Oliver Korten: The Hardest Explicit Construction

Petr Chmel

Definition 1 (Circuit).
A circuit $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a directed acyclic graph with n (ordered) nodes with indegree 0 and m (ordered) nodes with outdegree 0 . All internal nodes (often called gates) are labeled by one of \vee, \wedge, \neg, with the \neg-gates having indegree (fan-in) 1 , and \vee, \wedge having fan-in $2 . C$ computes a function by taking the input, evaluating the input nodes using the input bits, and then proceeding layer-by-layer until all output nodes have their evaluation.
The size of C, denoted by $|C|$, is the number of gates of C (we do not count the input and the output nodes).
Definition 2 (Empty and APEPP).
The problem Empty is a search problem defined as follows: given a circuit $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ with $m>n$, find an m-bit string outside the range of C.
The class APEPP is the class of all search problems that are reducible to EmPTY in polynomial time.
Observation 1 (Trivial algorithms for Empty).
Empty $\in \mathrm{TF} \Sigma_{2}^{P}$, and also Empty $\in \mathrm{FZPP}^{\mathrm{NP}}$.
Lemma 1 (Encoding of low-weight strings with fixed weight).
For any $k \leq n$, there exists a map $\Phi:\{0,1\}^{\log \binom{n}{k}} \rightarrow\{0,1\}^{n}$ computable in poly (n) time such that any n-bit string of weight k is in the range of Φ.

Corollary 1 (General encoding of low-weight strings).
For any $0<\varepsilon<\frac{1}{2}$, there exists a map $\Phi:\left\{n-\varepsilon^{2} n+\log (n)\right\} \rightarrow\{0,1\}$ computable in $\operatorname{poly}(n)$ time such that any n-bit string of weight at most $\left(\frac{1}{2}-\varepsilon\right) n$ is in range of Φ.

Definition 3 (Circuit complexity and Hard Truth Table).
Given a string x of length N, we say that x is computed by a circuit of size s, if there exists a circuit with $\lceil\log N\rceil$ inputs and s gates such that $C(i)=x_{i}$ for all $0 \leq i<|x|$. (If N is not a power of two, we do not care about $C(i)$ for $i \geq|x|$.)
Hard Truth Table is the following search problem: given 1^{N}, output a string x of length N such that x is not computed by any circuit of size at most $\frac{N}{2 \log N}$.
Definition 4 (Pseudorandom generator as a sequence and PRG).
A sequence $R=\left(x_{1}, \ldots, x_{m}\right)$ of n-bit strings is a pseudorandom generator if, for all circuits $C:\{0,1\}^{n} \rightarrow$ $\{0,1\}$ of size $n,\left|\operatorname{Pr}_{x \sim R}[C(x)=1]-\operatorname{Pr}_{y \sim\{0,1\}^{n}}[C(y)=1]\right| \leq 1 / n$.
PRG is the following search problem: given 1^{n}, output a pseudorandom generator $R=\left(x_{1}, \ldots, x_{m}\right)$, where all $x_{i} \in\{0,1\}^{n}$ (and $\left.m=\operatorname{poly}(n)\right)$.

Definition $5((k, \varepsilon)$-extractor and (k, ε)-Extractor).
A function $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ is a (k, ε)-extractor, if for any two sets $X, Y \subseteq\{0,1\}^{n}$ of size 2^{k}, $\left|\operatorname{Pr}_{x \sim X, y \sim Y}[f(x, y)=1]-\frac{1}{2}\right| \leq \varepsilon$.
For a pair of functions $k, \varepsilon: \mathbb{N} \rightarrow \mathbb{N},(k, \varepsilon)$-Extractor is the following search problem: given 1^{n}, output a circuit C with $2 n$ inputs such that the function $f_{C}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ defined by C is a $(k(n), \varepsilon(n))$ Extractor.

Definition 6 (Rigid matrix and (ε, q)-Rigid).
A matrix $M \in \mathbb{F}_{q}^{n \times n}$ is (r, s)-rigid, if for any matrix $S \in \mathbb{F}_{q}^{n \times n}$ with at most s non-zero entries, $M+S$ has rank greater than r.
For any $q: \mathbb{N} \rightarrow \mathbb{N}$ such that $\forall n, q(n)$ is a prime power, (ε, q)-RIGID is the following search problem: given 1^{n}, output a matrix $M \in \mathbb{F}_{q(n)}^{n \times n}$ that is $\left(\varepsilon n, \varepsilon n^{2}\right)$-rigid.
Definition 7 (K^{t} Kolmogorov complexity and K_{U}^{t}-RANDOM).
Let U be any fixed Turing machine, and let $t: \mathbb{N} \rightarrow \mathbb{N}$ be a time bound. For a string $x, K_{U}^{t}(x)$ is the length of the smallest string y such that U outputs x on the input y in $t(|x|)$ steps.
For a Turing machine U and a time bound t, K_{U}^{t}-RANDOM is the following search problem: given 1^{n}, output an n-bit string x such that $K_{U}^{t}(x) \geq n-1$.

Theorem 1 (Explicit construction problems).
The following problems all reduce in polynomial time to Empty:

- Hard Truth Table,
- PRG,
- $(\log (n)+2 \log (1 / \varepsilon(n))+3, \varepsilon(n))$-Extractor (for suitable efficiently computable $\varepsilon(n))$,
- Explicit construction of strongly explicit Ramsey graphs,
- (ε, q)-Rigid for $\varepsilon \leq \frac{1}{16}$ and any suitable efficiently computable $q(n)$,
- K_{U}^{t}-Random.

Definition 8 (Circuit base and inverter reduction).
A basis \mathcal{C} is a (possibly infinite) set of boolean functions such as $\{\wedge, \vee, \neg\}$. A \mathcal{C}-circuit is a circuit in which all gates are labeled by one of the functions from \mathcal{C}.
A basis is sufficiently strong if it can compute the two-input functions \wedge, \vee, and the one-input \neg with constantly many gates.
For a basis \mathcal{C}, a \mathcal{C}-inverter oracle is an oracle, that, given a \mathcal{C}-circuit C and a string y, determines whether there exists an x such that $C(x)=y$ and produces such x if it exists. A \mathcal{C}-inverter reduction is a polynomial time reduction that uses a \mathcal{C}-inverter oracle.

Definition 9 (Generalized Empty and APEPP).
Given a basis \mathcal{C} and a strictly increasing function $f: \mathbb{N} \rightarrow \mathbb{N}$, we define the search problem Empty ${ }_{f(n)}^{\mathcal{C}}$ as follows: given a \mathcal{C}-circuit C with n input wires and $f(n)$ output wires, find an $f(n)$-bit string that is not in the range of C. If the subscript is missing, any circuit with more output bits than input bits is allowed.
The class APEPP ${ }^{\mathcal{C}}$ is the class of all search problems that are reducible to EMPTY ${ }^{\mathcal{C}}$ in polynomial time.
Lemma 2 (Fixed output length is still complete).
For any basis \mathcal{C}, EmPTY $_{2 n}^{\mathcal{C}}$ is complete for $\mathrm{APEPP}^{\mathcal{C}}$ under \mathcal{C}-inverter reductions.
Definition $10\left(\varepsilon-\right.$ HARD $\left.^{\mathcal{C}}\right)$.
We define the search problem ε-HARD ${ }^{\mathcal{C}}$ as follows: given 1^{N}, output a string x of length N such that x cannot be computed by \mathcal{C}-circuits of size N^{ε}.

Theorem 2 (General reduction from Empty to Hard).
For a sufficiently strong basis \mathcal{C} and a constant $\varepsilon>0$ such that $\varepsilon-\operatorname{HARD}^{\mathcal{C}}$ is total for sufficiently large input lengths, Empty ${ }^{\mathcal{C}}$ reduces to ε-HARD ${ }^{\mathcal{C}}$ under \mathcal{C}-inverter reductions.

Corollary 2 (The hardest explicit construction).
For any $0<\varepsilon<1, \varepsilon$-HARD is complete for APEPP under $\mathrm{P}^{\text {NP }}$ reductions.
Theorem 3 (Lower bounds vs algorithms).
There exists a language in E^{NP} with circuit complexity $2^{\Omega(n)}$ if and only if there is a $\mathrm{P}^{N P}$ algorithm for Empty.

Corollary 3 (Worst-case to worst-case hardness amplification for E^{NP}).
If there is a language in E^{NP} with circuit complexity $2^{\Omega(n)}$, then there is a language in E^{NP} requiring circuits of size $\frac{2^{n}}{2 n}$.
Corollary 4 (Worst-case to worst-case hardness amplification for EXP ${ }^{\text {NP }}$).
If there is a language in EXP ${ }^{N P}$ with circuit complexity $2^{n^{\Omega(1)}}$, then there is a language in EXP ${ }^{\text {NP }}$ requiring circuits of size $\frac{2^{n}}{2 n}$.

