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Definition 1 (Circuit).
A circuit C : {0, 1}n → {0, 1}m is a directed acyclic graph with n (ordered) nodes with indegree 0 and m
(ordered) nodes with outdegree 0. All internal nodes (often called gates) are labeled by one of ∨,∧,¬, with
the ¬-gates having indegree (fan-in) 1, and ∨,∧ having fan-in 2. C computes a function by taking the input,
evaluating the input nodes using the input bits, and then proceeding layer-by-layer until all output nodes
have their evaluation.
The size of C, denoted by |C|, is the number of gates of C (we do not count the input and the output nodes).

Definition 2 (Empty and APEPP).
The problem Empty is a search problem defined as follows: given a circuit C : {0, 1}n → {0, 1}m with
m > n, find an m-bit string outside the range of C.
The class APEPP is the class of all search problems that are reducible to Empty in polynomial time.

Observation 1 (Trivial algorithms for Empty).
Empty ∈ TFΣP

2 , and also Empty ∈ FZPPNP.

Lemma 1 (Encoding of low-weight strings with fixed weight).

For any k ≤ n, there exists a map Φ : {0, 1}log (
n
k) → {0, 1}n computable in poly(n) time such that any n-bit

string of weight k is in the range of Φ.

Corollary 1 (General encoding of low-weight strings).
For any 0 < ε < 1

2 , there exists a map Φ : {n− ε2n+ log(n)} → {0, 1} computable in poly(n) time such that
any n-bit string of weight at most ( 12 − ε)n is in range of Φ.

Definition 3 (Circuit complexity and Hard Truth Table).
Given a string x of length N , we say that x is computed by a circuit of size s, if there exists a circuit with
⌈logN⌉ inputs and s gates such that C(i) = xi for all 0 ≤ i < |x|. (If N is not a power of two, we do not
care about C(i) for i ≥ |x|.)
Hard Truth Table is the following search problem: given 1N , output a string x of length N such that x
is not computed by any circuit of size at most N

2 logN .

Definition 4 (Pseudorandom generator as a sequence and PRG).
A sequence R = (x1, . . . , xm) of n-bit strings is a pseudorandom generator if, for all circuits C : {0, 1}n →
{0, 1} of size n, |Prx∼R[C(x) = 1]− Pry∼{0,1}n [C(y) = 1]| ≤ 1/n.
PRG is the following search problem: given 1n, output a pseudorandom generator R = (x1, . . . , xm), where
all xi ∈ {0, 1}n (and m = poly(n)).

Definition 5 ((k, ε)-extractor and (k, ε)-Extractor).
A function f : {0, 1}n × {0, 1}n → {0, 1} is a (k, ε)-extractor, if for any two sets X,Y ⊆ {0, 1}n of size 2k,
|Prx∼X,y∼Y [f(x, y) = 1]− 1

2 | ≤ ε.
For a pair of functions k, ε : N → N, (k, ε)-Extractor is the following search problem: given 1n, output a
circuit C with 2n inputs such that the function fC : {0, 1}n×{0, 1}n → {0, 1} defined by C is a (k(n), ε(n))-
Extractor.

Definition 6 (Rigid matrix and (ε, q)-Rigid).
A matrix M ∈ Fn×n

q is (r, s)-rigid, if for any matrix S ∈ Fn×n
q with at most s non-zero entries, M + S has

rank greater than r.
For any q : N → N such that ∀n, q(n) is a prime power, (ε, q)-Rigid is the following search problem: given
1n, output a matrix M ∈ Fn×n

q(n) that is (εn, εn2)-rigid.

Definition 7 (Kt Kolmogorov complexity and Kt
U -Random).

Let U be any fixed Turing machine, and let t : N → N be a time bound. For a string x, Kt
U (x) is the length

of the smallest string y such that U outputs x on the input y in t(|x|) steps.
For a Turing machine U and a time bound t, Kt

U -Random is the following search problem: given 1n, output
an n-bit string x such that Kt

U (x) ≥ n− 1.
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Theorem 1 (Explicit construction problems).
The following problems all reduce in polynomial time to Empty:

• Hard Truth Table,

• PRG,

• (log(n) + 2 log(1/ε(n)) + 3, ε(n))-Extractor (for suitable efficiently computable ε(n)),

• Explicit construction of strongly explicit Ramsey graphs,

• (ε, q)-Rigid for ε ≤ 1
16 and any suitable efficiently computable q(n),

• Kt
U -Random.

Definition 8 (Circuit base and inverter reduction).
A basis C is a (possibly infinite) set of boolean functions such as {∧,∨,¬}. A C-circuit is a circuit in which
all gates are labeled by one of the functions from C.
A basis is sufficiently strong if it can compute the two-input functions ∧,∨, and the one-input ¬ with
constantly many gates.
For a basis C, a C-inverter oracle is an oracle, that, given a C-circuit C and a string y, determines whether
there exists an x such that C(x) = y and produces such x if it exists. A C-inverter reduction is a polynomial
time reduction that uses a C-inverter oracle.

Definition 9 (Generalized Empty and APEPP).
Given a basis C and a strictly increasing function f : N → N, we define the search problem EmptyC

f(n) as

follows: given a C-circuit C with n input wires and f(n) output wires, find an f(n)-bit string that is not in
the range of C. If the subscript is missing, any circuit with more output bits than input bits is allowed.
The class APEPPC is the class of all search problems that are reducible to EmptyC in polynomial time.

Lemma 2 (Fixed output length is still complete).
For any basis C, EmptyC

2n is complete for APEPPC under C-inverter reductions.

Definition 10 (ε-HardC).
We define the search problem ε-HardC as follows: given 1N , output a string x of length N such that x
cannot be computed by C-circuits of size Nε.

Theorem 2 (General reduction from Empty to Hard).
For a sufficiently strong basis C and a constant ε > 0 such that ε-HardC is total for sufficiently large input
lengths, EmptyC reduces to ε-HardC under C-inverter reductions.

Corollary 2 (The hardest explicit construction).
For any 0 < ε < 1, ε-Hard is complete for APEPP under PNP reductions.

Theorem 3 (Lower bounds vs algorithms).
There exists a language in ENP with circuit complexity 2Ω(n) if and only if there is a PNP algorithm for
Empty.

Corollary 3 (Worst-case to worst-case hardness amplification for ENP).
If there is a language in ENP with circuit complexity 2Ω(n), then there is a language in ENP requiring circuits
of size 2n

2n .

Corollary 4 (Worst-case to worst-case hardness amplification for EXPNP).

If there is a language in EXPNP with circuit complexity 2n
Ω(1)

, then there is a language in EXPNP requiring
circuits of size 2n

2n .
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