y) ∈ Ii × Ii+1.
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Let A and B be subsets of [0, 1]. We say A ≤ B if every a in A is smaller than or equal 
to every b in B.

We now give the proof of Proposition 4.2. This proof is inspired by the proof of 
Lemma 4.6 of [3]. However, we include the proof to make the paper self-contained.

Proof of Proposition 4.2. Clearly, if w is diagonally increasing almost everywhere then 
Γ(w) = 0. We now prove the other direction. First, let us assume that w is a function in 
W0 with Γ(w) = 0. Let A, B, and C be measurable subsets of [0, 1] such that C ≤ A ≤ B. 
Since Γ(w) = 0, for almost every y ∈ A and almost every z ∈ B,∫

x∈C

w(x, z)dx ≤
∫

x∈C

w(x, y)dx. (7)

Taking repeated integrals of both sides of Eq. (7) over A and then B and then dividing 
by μ(A), we conclude that∫

C×B

w(x, z)dxdz ≤ μ(B)
μ(A)

∫
C×A

w(x, y)dxdy. (8)

Similarly, one can show that for subsets A, B, and C of [0, 1] with A ≤ B ≤ C, we have∫
A×C

w(x, y)dydx ≤ μ(A)
μ(B)

∫
B×C

w(x, z)dzdx. (9)

Applying the above inequalities to the sets Ii, we have that for every (x, y) ∈ [0, 1]2, 
w−

n (x, y) ≤ wn(x, y) ≤ w+
n (x, y). Now let A and B be measurable subsets of [0, 1]. From 

Eqs. (8) and (9) it follows that, if 0 ≤ i ≤ j − 2 ≤ n − 3, then∫
(A∩Ii)×(B∩Ij)

w(x, y)dxdy ≤ μ(B ∩ Ij)
μ(Ij−1)

∫
(A∩Ii)×Ij−1

w(x, y)dxdy

≤ μ(A ∩ Ii)μ(B ∩ Ij)
μ(Ii+1)μ(Ij−1)

∫
Ii+1×Ij−1

w(x, y)dxdy

= μ(A ∩ Ii)μ(B ∩ Ij)wn
i+1,j−1.

Thus, ∫
(A∩Ii)×(B∩Ij)

w(x, y)dxdy ≤
∫

(A∩Ii)×(B∩Ij)

w+
n (x, y)dxdy. (10)

By definition of w+
n , similar inequalities hold trivially for the cases where i = j − 1 or 

i = j. Finally, using the fact that w is symmetric, we conclude that (10) holds for every i

and j. Therefore,
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∫
A×B

w(x, y)dxdy =
n−1∑
i,j=0

∫
(A∩Ii)×(B∩Ij)

w(x, y)dxdy

≤
n−1∑
i,j=0

∫
(A∩Ii)×(B∩Ij)

w+
n (x, y)dxdy

=
∫

A×B

w+
n (x, y)dxdy.

Moreover, since measurable subsets of [0, 1]2 can be approximated in measure by finite 
unions of disjoint rectangles, we get∫

E

w(x, y)dxdy ≤
∫
E

w+
n (x, y)dxdy,

for every measurable subset E of [0, 1]2. Thus, w ≤ w+
n (and similarly w−

n ≤ w) almost 
everywhere in [0, 1]2. Therefore,

‖w − wn‖1 ≤ ‖w+
n − w−

n ‖1 =
∫

[0,1]2

(w+
n − w−

n )(x, y)dxdy.

By the definitions of w+
n and w−

n , we have 
∫
Ii×Ij

w−
n (x, y)dxdy =

∫
Ii−2×Ij+2

w+
n (x, y)dxdy

for every pair i, j satisfying 2 ≤ i ≤ j − 1 ≤ n − 4. Moreover, w+
n , w

−
n ∈ W0. Thus,

‖w − wn‖1 ≤ 8
n
.

Using the Borel–Cantelli lemma, we conclude that the sequence {w2n}n∈N converges to w

almost everywhere in [0, 1]2, i.e. ψ := lim supn∈N w2n = w almost everywhere. Finally, by 
Eqs. (8) and (9), each wn is a diagonally increasing function. Therefore, ψ is diagonally 
increasing as well. This proves the converse for the case where w ∈ W0.

Now let w be an element of W such that Γ(w) = 0. Define the new symmetric 
function w′ to be w′ = w−a

b−a , where a (respectively b) is a lower bound (respectively 
upper bound) for w. Then w′ ∈ W0 and Γ(w′) = 0. Therefore, by the previous part 
of the proof, we have that w′ is diagonally increasing almost everywhere. Hence, w is 
diagonally increasing almost everywhere as well. �
5. Parameters Γ∗ and Γ asymptotically agree on graphs

A graph G can be represented as a function wG ∈ W0, but it is not necessarily true 
that Γ∗(G) = Γ(wG), even when the representation wG is obtained by using the ordering 
of the vertices that achieves Γ∗(G). This is due to the fact that a set A which determines 
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the value of Γ(w) does not have to be consistent with the partition of [0, 1] into n
equal-sized parts on which wG is defined. However, we show that Γ∗(G) and Γ(wG), 
computed using the same ordering of the vertices, are asymptotically equal. This result 
follows as a corollary from the following theorem.

Theorem 5.1. Let n ∈ N. Let w ∈ W0 be a function which is measurable with respect 
to the product algebra A∗

n × A∗
n, where the algebra A∗

n is generated by the intervals 
{Ii : 0 ≤ i ≤ n − 1}. Then

Γ(w) = sup
A∈A

Γ(w,A) = max
A∈A∗

n

Γ(w,A) + O( 1
n

).

Proof. Let n ∈ N and w ∈ W0 be as above. Note that w is constant on the rectangles 
Ii × Ij , since it is measurable with respect to the product algebra A∗

n × A∗
n. For each 

i, j ∈ {0, . . . , n − 1}, let w(x, y) = aij whenever (x, y) ∈ Ii × Ij . Fix A ∈ A, and 
let βk = μ(A ∩ Ik) for every 0 ≤ k ≤ n − 1. The expression for Γ(w, A) as given in 
Definition 4.1 can now be simplified.

Consider y < z so that y ∈ Ii and z ∈ Ij . If i = j, then for all x, w(x, z) = w(x, y), so [ ∫
x∈A∩[0,y] (w(x, z) − w(x, y)) dx

]
+ = 0. If 0 ≤ i < j ≤ n − 1, then

[ ∫
x∈A∩[0,y]

(w(x, z) − w(x, y)) dx
]
+

=
[ i−1∑
k=0

∫
A∩Ik

(akj − aki)dx +
∫

A∩Ii∩[0,y]

(aij − aii)dx
]
+

=
[ i−1∑
k=0

μ(A ∩ Ik)(akj − aki) + μ(A ∩ Ii ∩ [0, y])(aij − aii)
]
+

≤
([ i−1∑

k=0

βk(akj − aki)
]
+ + 2

n

)
.

In the last step, we use the inequality [x + y]+ ≤ [x]+ + [y]+, and the fact that w is 
bounded by 1, so |μ(A ∩ Ii ∩ [0, y])(aij − aii)| is at most 2

n .
Similarly, we have that[ ∫

x∈A∩[z,1]

(w(x, y) − w(x, z)) dx
]
+

=
[ n−1∑
k=j+1

μ(A ∩ Ik)(aki − akj) + μ(A ∩ Ij ∩ [z, 1])(aji − ajj)
]
+

≤

⎛⎝[ n−1∑
βk(aki − akj)

]
+ + 2

n

⎞⎠ .

k=j+1
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Using this, we can bound Γ(w, A):

Γ(w,A) ≤
∑

0≤i<j≤n−1

∫
y∈Ii

∫
z∈Ij

([ i−1∑
k=0

βk(akj − aki)
]
+ + 2

n

)
dydz

+
∑

0≤i<j≤n−1

∫
y∈Ii

∫
z∈Ij

⎛⎝[ n−1∑
k=j+1

βk(aki − akj)
]
+ + 2

n

⎞⎠ dydz

=
∑

0≤i<j≤n−1

1
n2

[ i−1∑
k=0

βk(akj − aki)
]
+ + n− 1

n2

+
∑

0≤i<j≤n−1

1
n2

[ n−1∑
k=j+1

βk(aki − akj)
]
+ + n− 1

n2 .

Now define

gw(A) = gw(β0, . . . , βn−1)

=
∑

0≤i<j≤n−1

1
n2

⎛⎝[ i−1∑
k=0

βk(akj − aki)
]
+ +

[ n−1∑
k=j+1

βk(aki − akj)
]
+

⎞⎠ .

Thus,

Γ(w,A) ≤ gw(A) + 2(n− 1)
n2 ≤ gw(A) + 2

n
. (11)

Similarly, one can use the inequality [x + y]+ ≥ [x]+ − |y| to show that

Γ(w,A) ≥ gw(A) − 2
n
. (12)

Since x �→ [x]+ is a convex function, gw is the sum of convex functions, and therefore 
is itself also convex. Moreover, since βk ∈ [0, 1n ], the function gw achieves its maximum 
when each of the coefficients βk is either 0 or 1

n . Since βk = μ(A ∩ Ik), this implies that 
the maximum is achieved when, for each k, either A contains Ik, or is disjoint from Ik. 
Hence, supA∈A gw(A) = maxA∈A∗

n
gw(A).

Let A′ ∈ A∗
n be such that maxA∈A∗

n
gw(A) = gw(A′). Then, by Eqs. (11) and (12) we 

have

sup
A∈A

Γ(w,A) ≤ sup
A∈A

gw(A) + 2
n

= max
A∈A∗

n

gw(A) + 2
n

= gw(A′) + 2
n
≤ Γ(w,A′) + 4

n

≤ max Γ(w,A) + 4
. (13)
A∈A∗ n
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On the other hand, we clearly have

max
A∈A∗

n

Γ(w,A) ≤ sup
A∈A

Γ(w,A), (14)

completing the proof. �
Corollary 5.2. Let G be a graph with n vertices, and wG be the function in W0 that 
represents G with respect to a linear ordering ≺ of the vertices of G. Then

Γ∗(G,≺) = Γ(wG) + O( 1
n

).

Proof. Let A ∈ A∗
n, and define Ã = {0 ≤ i ≤ n − 1 : Ii ⊆ A}. From the proof of 

Theorem 5.1, it is easy to observe that Γ∗(G, ≺, Ã) = gwG
(A), and gwG

(A) − 2
n ≤

Γ(wG, A) ≤ gwG
(A) + 2

n . Thus,

max
A∈A∗

n

Γ∗(G,≺, Ã) − 2
n
≤ max

A∈A∗
n

Γ(wG, A) ≤ max
A∈A∗

n

Γ∗(G,≺, Ã) + 2
n
.

Using Theorem 5.1, we conclude that |Γ∗(G, ≺) − Γ(wG)| ≤ 6
n , and we are done. �

6. Continuity of the parameter Γ̃

Our main result, presented in this section, concerns the behaviour of the parameter Γ∗

if applied to a converging graph sequence {Gn}. Using the theory developed in the 
previous sections, we will show that the sequence {Γ∗(Gn)} converges. Precisely, suppose 
{Gn} converges to a limit w ∈ W0. Then there exists a function w∗ arbitrarily close to w

under the box distance, so that limn→∞ Γ∗(Gn) is arbitrarily close to Γ(w∗).
The above follows from the continuity of a related parameter, Γ̃, which is defined 

on W0 as the infimum of Γ(w) over a set of functions that have box distance zero to 
each other. The precise definition is given below in Definition 6.3. We first present the 
following lemmas.

Lemma 6.1. Let w : [0, 1]2 → [−2, 2] be a measurable function. Then ‖wχ‖� ≤ 2
√

‖w‖�, 
where

χ(x, y) =
{ 1 x ≤ y

0 otherwise
.

Proof. Let Ω = {(x, y) : 0 ≤ x ≤ y ≤ 1} denote the subset of points above the diagonal 
in [0, 1]2. Define k = � 1√

‖w‖�

�, which is a positive integer. Now, we can decompose Ω
into k − 1 rectangles and k triangles as shown in Fig. 1. Precisely, the i-th rectangle 
has width 1

k and ranges from y = i
k to y = 1, and each triangle has base and height 

equal to 1 . By the definition of cut-norm, the integral of w over each of the rectangles is 
k
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Fig. 1. The decomposition of the set of points above the diagonal as used in the proof of Lemma 6.1.

at most ‖w‖�, in absolute value. Also, each of the triangles has measure 1
2k2 , and there 

are k triangles in total. Since |w| is bounded by 2, the integral of w over the triangles is 
at most 1

2k2 (2)(k) = 1
k , in absolute value. Therefore, we have∣∣∣∣∣∣

1∫
0

1∫
0

wχ(x, y)dxdy

∣∣∣∣∣∣ ≤ 1
k

+ (k − 1)‖w‖�

≤
√
‖w‖� + ( 1√

‖w‖�
)‖w‖� = 2

√
‖w‖�. (15)

For arbitrary subsets A and B of [0, 1], let χA×B denote the characteristic func-
tion of the subset A × B of [0, 1]2. Applying (15) to wχA×B instead of w, we get 
| 
∫ 1
0
∫ 1
0 wχA×Bχ(x, y)dxdy| ≤ 2

√
‖wχA×B‖� ≤ 2

√
‖w‖�, which proves that ‖wχ‖� ≤

2
√
‖w‖�. �

Lemma 6.2. Let w1 and w2 be elements of W0. Then |Γ(w1) − Γ(w2)| ≤ 2‖w1 − w2‖� +
4
√
‖w1 − w2‖�.

Proof. Let

Γ1(w,A) =
∫ ∫

y<z

⎡⎢⎣ ∫
x∈A∩[0,y]

(w(x, z) − w(x, y)) dx

⎤⎥⎦
+

dydz,

Γ2(w,A) =
∫ ∫

y<z

⎡⎢⎣ ∫
x∈A∩[z,1]

(w(x, y) − w(x, z)) dx

⎤⎥⎦
+

dydz,

so Γ(w, A) = Γ1(w, A) +Γ2(w, A). Fix a measurable set A ∈ A. Using again the inequality 
[x + y]+ ≤ [x]+ + [y]+, we obtain that
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Γ1(w1, A) =
∫ ∫

y<z

⎡⎢⎣ ∫
x∈A∩[0,y]

(w1(x, z) − w1(x, y)) dx

⎤⎥⎦
+

dydz

≤
∫ ∫

y<z

⎡⎢⎣ ∫
x∈A∩[0,y]

(w1(x, z) − w2(x, z)) dx

⎤⎥⎦
+

dydz

+
∫ ∫

y<z

⎡⎢⎣ ∫
x∈A∩[0,y]

(w2(x, z) − w2(x, y)) dx

⎤⎥⎦
+

dydz

+
∫ ∫

y<z

⎡⎢⎣ ∫
x∈A∩[0,y]

(w2(x, y) − w1(x, y)) dx

⎤⎥⎦
+

dydz.

Recall that a function on [0, 1] attains a value at least as large as the average of the 
function at some point. Therefore there exists y0, z0 ∈ [0, 1] such that

Γ1(w1, A) ≤
∫

y0<z

⎡⎢⎣ ∫
x∈A∩[0,y0]

(w1(x, z) − w2(x, z)) dx

⎤⎥⎦
+

dz

+ Γ1(w2, A)

+
∫

y<z0

⎡⎢⎣ ∫
x∈A∩[0,y]

(w2(x, y) − w1(x, y)) dx

⎤⎥⎦
+

dy

=
∫

z∈T1

∫
x∈A∩[0,y0]

(w1(x, z) − w2(x, z)) dxdz

+ Γ1(w2, A)

+
∫

y∈T2

∫
x∈A∩[0,y]

(w2(x, y) − w1(x, y)) dxdy,

where T1 and T2 are the appropriate sets of points which make the associated expressions 
positive. From the definition of the cut-norm, it then follows that

Γ1(w1, A) − Γ1(w2, A) ≤ ‖w1 − w2‖� + ‖(w1 − w2)χ‖�.

Similarly, by switching w1 and w2, we get Γ1(w2, A) −Γ1(w1, A) ≤ ‖w1 −w2‖� + ‖(w1 −
w2)χ‖�, which implies that

|Γ1(w1, A) − Γ1(w2, A)| ≤ ‖w1 − w2‖� + ‖(w1 − w2)χ‖�
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holds for every subset A. Moreover, one can prove the analogues result for Γ2. Thus,

|Γ(w1, A) − Γ(w2, A)| ≤ |Γ1(w1, A) − Γ1(w2, A)| + |Γ2(w1, A) − Γ2(w2, A)|

≤ 2‖w1 − w2‖� + 2‖(w1 − w2)χ‖�.

Since Γ(wi) = supA Γ(wi, A) for i = 1, 2, it follows that

|Γ(w1) − Γ(w2)| ≤ 2‖w1 − w2‖� + 2‖(w1 − w2)χ‖�.

This fact, together with Lemma 6.1, finishes the proof. �
We are now ready to prove our continuity result. In order to study the limit of the 

sequence {Γ∗(Gn)}, we need to define the following parameter, which is a generalized 
notion of Γ. Recall that two functions u, w ∈ W0 are equivalent (i.e. u ≈ w) precisely 
when δ�(u, w) = 0.

Definition 6.3. Let w be a bounded function in W. We define the new parameter Γ̃ to be

Γ̃(w) := inf
w′≈w

Γ(w′) = inf{Γ(w′) : δ�(w,w′) = 0}.

The lemmas above lead to the following theorem, which establishes the continuity of 
the parameter Γ̃ on the space W0 with the cut-distance δ�.

Theorem 6.4. Let w ∈ W0 be the limit of a δ�-convergent sequence {wn}n∈N of functions 
in W0. Then {Γ̃(wn)}n∈N converges to Γ̃(w) as n → ∞.

Proof. By the definition of Γ̃, for each positive integer m there exists an element um ∈ W0
such that δ�(w, um) = 0 and |Γ(um) − Γ̃(w)| ≤ 1

m . Fix such a sequence of graphons 
{um}∞m=1.

Fix m ∈ N. Then

δ�(wn, um) = δ�(wn, w) → 0,

as n goes to infinity. By the definition of cut-distance, this convergence implies that there 
exist maps ψn ∈ Φ such that

‖wψn
n − um‖� → 0 as n → ∞.

By Lemma 6.2 we have,

Γ(wψn
n ) → Γ(um).
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Thus, for every m ∈ N,

lim sup
n∈N

Γ̃(wn) ≤ lim sup
n∈N

Γ(wψn
n ) = Γ(um) ≤ Γ̃(w) + 1

m
,

which implies that lim supn∈N Γ̃(wn) ≤ Γ̃(w).
To prove the other inequality, let γ := lim infn∈N Γ̃(wn), and recall that, by assump-

tion, δ�(wn, w) → 0 as n → ∞. Fix 0 < ε < 1, and let n ∈ N be chosen such that it 
satisfies

δ�(wn, w) < ε2

182 , and |Γ̃(wn) − γ| < ε

3 .

In addition, let w′
n ∈ W0 be such that δ�(w′

n, wn) = 0 and |Γ(w′
n) − Γ̃(wn)| < ε/3. By 

definition of the δ�-distance, there exists φ ∈ Φ such that ‖w′
n − wφ‖� < ε2

182 and thus, 
by Lemma 6.2, |Γ(w′

n) − Γ(wφ)| ≤ 6
√
‖w′

n − wφ‖� < ε/3. Thus,

|Γ(wφ) − γ| ≤ |Γ(wφ) − Γ(w′
n)| + |Γ(w′

n) − Γ̃(wn)| + |Γ̃(wn) − γ|

< ε.

Therefore, for every 0 < ε < 1, Γ̃(w) ≤ Γ(wφ) ≤ lim infn∈N Γ̃(wn) + ε. Combining this 
with the lower bound, we get

lim sup
n∈N

Γ̃(wn) ≤ Γ̃(w) ≤ lim inf
n∈N

Γ̃(wn),

which implies that limn→∞ Γ̃(wn) = Γ̃(w). �
Corollary 6.5. Let w ∈ W0 be the limit of a convergent sequence {Gn}n∈N of graphs with 
|V (Gn)| → ∞. Then {Γ∗(Gn)}n∈N converges to Γ̃(w) as n → ∞.

Proof. For each n ∈ N, let w′
Gn

be the step function representing Gn with respect to an 
ordering ≺′

n that is optimal for Γ∗. Thus, by Corollary 5.2,

lim inf
n∈N

Γ∗(Gn) = lim inf
n∈N

Γ∗(Gn,≺′
n) = lim inf

n∈N

Γ(w′
Gn

) ≥ lim inf
n∈N

Γ̃(w′
Gn

).

Clearly the sequence {w′
Gn

} converges to w with respect to δ�-distance. Thus by Theo-
rem 6.4,

lim inf
n∈N

Γ∗(Gn) ≥ Γ̃(w).

On the other hand, let u ∈ W0 be an element equivalent to w such that Γ̃(w) + ε ≥ Γ(u). 
Since the sequence {Gn} converges to u, there is a labelling of vertices of graphs Gn, 
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corresponding to an ordering ≺n, for which ‖wGn
− w‖� → 0. Thus by Lemma 6.2, we 

have Γ(wGn
) → Γ(w). Therefore by another application of Corollary 5.2 we have

ε + Γ̃(w) ≥ Γ(u) = lim
n→∞

Γ(wGn
) = lim

n→∞
Γ∗(Gn,≺n) ≥ lim sup

n∈N

Γ∗(Gn). �
In particular, if a convergent graph sequence {Gn} with limit w has the property 

that {Γ∗(Gn)} converges to zero, the above theorem states that Γ̃(w) = 0. This implies 
that there exist functions u with Γ(u) arbitrarily small so that the graphs {Gn} have 
similar structure, in terms of homomorphism densities, as the random graph G(n, u). We 
would like to conclude that the graphs {Gn} are consistent with having been formed by 
a random process with a linear embedding. However, it does not follow from our results 
that any function u with Γ(u) small is “close” to a diagonally increasing function. We 
conjecture that, in fact, if Γ(w) is small, then there exists a diagonally function u which 
is close to w in box distance.

Conjecture 6.6. There exists a strictly increasing function f which approaches zero as 
x → 0 such that:

For every w ∈ W0, there exists u ∈ W0 with Γ(u) = 0 and ‖w − u‖� ≤ f(Γ(w)).
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