Oliver Korten: The Hardest Explicit Construction

Petr Chmel

Definition 1 (Circuit).

A circuit $C : \{0,1\}^n \to \{0,1\}^m$ is a directed acyclic graph with n (ordered) nodes with indegree 0 and m (ordered) nodes with outdegree 0. All internal nodes (often called *gates*) are labeled by one of \lor, \land, \neg , with the \neg -gates having indegree (fan-in) 1, and \lor, \land having fan-in 2. C computes a function by taking the input, evaluating the input nodes using the input bits, and then proceeding layer-by-layer until all output nodes have their evaluation.

The size of C, denoted by |C|, is the number of gates of C (we do not count the input and the output nodes).

Definition 2 (EMPTY and APEPP).

The problem EMPTY is a search problem defined as follows: given a circuit $C : \{0,1\}^n \to \{0,1\}^m$ with m > n, find an *m*-bit string outside the range of C.

The class APEPP is the class of all search problems that are reducible to EMPTY in polynomial time.

Observation 1 (Trivial algorithms for EMPTY). EMPTY \in TF Σ_2^P , and also EMPTY \in FZPP^{NP}.

Lemma 1 (Encoding of low-weight strings with fixed weight).

For any $k \leq n$, there exists a map $\Phi : \{0,1\}^{\log \binom{n}{k}} \to \{0,1\}^n$ computable in poly(n) time such that any n-bit string of weight k is in the range of Φ .

Corollary 1 (General encoding of low-weight strings).

For any $0 < \varepsilon < \frac{1}{2}$, there exists a map $\Phi : \{n - \varepsilon^2 n + \log(n)\} \to \{0, 1\}$ computable in poly(n) time such that any n-bit string of weight at most $(\frac{1}{2} - \varepsilon)n$ is in range of Φ .

Definition 3 (Circuit complexity and HARD TRUTH TABLE).

Given a string x of length N, we say that x is computed by a circuit of size s, if there exists a circuit with $\lceil \log N \rceil$ inputs and s gates such that $C(i) = x_i$ for all $0 \le i < |x|$. (If N is not a power of two, we do not care about C(i) for $i \ge |x|$.)

HARD TRUTH TABLE is the following search problem: given 1^N , output a string x of length N such that x is not computed by any circuit of size at most $\frac{N}{2\log N}$.

Definition 4 (Pseudorandom generator as a sequence and PRG).

A sequence $R = (x_1, \ldots, x_m)$ of *n*-bit strings is a pseudorandom generator if, for all circuits $C : \{0, 1\}^n \to \{0, 1\}$ of size n, $|\Pr_{x \sim R}[C(x) = 1] - \Pr_{y \sim \{0, 1\}^n}[C(y) = 1]| \le 1/n$.

PRG is the following search problem: given 1^n , output a pseudorandom generator $R = (x_1, \ldots, x_m)$, where all $x_i \in \{0, 1\}^n$ (and m = poly(n)).

Definition 5 ((k, ε) -extractor and (k, ε) -EXTRACTOR).

A function $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ is a (k,ε) -extractor, if for any two sets $X, Y \subseteq \{0,1\}^n$ of size 2^k , $|\operatorname{Pr}_{x \sim X, y \sim Y}[f(x,y)=1] - \frac{1}{2}| \leq \varepsilon$.

For a pair of functions $k, \varepsilon : \mathbb{N} \to \mathbb{N}$, (k, ε) -EXTRACTOR is the following search problem: given 1^n , output a circuit C with 2n inputs such that the function $f_C : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}$ defined by C is a $(k(n), \varepsilon(n))$ -EXTRACTOR.

Definition 6 (Rigid matrix and (ε, q) -RIGID).

A matrix $M \in \mathbb{F}_q^{n \times n}$ is (r, s)-rigid, if for any matrix $S \in \mathbb{F}_q^{n \times n}$ with at most s non-zero entries, M + S has rank greater than r.

For any $q: \mathbb{N} \to \mathbb{N}$ such that $\forall n, q(n)$ is a prime power, (ε, q) -RIGID is the following search problem: given 1^n , output a matrix $M \in \mathbb{F}_{q(n)}^{n \times n}$ that is $(\varepsilon n, \varepsilon n^2)$ -rigid.

Definition 7 (K^t Kolmogorov complexity and K_U^t -RANDOM).

Let U be any fixed Turing machine, and let $t : \mathbb{N} \to \mathbb{N}$ be a time bound. For a string x, $K_U^t(x)$ is the length of the smallest string y such that U outputs x on the input y in t(|x|) steps.

For a Turing machine U and a time bound t, K_U^t -RANDOM is the following search problem: given 1^n , output an *n*-bit string x such that $K_U^t(x) \ge n - 1$. Theorem 1 (Explicit construction problems).

The following problems all reduce in polynomial time to EMPTY:

- HARD TRUTH TABLE,
- PRG,
- $(\log(n) + 2\log(1/\varepsilon(n)) + 3, \varepsilon(n))$ -EXTRACTOR (for suitable efficiently computable $\varepsilon(n)$),
- Explicit construction of strongly explicit Ramsey graphs,
- (ε, q) -RIGID for $\varepsilon \leq \frac{1}{16}$ and any suitable efficiently computable q(n),
- K_U^t -Random.

Definition 8 (Circuit base and inverter reduction).

A basis C is a (possibly infinite) set of boolean functions such as $\{\wedge, \lor, \neg\}$. A C-circuit is a circuit in which all gates are labeled by one of the functions from C.

A basis is *sufficiently strong* if it can compute the two-input functions \land, \lor , and the one-input \neg with constantly many gates.

For a basis C, a C-inverter oracle is an oracle, that, given a C-circuit C and a string y, determines whether there exists an x such that C(x) = y and produces such x if it exists. A C-inverter reduction is a polynomial time reduction that uses a C-inverter oracle.

Definition 9 (Generalized EMPTY and APEPP).

Given a basis C and a strictly increasing function $f : \mathbb{N} \to \mathbb{N}$, we define the search problem $\text{EMPTY}_{f(n)}^{\mathcal{C}}$ as follows: given a C-circuit C with n input wires and f(n) output wires, find an f(n)-bit string that is not in the range of C. If the subscript is missing, any circuit with more output bits than input bits is allowed. The class $\text{APEPP}^{\mathcal{C}}$ is the class of all search problems that are reducible to $\text{EMPTY}^{\mathcal{C}}$ in polynomial time.

Lemma 2 (Fixed output length is still complete).

For any basis \mathcal{C} , EMPTY $_{2n}^{\mathcal{C}}$ is complete for APEPP $^{\mathcal{C}}$ under \mathcal{C} -inverter reductions.

Definition 10 (ε -HARD^{\mathcal{C}}).

We define the search problem ε -HARD^C as follows: given 1^N , output a string x of length N such that x cannot be computed by C-circuits of size N^{ε} .

Theorem 2 (General reduction from EMPTY to HARD).

For a sufficiently strong basis C and a constant $\varepsilon > 0$ such that ε -HARD^C is total for sufficiently large input lengths, EMPTY^C reduces to ε -HARD^C under C-inverter reductions.

Corollary 2 (The hardest explicit construction). For any $0 < \varepsilon < 1$, ε -HARD is complete for APEPP under P^{NP} reductions.

Theorem 3 (Lower bounds vs algorithms).

There exists a language in E^{NP} with circuit complexity $2^{\Omega(n)}$ if and only if there is a P^{NP} algorithm for EMPTY.

Corollary 3 (Worst-case to worst-case hardness amplification for E^{NP}). If there is a language in E^{NP} with circuit complexity $2^{\Omega(n)}$, then there is a language in E^{NP} requiring circuits of size $\frac{2^n}{2n}$.

Corollary 4 (Worst-case to worst-case hardness amplification for EXP^{NP}).

If there is a language in EXP^{NP} with circuit complexity $2^{n^{\Omega(1)}}$, then there is a language in EXP^{NP} requiring circuits of size $\frac{2^n}{2n}$.