Fast algorithms for Vizing's theorem on bounded degree graphs (Anton Bernshteyn and Abhishek Dhawan; 2023)

Presented by David Mikšaník (16th November 2023)

1 Definitions

A chain of length k is a sequence of edges $C=\left(e_{0}, \ldots, e_{k-1}\right)$ such that e_{i} and e_{i+1} are adjacent for every $0 \leq i<k-1$. For a proper partial edge coloring φ of G, we define a new partial edge coloring $\operatorname{Shift}(\varphi, C)$ (assuming that $\varphi\left(e_{0}\right)=\sqcup$ and $\varphi\left(e_{i}\right) \neq \sqcup$ for $0<i<k$) as follows:

$$
\begin{aligned}
\operatorname{Shift}_{0}(\varphi, C) & :=\varphi \\
\operatorname{Shift}_{i+1}(\varphi, C) & \left.:=\operatorname{Shift}^{(} \operatorname{Shift}_{i}(\varphi), e_{i}, e_{i+1}\right) \text { for } 0 \leq i<k-1 \\
\operatorname{Shift}(\varphi, C) & :=\operatorname{Shift}_{k-1}(\varphi, C), \text { where }
\end{aligned} \quad \operatorname{Shift}(\varphi, f, h)(e):= \begin{cases}\varphi(h) & e=f \\
\sqcup & e=h \\
\varphi(e) & \text { otherwise. }\end{cases}
$$

For colors α and β, let $G[\alpha \beta]$ be the spanning subgraph of G containing only edges colored α or β.
Definition 1. We say that a chain C is φ-happy if it is φ-shiftable and $\operatorname{End}(C)$ is a $\operatorname{Shift}(\varphi, C)$-happy edge.
Definition 2. A chain $P=\left(e_{0}, \ldots, e_{k-1}\right)$ is a path chain if $\left(e_{1}, \ldots, e_{k-1}\right)$ is a path.

- For $\alpha \in M(\varphi, x)$ and $\beta \in M(\varphi, y), P(x y ; \varphi, \alpha \beta):=\left(x y, e_{1}, \cdots, e_{k-1}\right)$ is a path chain, where $\left(e_{1}, \cdots, e_{k-1}\right)$ is the maximal path in $G[\alpha \beta]$ starting at y.
Definition 3. A fan is a chain of the form $F=\left(x y_{0}, \ldots, x y_{k-1}\right)$, where x is called the pivot of F. If F is φ-shiftable and not φ-happy, then we say that
- F is $(\varphi, \alpha \beta)$-hopeful if $\operatorname{deg}(x)<2$ and $\operatorname{deg}\left(y_{0}\right)<2$ in $G[\alpha \beta]$.
- F is $(\varphi, \alpha \beta)$-successful if F is $(\varphi, \alpha \beta)$-hopeful and x and y_{0} are not connected in $G[\alpha \beta]$ under $\operatorname{Shift}(\varphi, F)$.

Definition 4. A Vizing chain in a proper partial edge coloring φ is a chain of the form $F+P$, where F is a ($\varphi, \alpha \beta$)-hopeful fan for some colors $\alpha, \bar{\beta}$ and P is an initial segment of the path chain $P(\operatorname{End}(F) ; \operatorname{Shift}(\varphi, F), \alpha \beta)$ with $v \operatorname{Start}(P)=\operatorname{Pivot}(F)$.

Definition 5. A k-step Vizing chain is a chain of the form $C=C_{0}+\ldots+C_{k-1}$, where $C_{i}=F_{i}+P_{i}$ is a Vizing chain in $\operatorname{Shift}\left(\varphi, C_{0}+\ldots+\overline{C_{i-1}}\right)$ for all $0 \leq i<k-1$.

Definition 6. A k-step Vizing chain $C=C_{0}+\cdots+C_{k-1}$, where $C_{i}=F_{i}+P_{i}$, is non-intersecting if, for all $0 \leq i<j<k$,

$$
V\left(F_{i}\right) \cap V\left(F_{j}+P_{j}\right)=\emptyset \text { and } E_{\text {int }}\left(P_{i}\right) \cap E\left(E_{j}+P_{j}\right)=\emptyset .
$$

2 The algorithms

```
Algorithm F: Coloring edges of a given graph \(G\) with \(\Delta+1\) colors
Input : A graph \(G\) with maximum degree \(\Delta\).
Output: A proper \((\Delta+1)\)-edge coloring \(\varphi\) of \(G\).
\(\varphi \leftarrow \emptyset, U \leftarrow E(G)\)
while \(U \neq \emptyset\) do
    Pick an edge \(e \in U\) and a vertex \(x \in e\) uniformly at random
    Compute a \(\varphi\)-happy multi-step Vizing Chain \(C\) by running Algorithm M with the input ( \(G, \varphi, e, x\) )
    Augment \(\varphi\) using \(C\)
    \(U \leftarrow U \backslash\{e\}\)
return \(\varphi\)
```

Theorem 1. Given a graph G with maximum degree Δ, Algorithm F computes a proper $(\Delta+1)$-edge coloring (assuming that F terminates with G).

```
Algorithm M (sketch): Computing \(\varphi\)-happy multi-step Vizing chain
Input : A graph \(G\), a proper partial edge coloring \(\varphi\) of \(G\), an uncolored edge \(e=x y\), and a vertex \(x \in e\).
Output: A fan \(F\) with \(\operatorname{Start}(F)=e, \operatorname{Pivot}(F)=x\) and a path \(P\) with \(\operatorname{Start}(P)=\operatorname{End}(F), \operatorname{vStart}(P)=\operatorname{Pivot}(F)=x\).
\((F, P) \leftarrow \operatorname{FirstChain}(\varphi, x y, x)\)
\(C \leftarrow(x y), \quad \psi \leftarrow \varphi, \quad k \leftarrow 0\)
while true do
    if length \((P)<2 \ell\) then
        return \(C+F+P\)
    Choose \(\ell^{\prime} \in[\ell, 2 \ell-1]\) uniformly at random, \(F_{k} \leftarrow F, P_{k} \leftarrow P \mid \ell^{\prime}\)
    Let \(\alpha, \beta\) be such that \(P_{k}\) is an \(\alpha \beta\)-path where \(\psi\left(\operatorname{End}\left(P_{k}\right)\right)=\beta\)
    \(\psi \leftarrow \operatorname{Shift}\left(\psi, F_{k}+P_{k}\right)\)
    \(u v \leftarrow \operatorname{End}\left(P_{k}\right), v \leftarrow \operatorname{vEnd}\left(P_{k}\right), \quad(\hat{F}, \hat{P}) \leftarrow \operatorname{NextChain}(\psi, u v, u, \alpha, \beta)\)
    if \(C+F_{k}+P_{k}+\hat{F}+\hat{P}\) is intersecting then
        Let \(j\) be the index such that the first intersection occurs at \(F_{j}+P_{j}\)
        Restore to the step where \(F_{j}\) and \(P_{j}\) were constructed
        \(F \leftarrow F_{j}, \quad P \leftarrow P_{j} \mid 2 \ell\)
    else if \(2 \leq\) length \((\hat{P})<2 \ell\) and \(\operatorname{vEnd}(\hat{P})=\operatorname{Pivot}(\hat{F})\) then
            return FAIL
    else
        \(C \leftarrow C+F_{k}+P_{k}, \quad F \leftarrow \hat{F}, \quad P \leftarrow \hat{P}, \quad k \leftarrow k+1\)
return \(\varphi\)
```


3 Time complexity

Theorem 2 (Main theorem). Let G be a graph, $n:=|V(G)|$, and $\Delta:=\Delta(G) \geq 2$. Algorithm F outputs a proper $(\Delta+1)$-edge coloring of G in time poly $(\Delta) n$ with probability at least $1-1 / \Delta^{n}$.
The Main theorem follows (with some additional work) from the following theorem:
Theorem 3. Let $e=x y$ be an uncolored edge. For $t>0$ and $\ell \geq 1200 \Delta^{16}$, Algorithm M with input $(G, \varphi, x y, x)$ outputs a φ-happy multi-step Vizing chain of length $O(\ell t)$ in time $O(\Delta \ell t)$ with probability at least $1-4 m\left(1200 \Delta^{15} \ell\right)^{t / 2}$.

We fix a graph G and a partial $(\Delta+1)$-edge coloring of G. The first t iterations of Algorithm M are uniquely determined by the input sequence $\left(f, z, \ell_{1}, \ldots, \ell_{t}\right)$, where $f \in E(G)$ is an uncolored edge, $z \in f$, and $\ell_{i} \in[\ell, 2 \ell-1]$ (ℓ_{i} is the random choice made at step 6 in the i-th iteration).

Definition 7. Let $\mathcal{I}^{(t)}$ be the set of all input sequences for which Algorithm M does not terminate within t iterations.
Definition 8. The record of $I \in \mathcal{I}^{(t)}$ is a tuple $D(I)=\left(d_{1}, \ldots, d_{t}\right)$, where d_{i} is computed at the i-th of Algorithm M with the input sequence I as follows

$$
d_{i}:= \begin{cases}1 & \text { if we reach step } 17 \\ j-k & \text { if we reach step } 11\end{cases}
$$

The terminus of I is the pair $\tau(I)=(\operatorname{End}(C), \operatorname{vEnd}(C))$.
Definition 9. Let $\mathcal{D}^{(t)}$ be the set of all tuples D such that $D=D(I)$ for some $I \in \mathcal{I}^{(t)}$. Given $D \in \mathcal{D}^{(t)}$ and a pair (uv,u) such that $u v \in E(G)$, we let $\mathcal{I}^{(t)}(D, u v, u)$ be the set of all input sequences $I \in \mathcal{I}^{(t)}$ such that $D(I)=D$ and $\tau(I)=(u v, u)$.
Definition 10. $\mathcal{D}_{s}^{(t)}:=\left\{D=\left(d_{1}, \ldots, d_{t}\right) \in \mathcal{D}^{t}: \sum_{i=1}^{t} d_{i}=s\right\}$
Lemma 1. Let $D \in \mathcal{D}^{(t)}$ and $u v \in E$. Then $\left|\mathcal{I}^{(t)}(D, u v, u)\right| \leq w t(D)$, where $w t(D)$ is some suitable funcion.
Lemma 2. Let $D \in \mathcal{D}_{s}^{(t)}$. Then $\operatorname{wt}(D) \leq\left(75 \Delta^{15} \ell\right)^{t / 2}\left(75 \Delta^{7} \ell\right)^{-s / 2}$.
Lemma 3. $\left|\mathcal{D}_{s}^{(t)}\right| \leq 4^{t}$.

