Fast algorithms for Vizing's theorem on bounded degree graphs (Anton Bernshteyn and Abhishek Dhawan; 2023)

Presented by David Mikšaník (16th November 2023)

1 Definitions

A <u>chain</u> of length k is a sequence of edges $C = (e_0, \ldots, e_{k-1})$ such that e_i and e_{i+1} are adjacent for every $0 \le i < k-1$. For a proper partial edge coloring φ of G, we define a new partial edge coloring $\mathsf{Shift}(\varphi, C)$ (assuming that $\varphi(e_0) = \sqcup$ and $\varphi(e_i) \ne \sqcup$ for 0 < i < k) as follows:

 $\begin{aligned} \mathsf{Shift}_0(\varphi, C) &:= \varphi \\ \mathsf{Shift}_{i+1}(\varphi, C) &:= \mathsf{Shift}(\mathsf{Shift}_i(\varphi), e_i, e_{i+1}) \text{ for } 0 \leq i < k-1 \\ \mathsf{Shift}(\varphi, C) &:= \mathsf{Shift}_{k-1}(\varphi, C), \text{ where} \end{aligned} \qquad \qquad \\ \mathsf{Shift}(\varphi, f, h)(e) &:= \begin{cases} \varphi(h) & e = f \\ \square & e = h \\ \varphi(e) & \text{otherwise.} \end{cases} \end{aligned}$

For colors α and β , let $G[\alpha\beta]$ be the spanning subgraph of G containing only edges colored α or β .

Definition 1. We say that a chain C is φ -happy if it is φ -shiftable and End(C) is a $Shift(\varphi, C)$ -happy edge.

Definition 2. A chain $P = (e_0, \ldots, e_{k-1})$ is a path chain if (e_1, \ldots, e_{k-1}) is a path.

• For $\alpha \in M(\varphi, x)$ and $\beta \in M(\varphi, y)$, $P(xy; \varphi, \alpha\beta) := (xy, e_1, \cdots, e_{k-1})$ is a path chain, where (e_1, \cdots, e_{k-1}) is the maximal path in $G[\alpha\beta]$ starting at y.

Definition 3. A fan is a chain of the form $F = (xy_0, \ldots, xy_{k-1})$, where x is called the pivot of F. If F is φ -shiftable and not φ -happy, then we say that

- F is $(\varphi, \alpha\beta)$ -hopeful if deg(x) < 2 and deg $(y_0) < 2$ in $G[\alpha\beta]$.
- F is $(\varphi, \alpha\beta)$ -successful if F is $(\varphi, \alpha\beta)$ -hopeful and x and y_0 are not connected in $G[\alpha\beta]$ under Shift (φ, F) .

Definition 4. A Vizing chain in a proper partial edge coloring φ is a chain of the form F + P, where F is a $(\varphi, \alpha\beta)$ -hopeful fan for some colors $\alpha, \overline{\beta}$ and P is an initial segment of the path chain $P(\mathsf{End}(F);\mathsf{Shift}(\varphi, F), \alpha\beta)$ with $\mathsf{vStart}(P) = \mathsf{Pivot}(F)$.

Definition 5. A k-step Vizing chain is a chain of the form $C = C_0 + \ldots + C_{k-1}$, where $C_i = F_i + P_i$ is a Vizing chain in Shift $(\varphi, C_0 + \ldots + \overline{C_{i-1}})$ for all $0 \le i < k-1$.

Definition 6. A k-step Vizing chain $C = C_0 + \cdots + C_{k-1}$, where $C_i = F_i + P_i$, is non-intersecting if, for all $0 \le i < j < k$,

$$V(F_i) \cap V(F_j + P_j) = \emptyset$$
 and $E_{int}(P_i) \cap E(E_j + P_j) = \emptyset$.

2 The algorithms

Algorithm F: Coloring edges of a given graph G with $\Delta + 1$ colors

Input : A graph G with maximum degree Δ .

Output: A proper $(\Delta + 1)$ -edge coloring φ of G.

1 $\varphi \leftarrow \emptyset, U \leftarrow E(G)$

2 while $U \neq \emptyset$ do

3 Pick an edge $e \in U$ and a vertex $x \in e$ uniformly at random

4 Compute a φ -happy multi-step Vizing Chain C by running Algorithm M with the input (G, φ, e, x)

5 Augment φ using C

6 $U \leftarrow U \setminus \{e\}$

7 return φ

Theorem 1. Given a graph G with maximum degree Δ , Algorithm F computes a proper $(\Delta + 1)$ -edge coloring (assuming that F terminates with G).

Algorithm M (sketch): Computing φ -happy multi-step Vizing chain

Input : A graph G, a proper partial edge coloring φ of G, an uncolored edge e = xy, and a vertex $x \in e$. **Output:** A fan F with Start(F) = e, Pivot(F) = x and a path P with Start(P) = End(F), vStart(P) = Pivot(F) = x. 1 $(F, P) \leftarrow \mathsf{FirstChain}(\varphi, xy, x)$ **2** $C \leftarrow (xy), \ \psi \leftarrow \varphi, \ k \leftarrow 0$ 3 while true do if length $(P) < 2\ell$ then 4 return C + F + P5 Choose $\ell' \in [\ell, 2\ell - 1]$ uniformly at random, $F_k \leftarrow F$, $P_k \leftarrow P|\ell'$ 6 Let α, β be such that P_k is an $\alpha\beta$ -path where $\psi(\mathsf{End}(P_k)) = \beta$ 7 $\psi \leftarrow \mathsf{Shift}(\psi, F_k + P_k)$ 8 $uv \leftarrow \mathsf{End}(P_k), v \leftarrow \mathsf{vEnd}(P_k), (\hat{F}, \hat{P}) \leftarrow \mathsf{NextChain}(\psi, uv, u, \alpha, \beta)$ 9 if $C + F_k + P_k + \hat{F} + \hat{P}$ is intersecting then 10 Let j be the index such that the first intersection occurs at $F_i + P_i$ 11 Restore to the step where F_i and P_j were constructed 12 $F \leftarrow F_j, \ P \leftarrow P_j | 2\ell$ 13 else if $2 \leq \text{length}(\hat{P}) < 2\ell$ and $\text{vEnd}(\hat{P}) = \text{Pivot}(\hat{F})$ then $\mathbf{14}$ return FAIL 15 16 else $C \leftarrow C + F_k + P_k, \ F \leftarrow \hat{F}, \ P \leftarrow \hat{P}, \ k \leftarrow k + 1$ $\mathbf{17}$ 18 return φ

3 Time complexity

Theorem 2 (Main theorem). Let G be a graph, n := |V(G)|, and $\Delta := \Delta(G) \ge 2$. Algorithm F outputs a proper $(\Delta + 1)$ -edge coloring of G in time $\mathsf{poly}(\Delta)n$ with probability at least $1 - 1/\Delta^n$.

The Main theorem follows (with some additional work) from the following theorem:

Theorem 3. Let e = xy be an uncolored edge. For t > 0 and $\ell \ge 1200\Delta^{16}$, Algorithm M with input (G, φ, xy, x) outputs a φ -happy multi-step Vizing chain of length $O(\ell t)$ in time $O(\Delta \ell t)$ with probability at least $1 - 4m(1200\Delta^{15}\ell)^{t/2}$.

We fix a graph G and a partial $(\Delta + 1)$ -edge coloring of G. The first t iterations of Algorithm M are uniquely determined by the input sequence $(f, z, \ell_1, \ldots, \ell_t)$, where $f \in E(G)$ is an uncolored edge, $z \in f$, and $\ell_i \in [\ell, 2\ell - 1]$ (ℓ_i is the random choice made at step 6 in the *i*-th iteration).

Definition 7. Let $\mathcal{I}^{(t)}$ be the set of all input sequences for which Algorithm M does not terminate within t iterations.

Definition 8. The <u>record</u> of $I \in \mathcal{I}^{(t)}$ is a tuple $D(I) = (d_1, \ldots, d_t)$, where d_i is computed at the *i*-th of Algorithm M with the input sequence I as follows

$$d_i := \begin{cases} 1 & \text{if we reach step 17} \\ j-k & \text{if we reach step 11} \end{cases}$$

The <u>terminus</u> of I is the pair $\tau(I) = (\mathsf{End}(C), \mathsf{vEnd}(C))$.

Definition 9. Let $\mathcal{D}^{(t)}$ be the set of all tuples D such that D = D(I) for some $I \in \mathcal{I}^{(t)}$. Given $D \in \mathcal{D}^{(t)}$ and a pair (uv, u) such that $uv \in E(G)$, we let $\mathcal{I}^{(t)}(D, uv, u)$ be the set of all input sequences $I \in \mathcal{I}^{(t)}$ such that D(I) = D and $\tau(I) = (uv, u)$.

Definition 10. $\mathcal{D}_s^{(t)} := \{ D = (d_1, \dots, d_t) \in \mathcal{D}^t : \sum_{i=1}^t d_i = s \}$

Lemma 1. Let $D \in \mathcal{D}^{(t)}$ and $uv \in E$. Then $|\mathcal{I}^{(t)}(D, uv, u)| \leq \mathsf{wt}(D)$, where $\mathsf{wt}(D)$ is some suitable function.

Lemma 2. Let $D \in \mathcal{D}_s^{(t)}$. Then wt $(D) \leq (75\Delta^{15}\ell)^{t/2}(75\Delta^7\ell)^{-s/2}$.

Lemma 3. $|\mathcal{D}_{s}^{(t)}| \leq 4^{t}$.