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Definition 1 (Circuit).
A circuit C : {0, 1}n → {0, 1}m is a directed acyclic graph with n (ordered) nodes with indegree 0 and m
(ordered) nodes with outdegree 0. All internal nodes (often called gates) are labeled by one of ∨,∧,¬, with
the ¬-gates having indegree (fan-in) 1, and ∨,∧ having fan-in 2. C computes a function by taking the input,
evaluating the input nodes using the input bits, and then proceeding layer-by-layer until all output nodes
have their evaluation.
The size of C, denoted by |C|, is the number of gates of C (we do not count the input and the output nodes).

Definition 2 (Empty and APEPP).
The problem Empty is a search problem defined as follows: given a circuit from n-bit strings to m-bit strings
with m > n, find a string that cannot be the output of the circuit.
The class APEPP is the class of all search problems that are reducible to Empty in polynomial time.

Observation 1 (Trivial algorithms for Empty).
Empty is a search problem that always has a solution, and the solution can be verified in coNP (or with an
NP oracle).
We can solve Empty by randomly taking an m-bit output string and using an oracle to check if it is in the
range or not. As at least 1/2 of the strings are outside the range, we will end this in polynomial time with
high probability.

Lemma 1 (Encoding of low-weight strings with fixed weight).
For a fixed k ≤ n, there is a poly-time computable function that has all n-bit strings with precisely k ones
in its range.

Corollary 1 (General encoding of low-weight strings).
For any 0 < ε < 1

2 , there is a poly-time computable function that has all n-bit strings of weight at most
( 12 − ε)n in its range.

Definition 3 (Circuit complexity and Hard Truth Table).
Given a string x of length N , we say that x is computed by a circuit of size s, if there exists a circuit with
⌈logN⌉ inputs and s gates such that C(i) = xi for all 0 ≤ i < |x|. (If N is not a power of two, we do not
care about C(i) for i ≥ |x|.)
Hard Truth Table is the following search problem: given 1N , output a string x of length N such that x
is not computed by any circuit of size at most N

2 logN .

Theorem 1 (Explicit construction problems).
If we can solve Empty, we can solve the following problems with polynomial-time overhead:

• constructing truth tables with high circuit complexity,

• constructing (complexity-theoretic) pseudorandom generators,

• constructing randomness extractors,

• constructing strongly explicit Ramsey graphs,

• constructing rigid matrices,

• constructing time-bounded Kolmogorov random strings.

Definition 8 (Circuit base and inverter reduction).
A basis C is a set of boolean functions. If we use the functions in C to label the gates, we call the circuit a
C-circuit.
A basis is sufficiently strong if it can compute the AND of two bits, the OR of two bits, and the negation of
one bit with constantly many gates.
For a basis C, a C-inverter oracle is an oracle, that given a C-circuit C and its output either says “the output
is out of range” or returns an input that C evaluates to the output. A C-inverter reduction is a poly-time
reduction that uses a C-inverter oracle.
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Definition 9 (Generalized Empty and APEPP).
We extend Empty to EmptyC

f(n) by adding two parameters: instead of “usual circuits”, we work with

C-circuits, and we now require that the circuit from n-bit strings outputs f(n)-bit strings. If the subscript
is missing, any circuit with more output bits than input bits is allowed.
The class APEPPC is the class of all search problems that are reducible to EmptyC in polynomial time.

Lemma 2 (Fixed output length is still complete).
For any basis C, EmptyC

2n is complete for APEPPC under C-inverter reductions.

Definition 10 (ε-HardC).
We define the search problem ε-HardC as follows: given 1N , output a string x of length N such that x
cannot be computed by C-circuits of size Nε.

Theorem 2 (General reduction from Empty to Hard).
For a sufficiently strong basis C and a constant ε > 0 such that there are languages that have a truth table
hard enough for all N large enough (and thus ε-HardC has a solution for all N large enough), EmptyC

reduces to ε-HardC under C-inverter reductions.

Corollary 2 (The hardest explicit construction).
For any 0 < ε < 1, solving one of ε-Hard and Empty implies the ability to solve the other with a PNP

overhead.

Theorem 3 (Lower bounds vs algorithms).
There exists a language in ENP with circuit complexity 2Ω(n) if and only if there is a PNP algorithm for
Empty.

Corollary 3 (Worst-case to worst-case hardness amplification for ENP).
If there is a language in ENP with circuit complexity 2Ω(n), then there is a language in ENP requiring circuits
of size 2n

2n .

Corollary 4 (Worst-case to worst-case hardness amplification for EXPNP).

If there is a language in EXPNP with circuit complexity 2n
Ω(1)

, then there is a language in EXPNP requiring
circuits of size 2n

2n .
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