Oliver Korten: The Hardest Explicit Construction (Informally)

Petr Chmel

Definition 1 (Circuit).

A circuit $C : \{0,1\}^n \to \{0,1\}^m$ is a directed acyclic graph with n (ordered) nodes with indegree 0 and m (ordered) nodes with outdegree 0. All internal nodes (often called *gates*) are labeled by one of \lor, \land, \neg , with the \neg -gates having indegree (fan-in) 1, and \lor, \land having fan-in 2. C computes a function by taking the input, evaluating the input nodes using the input bits, and then proceeding layer-by-layer until all output nodes have their evaluation.

The size of C, denoted by |C|, is the number of gates of C (we do not count the input and the output nodes).

Definition 2 (EMPTY and APEPP).

The problem EMPTY is a search problem defined as follows: given a circuit from *n*-bit strings to *m*-bit strings with m > n, find a string that cannot be the output of the circuit.

The class APEPP is the class of all search problems that are reducible to EMPTY in polynomial time.

Observation 1 (Trivial algorithms for EMPTY).

EMPTY is a search problem that always has a solution, and the solution can be verified in coNP (or with an NP oracle).

We can solve EMPTY by randomly taking an *m*-bit output string and using an oracle to check if it is in the range or not. As at least 1/2 of the strings are outside the range, we will end this in polynomial time with high probability.

Lemma 1 (Encoding of low-weight strings with fixed weight).

For a fixed $k \leq n$, there is a poly-time computable function that has all *n*-bit strings with precisely k ones in its range.

Corollary 1 (General encoding of low-weight strings).

For any $0 < \varepsilon < \frac{1}{2}$, there is a poly-time computable function that has all *n*-bit strings of weight at most $(\frac{1}{2} - \varepsilon)n$ in its range.

Definition 3 (Circuit complexity and HARD TRUTH TABLE).

Given a string x of length N, we say that x is computed by a circuit of size s, if there exists a circuit with $\lceil \log N \rceil$ inputs and s gates such that $C(i) = x_i$ for all $0 \le i < |x|$. (If N is not a power of two, we do not care about C(i) for $i \ge |x|$.)

HARD TRUTH TABLE is the following search problem: given 1^N , output a string x of length N such that x is not computed by any circuit of size at most $\frac{N}{2 \log N}$.

Theorem 1 (Explicit construction problems).

If we can solve EMPTY, we can solve the following problems with polynomial-time overhead:

- constructing truth tables with high circuit complexity,
- constructing (complexity-theoretic) pseudorandom generators,
- constructing randomness extractors,
- constructing strongly explicit Ramsey graphs,
- constructing rigid matrices,
- constructing time-bounded Kolmogorov random strings.

Definition 8 (Circuit base and inverter reduction).

A basis C is a set of boolean functions. If we use the functions in C to label the gates, we call the circuit a C-circuit.

A basis is *sufficiently strong* if it can compute the AND of two bits, the OR of two bits, and the negation of one bit with constantly many gates.

For a basis C, a C-inverter oracle is an oracle, that given a C-circuit C and its output either says "the output is out of range" or returns an input that C evaluates to the output. A C-inverter reduction is a poly-time reduction that uses a C-inverter oracle.

Definition 9 (Generalized EMPTY and APEPP).

We extend EMPTY to $\text{EMPTY}_{f(n)}^{\mathcal{C}}$ by adding two parameters: instead of "usual circuits", we work with \mathcal{C} -circuits, and we now require that the circuit from *n*-bit strings outputs f(n)-bit strings. If the subscript is missing, any circuit with more output bits than input bits is allowed.

The class $APEPP^{\mathcal{C}}$ is the class of all search problems that are reducible to $EMPTY^{\mathcal{C}}$ in polynomial time.

Lemma 2 (Fixed output length is still complete).

For any basis \mathcal{C} , EMPTY $_{2n}^{\mathcal{C}}$ is complete for APEPP^{\mathcal{C}} under \mathcal{C} -inverter reductions.

Definition 10 (ε -HARD^{\mathcal{C}}).

We define the search problem ε -HARD^C as follows: given 1^N , output a string x of length N such that x cannot be computed by C-circuits of size N^{ε} .

Theorem 2 (General reduction from EMPTY to HARD).

For a sufficiently strong basis C and a constant $\varepsilon > 0$ such that there are languages that have a truth table hard enough for all N large enough (and thus ε -HARD^C has a solution for all N large enough), EMPTY^C reduces to ε -HARD^C under C-inverter reductions.

Corollary 2 (The hardest explicit construction).

For any $0 < \varepsilon < 1$, solving one of ε -HARD and EMPTY implies the ability to solve the other with a P^{NP} overhead.

Theorem 3 (Lower bounds vs algorithms).

There exists a language in E^{NP} with circuit complexity $2^{\Omega(n)}$ if and only if there is a P^{NP} algorithm for EMPTY.

Corollary 3 (Worst-case to worst-case hardness amplification for E^{NP}). If there is a language in E^{NP} with circuit complexity $2^{\Omega(n)}$, then there is a language in E^{NP} requiring circuits of size $\frac{2^n}{2n}$.

Corollary 4 (Worst-case to worst-case hardness amplification for EXP^{NP}).

If there is a language in EXP^{NP} with circuit complexity $2^{n^{\Omega(1)}}$, then there is a language in EXP^{NP} requiring circuits of size $\frac{2^n}{2n}$.