Rooting algebraic vertices of convergent sequences

Tomáš Hons

Computer Science Institute of Charles University

Joint work with David Hartman and Jaroslav Nešetřil

Doctoral seminar 26. 10. 2023

Convergence of graphs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Convergence of graphs

• Let G₀ be a graph and grow G_{i+1} from G_i by some random process. What the graphs G_n for large n looks like?

Convergence of graphs

- Let G₀ be a graph and grow G_{i+1} from G_i by some random process. What the graphs G_n for large n looks like?
- Let G be an infinite graph, can we approximate its properties by finite graphs?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

First-order logic

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• Variables *x*, *y*, *z*, . . .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Variables *x*, *y*, *z*, . . .
- Quantifiers $\forall x, \exists y$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Variables *x*, *y*, *z*, . . .
- Quantifiers $\forall x, \exists y$
- Logical connectives $\neg, \land, \lor, \ldots$

- Variables x, y, z, ...
- Quantifiers $\forall x, \exists y$
- Logical connectives $\neg, \wedge, \lor, \ldots$
- Relational symbols R, S, T, \ldots

- Variables x, y, z, ...
- Quantifiers $\forall x, \exists y$
- Logical connectives $\neg, \wedge, \lor, \ldots$
- Relational symbols R, S, T, \ldots
- Equality =

- Variables x, y, z, ...
- Quantifiers $\forall x, \exists y$
- Logical connectives $\neg, \wedge, \lor, \ldots$
- Relational symbols R, S, T, \ldots
- Equality =
- Constants *a*, *b*, *c*, ...

- Variables x, y, z, ...
- Quantifiers $\forall x, \exists y$
- Logical connectives $\neg, \wedge, \lor, \ldots$
- Relational symbols R, S, T, \ldots
- Equality =
- Constants *a*, *b*, *c*, . . .
- Function *f*, *g*, *h*, . . .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

We consider formulas in the language of graphs containing a single relational symbol \sim . Denote them by FO.

We consider formulas in the language of graphs containing a single relational symbol \sim . Denote them by FO.

The property "There is a triangle." is expressed by a formula ϕ :

$$\phi: (\exists x)(\exists y)(\exists z)(x \sim y \land x \sim z \land y \sim z).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If a graph G satisfies the property, we write $G \models \phi$.

We consider formulas in the language of graphs containing a single relational symbol \sim . Denote them by FO.

The property "There is a triangle." is expressed by a formula ϕ :

$$\phi: (\exists x)(\exists y)(\exists z)(x \sim y \land x \sim z \land y \sim z).$$

If a graph G satisfies the property, we write $G \models \phi$. The property "Vertex x is not universal." is expressed by

 $\phi(x): (\exists y)(x \not\sim y).$

We consider formulas in the language of graphs containing a single relational symbol \sim . Denote them by FO.

The property "There is a triangle." is expressed by a formula ϕ :

$$\phi: (\exists x)(\exists y)(\exists z)(x \sim y \land x \sim z \land y \sim z).$$

If a graph G satisfies the property, we write $G \models \phi$. The property "Vertex x is not universal." is expressed by

$$\phi(x): (\exists y)(x \not\sim y).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Some properties cannot be expressed. For example

- "The graph is connected."
- "The graph contains a Hamiltonian path."

Structural convergence

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Definition

Let G be a finite graph and ϕ a first-order with $p \ge 0$ free variables, i.e. $\phi \in FO_p$. We define the *Stone pairing* of ϕ and G to be

$$\langle \phi, G \rangle = \frac{|\phi(G)|}{|V(G)|^p},$$

where $\phi(G) = \{ \mathbf{v} \in V(G)^p : G \models \phi(\mathbf{v}) \}$ is the solution set of ϕ in G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

Let G be a finite graph and ϕ a first-order with $p \ge 0$ free variables, i.e. $\phi \in FO_p$. We define the *Stone pairing* of ϕ and G to be

$$\langle \phi, G \rangle = \frac{|\phi(G)|}{|V(G)|^p},$$

where $\phi(G) = \{ \mathbf{v} \in V(G)^p : G \models \phi(\mathbf{v}) \}$ is the solution set of ϕ in G.

Definition

A sequence (G_n) of finite graphs is FO-*convergent* if the sequence $(\langle \phi, G_n \rangle)$ converges for each first-order formula ϕ in the language of graphs.

Limit structure

Definition

Graph *L* on a (nice) probability space $(V(L), \Sigma_L, \nu_L)$ with the property that $\phi(L) \in \Sigma_L^p$ for each $\phi \in FO_p$ is called a *modeling*. For a modeling *L* and a formula $\phi \in FO_p$, we define their Stone pairing as

 $\langle \phi, L \rangle = \nu_L^p(\phi(L)).$

Definition

Graph *L* on a (nice) probability space $(V(L), \Sigma_L, \nu_L)$ with the property that $\phi(L) \in \Sigma_L^p$ for each $\phi \in FO_p$ is called a *modeling*. For a modeling *L* and a formula $\phi \in FO_p$, we define their Stone pairing as

$$\langle \phi, L \rangle = \nu_L^p(\phi(L)).$$

Definition

We say that a modeling *L* is an FO-*limit* of an FO-convergent sequence (G_n) if for each $\phi \in$ FO we have

$$\lim_{n\to\infty}\langle\phi,G_n\rangle=\langle\phi,L\rangle.$$

Examples of convergence

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Examples of convergence

Let $G_n = K_n$. Does the sequence (G_n) converge?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let $G_n = K_n$. Does the sequence (G_n) converge?

Theorem (Trakhtenbrot, 1950)

Given an a sentence ϕ , it is undecidable whether there exists a finite graph G satisfying ϕ .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Definition

The *Ehrenfeucht-Fraïssé game* of length k on graphs G, H, denoted as $EF_k(G; H)$, is a perfect information game of two players, Spoiler and Duplicator.

Definition

The *Ehrenfeucht-Fraïssé game* of length k on graphs G, H, denoted as $EF_k(G; H)$, is a perfect information game of two players, Spoiler and Duplicator.

The game lasts for k rounds, each consists of:

- Spoiler chooses G or H and picks a vertex from it,
- Duplicator picks a vertex from the other graph.

Call a_i and b_i the vertices picked from G and H in the *i*-th round.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

The *Ehrenfeucht-Fraïssé game* of length k on graphs G, H, denoted as $EF_k(G; H)$, is a perfect information game of two players, Spoiler and Duplicator.

The game lasts for k rounds, each consists of:

- Spoiler chooses G or H and picks a vertex from it,
- Duplicator picks a vertex from the other graph.

Call a_i and b_i the vertices picked from G and H in the *i*-th round.

Duplicator wins if $\{a_i \mapsto b_i\}$ is an isomorphism between $G[a_1, \ldots, a_k]$ and $H[b_1, \ldots, b_k]$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Theorem (Fraïssé)

For graphs G, H the following are equivalent:

() G and H are indistinguishable by sentences of q-rank k,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(i) Duplicator wins $EF_k(\mathbf{A}; \mathbf{B})$.

Theorem (Fraïssé)

For graphs G, H the following are equivalent:

() G and H are indistinguishable by sentences of q-rank k,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(i) Duplicator wins $EF_k(\mathbf{A}; \mathbf{B})$.

Example

Examples of convergence, continuation

Examples of convergence, continuation

If G_n = K_n, then (G_n) is FO-convergent. The limit is e.g. a complete graph on [0, 1].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
Examples of convergence, continuation

If G_n = K_n, then (G_n) is FO-convergent. The limit is e.g. a complete graph on [0, 1].

• If $G_n = G(n, p)$ for fixed p, then (G_n) is almost surely FO-convergent. A modeling limit does not exists.

Examples of convergence, continuation

- If G_n = K_n, then (G_n) is FO-convergent. The limit is e.g. a complete graph on [0, 1].
- If $G_n = G(n, p)$ for fixed p, then (G_n) is almost surely FO-convergent. A modeling limit does not exists.

$$G_n = \begin{cases} G(n,p) & n \text{ odd,} \\ G(n,q) & n \text{ even.} \end{cases}$$

for fixed p < q, then G_n is almost surely not FO-convergent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Relation to other notions of graph convergence

Relation to other notions of graph convergence

Example (Homomorphism convergence)

Consider a finite graph F on [|V(F)|]. Let $\phi_F(x_1, \ldots, x_{|V(F)|})$ be the formula $\bigwedge_{ij \in E(F)} x_i \sim x_j$. Then for any finite graph G we have

$$t(F,G) = \langle \phi_F, G \rangle,$$

where t(F, G) is the homomorphism density of F in G.

Relation to other notions of graph convergence

Example (Homomorphism convergence)

Consider a finite graph F on [|V(F)|]. Let $\phi_F(x_1, \ldots, x_{|V(F)|})$ be the formula $\bigwedge_{ij \in E(F)} x_i \sim x_j$. Then for any finite graph G we have

 $t(F,G) = \langle \phi_F, G \rangle,$

where t(F, G) is the homomorphism density of F in G.

Example (Benjamini-Schramm convergence)

Consider a finite graph F rooted at vertex o. Let $\phi_{(F,o)}(x)$ be the formula expressing "the neighborhood of x is isomorphic to (F, o)". Then for any finite graph G we have

$$\rho((F,o),G) = \langle \phi_{(F,o)},G \rangle,$$

where $\rho((F, o), G)$ is the "density of balls (F, o)" in G.

Rooted graphs

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Rooted graphs

Definition

Consider a graph G with a vertex r, then (G, r) denotes the graph G rooted in r.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Rooted graphs

Definition

Consider a graph G with a vertex r, then (G, r) denotes the graph G rooted in r.

Definition

The language of rooted graphs consists of the adjacency relation \sim and the constant 'Root'. The symbol FO⁺ stands for the set of formulas in the language of rooted graphs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Question (Nešetřil, Ossona de Mendez)

Suppose that a modeling L is an FO-limit of a sequence (G_n) . Let r be a vertex of L. Is it true that there are vertices $r_n \in V(G_n)$ such that (L, r) is the FO-limit of the sequence $((G_n, r_n))$?

Question (Nešetřil, Ossona de Mendez)

Suppose that a modeling L is an FO-limit of a sequence (G_n) . Let r be a vertex of L. Is it true that there are vertices $r_n \in V(G_n)$ such that (L, r) is the FO-limit of the sequence $((G_n, r_n))$?

Theorem (Christofides, Kráľ)

1 There is an example of (G_n) , L, and r such that the required sequence (r_n) does not exists.

◆□ → ◆圖 → ◆ 圖 → ◆ 圖 → □ ■

Question (Nešetřil, Ossona de Mendez)

Suppose that a modeling L is an FO-limit of a sequence (G_n) . Let r be a vertex of L. Is it true that there are vertices $r_n \in V(G_n)$ such that (L, r) is the FO-limit of the sequence $((G_n, r_n))$?

Theorem (Christofides, Kráľ)

There is an example of (G_n), L, and r such that the required sequence (r_n) does not exists.

(1) If the root r is selected at random (using ν_L), the sequence (r_n) exists almost surely.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

It is not clear how to decide for a given vertex $r \in V(L)$ whether the desired sequence (r_n) exists or not.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It is not clear how to decide for a given vertex $r \in V(L)$ whether the desired sequence (r_n) exists or not.

Definition

A formula $\phi \in FO_1$ is called *algebraic* in a graph G if the solution set $\phi(G)$ is finite. A vertex $v \in V(G)$ is *algebraic* in G if there is an algebraic formula $\phi \in FO_1$ in G such that $G \models \phi(v)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

It is not clear how to decide for a given vertex $r \in V(L)$ whether the desired sequence (r_n) exists or not.

Definition

A formula $\phi \in FO_1$ is called *algebraic* in a graph G if the solution set $\phi(G)$ is finite. A vertex $v \in V(G)$ is *algebraic* in G if there is an algebraic formula $\phi \in FO_1$ in G such that $G \models \phi(v)$.

Theorem 1

Suppose that a modeling *L* is an FO-limit of a sequence (G_n) and *r* is an algebraic vertex of *L*. Then there exist vertices $r_n \in V(G_n)$ such that (L, r) is an FO-limit of the sequence $((G_n, r_n))$.

It is not clear how to decide for a given vertex $r \in V(L)$ whether the desired sequence (r_n) exists or not.

Definition

A formula $\phi \in FO_1$ is called *algebraic* in a graph G if the solution set $\phi(G)$ is finite. A vertex $v \in V(G)$ is *algebraic* in G if there is an algebraic formula $\phi \in FO_1$ in G such that $G \models \phi(v)$.

Theorem 1

Suppose that a modeling *L* is an FO-limit of a sequence (G_n) and *r* is an algebraic vertex of *L*. Then there exist vertices $r_n \in V(G_n)$ such that (L, r) is an FO-limit of the sequence $((G_n, r_n))$.

This is tight: if r contained in just a *countable* definable set, the sequence (r_n) needs not to exist.

Theorem 1

Suppose that a modeling *L* is an FO-limit of a sequence (G_n) and *r* is an algebraic vertex of *L*. Then there exist vertices $r_n \in V(G_n)$ such that (L, r) is an FO-limit of the sequence $((G_n, r_n))$.

Theorem 2

Theorem 2

Theorem 2

Theorem 2

Theorem 2

・ロト・(四)・(日)・(日)・(日)・(日)

Given $(G_n), L$, and ξ .

Given (G_n) , L, and ξ .

Theorem 2

There exist roots $r_n \in \xi(G_n), r \in \xi(L)$ such that for any $\phi \in FO^+$ we have

$$\lim \langle \phi, (G_n, r_n) \rangle = \langle \phi, (L, r) \rangle.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given (G_n) , L, and ξ .

Theorem 2

There exist roots $r_n \in \xi(G_n), r \in \xi(L)$ such that for any $\phi \in FO^+$ we have

$$\lim \langle \phi, (G_n, r_n) \rangle = \langle \phi, (L, r) \rangle.$$

Lemma 1

For any $\phi \in FO^+$ there exist roots $r_n \in \xi(G_n), r \in \xi(L)$ such that we have

$$\lim \langle \phi, (G_n, r_n) \rangle = \langle \phi, (L, r) \rangle.$$

Lemma 1

For any $\phi \in FO^+$ there exist roots $r_n \in \xi(G_n), r \in \xi(L)$ such that we have

$$\lim \langle \phi, (G_n, r_n) \rangle = \langle \phi, (L, r) \rangle.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lemma 1

For any $\phi \in FO^+$ there exist roots $r_n \in \xi(G_n), r \in \xi(L)$ such that we have

$$\lim \langle \phi, (G_n, r_n) \rangle = \langle \phi, (L, r) \rangle.$$

Lemma 2

For any $\phi_1, \ldots, \phi_k \in FO^+$ there exist roots $r_n \in \xi(G_n), r \in \xi(L)$ such that for each $i \in [k]$ we have

$$\lim \langle \phi_i, (G_n, r_n) \rangle = \langle \phi_i, (L, r) \rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma 1

For any $\phi \in FO^+$ there exist roots $r_n \in \xi(G_n), r \in \xi(L)$ such that we have

$$\lim \langle \phi, (G_n, r_n) \rangle = \langle \phi, (L, r) \rangle.$$

Lemma 2

For any $\phi_1, \ldots, \phi_k \in FO^+$ there exist roots $r_n \in \xi(G_n), r \in \xi(L)$ such that for each $i \in [k]$ we have

$$\lim \langle \phi_i, (G_n, r_n) \rangle = \langle \phi_i, (L, r) \rangle.$$

Then use a compactness argument to prove Theorem 2.

Lemma 1

For any $\phi \in FO^+$ there exist roots $r_n \in \xi(G_n), r \in \xi(L)$ such that we have

$$\lim \langle \phi, (G_n, r_n) \rangle = \langle \phi, (L, r) \rangle.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma 1

For any $\phi \in FO^+$ there exist roots $r_n \in \xi(G_n), r \in \xi(L)$ such that we have

$$\lim \langle \phi, (G_n, r_n) \rangle = \langle \phi, (L, r) \rangle.$$

Idea

Take $r_n \in \xi(G_n)$, resp. $r \in \xi(L)$, that minimize $\langle \phi, (G_n, r_n) \rangle$. If Lemma 1 holds, this has to work.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let

$$P_n(x) = \prod_{u \in \xi(G_n)} (x - \langle \phi, (G_n, u) \rangle)$$

and define P_L for the modeling L analogously.

Let

$$P_n(x) = \prod_{u \in \xi(G_n)} (x - \langle \phi, (G_n, u) \rangle)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and define P_L for the modeling L analogously.

We want to prove that $P_n \rightarrow P_L$ to get convergence of roots.

Let

$$P_n(x) = \prod_{u \in \xi(G_n)} (x - \langle \phi, (G_n, u) \rangle)$$

and define P_L for the modeling L analogously.

We want to prove that $P_n \rightarrow P_L$ to get convergence of roots.

Theorem (Girard-Newton formulas)

The coefficients of the polynomial $p(x) = \prod_{i=1}^{n} (x - a_i)$ can be obtained by basic arithmetic operations from values z_1, \ldots, z_n , where $z_k = \sum_{i=1}^{n} a_i^k$.

Let

$$P_n(x) = \prod_{u \in \xi(G_n)} (x - \langle \phi, (G_n, u) \rangle)$$

and define P_L for the modeling L analogously.

We want to prove that $P_n \rightarrow P_L$ to get convergence of roots.

Theorem (Girard-Newton formulas)

The coefficients of the polynomial $p(x) = \prod_{i=1}^{n} (x - a_i)$ can be obtained by basic arithmetic operations from values z_1, \ldots, z_n , where $z_k = \sum_{i=1}^{n} a_i^k$.

We show that

$$\sum_{u\in\xi(G_n)}\langle\phi,(G_n,u_i)\rangle^k=\langle\psi_k,G\rangle$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

for some formula $\psi_k \in FO$, $k \in [|\xi(G_n)|]$.
Proof of Lemma 1, continuation

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

For a graph G_n , define a probability measure μ_n on $2^{\xi(G_n)}$ as the push-forward of the measure ν_n (on G_n) via $f : V(G_n)^p \to 2^{\xi(G_n)}$ defined as

$$f(\mathbf{v}) = \{ u \in \xi(G_n) : (G_n, u) \models \phi(\mathbf{v}) \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For a graph G_n , define a probability measure μ_n on $2^{\xi(G_n)}$ as the push-forward of the measure ν_n (on G_n) via $f : V(G_n)^p \to 2^{\xi(G_n)}$ defined as

$$f(\mathbf{v}) = \{ u \in \xi(G_n) : (G_n, u) \models \phi(\mathbf{v}) \}.$$

We are interested in values $\sum_{S:u\in S} \mu_n(S)$ for $u \in \xi(G_n)$ as

$$\sum_{S:u\in S}\mu_n(S)=\langle\phi,(G_n,u)\rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For a graph G_n , define a probability measure μ_n on $2^{\xi(G_n)}$ as the push-forward of the measure ν_n (on G_n) via $f : V(G_n)^p \to 2^{\xi(G_n)}$ defined as

$$f(\mathbf{v}) = \{ u \in \xi(G_n) : (G_n, u) \models \phi(\mathbf{v}) \}.$$

We are interested in values $\sum_{S:u\in S} \mu_n(S)$ for $u \in \xi(G_n)$ as

$$\sum_{S:u\in S}\mu_n(S)=\langle\phi,(G_n,u)\rangle.$$

Replace the constant Root in $\phi(\mathbf{x}) \in FO_p^+$ by a new free variable y to obtain $\phi^-(\mathbf{x}, y) \in FO_{p+1}$.

A D N A 目 N A E N A E N A B N A C N

We use formulas $\psi_{k,\ell}(\mathbf{x})$ defined as follows:

$$(\exists y_1,\ldots,y_\ell)\left(\bigwedge_{i=1}^\ell \xi(y_i) \wedge \bigwedge_{1 \leq i < j \leq \ell} y_i \neq y_j \wedge \bigwedge_{i=1}^k \bigwedge_{j=1}^\ell \phi^-(\mathbf{x}_i,y_j)\right)$$

(ロ)、(型)、(E)、(E)、 E) のQ(()

Theorem 1 is tight

Let $G(n_1, n_2, p)$ be a random bipartite graph with distinguished parts A and B of size n_1 and n_2 with edges between parts with probability p.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Theorem 1 is tight

Let $G(n_1, n_2, p)$ be a random bipartite graph with distinguished parts A and B of size n_1 and n_2 with edges between parts with probability p.

Proposition

Fix 0 . The sequence

$$G_n = egin{cases} G(n,n^2,p) & n \ odd, \ G(n,n^2,q) & n \ even. \end{cases}$$

is almost surely FO-convergent and admits a modeling limit L whose smaller part A_L is countable.

Theorem 1 is tight

Let $G(n_1, n_2, p)$ be a random bipartite graph with distinguished parts A and B of size n_1 and n_2 with edges between parts with probability p.

Proposition

Fix 0 . The sequence

$$G_n = \begin{cases} G(n, n^2, p) & n \text{ odd,} \\ G(n, n^2, q) & n \text{ even.} \end{cases}$$

is almost surely FO-convergent and admits a modeling limit L whose smaller part A_L is countable.

There is no sequence of vertices $r_n \in A_n$ such that the sequence (G_n, r_n) even converges. In particular, (L, r) for $r \in A_L$ is not a limit of (G_n, r_n) .

 The graphs G_n eventually satisfy a bipartite analog of k-extension property for each k ∈ N.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- The graphs G_n eventually satisfy a bipartite analog of k-extension property for each k ∈ N.
- If a G_n has (k + p)-extension property, then behavior of p-tuples w.r.t formulas with quantifier rank k is determined by their quantifier-free type.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The graphs G_n eventually satisfy a bipartite analog of k-extension property for each k ∈ N.
- If a G_n has (k + p)-extension property, then behavior of p-tuples w.r.t formulas with quantifier rank k is determined by their quantifier-free type.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Thus, the question FO-convergence reduces to QF-convergence ⇔ homomorphism convergence.

- The graphs G_n eventually satisfy a bipartite analog of k-extension property for each k ∈ N.
- If a G_n has (k + p)-extension property, then behavior of p-tuples w.r.t formulas with quantifier rank k is determined by their quantifier-free type.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Thus, the question FO-convergence reduces to QF-convergence ⇔ homomorphism convergence.
- The sequence clearly converges.

Construction of a limit

 There is a construction of Goldstern, Grossberg, and Kojman¹ of a homogeneous bipartite graph with parts A = ω and B ⊆ {infinite sequences of natural numbers} where |B| = 2^ω.

¹Goldstern, M., Grossberg, R., & Kojman, M. (1996). Infinite homogeneous bipartite graphs with unequal sides. Discrete Mathematics, 149(1-3), 69-82.

Construction of a limit

- There is a construction of Goldstern, Grossberg, and Kojman¹ of a homogeneous bipartite graph with parts A = ω and B ⊆ {infinite sequences of natural numbers} where |B| = 2^ω.
- It remains to show that this graph can be regarded as a modeling.
 - It is defined on a standard Borel space.
 - All the definable sets are Borel.

¹Goldstern, M., Grossberg, R., & Kojman, M. (1996). Infinite homogeneous bipartite graphs with unequal sides. Discrete Mathematics, 149(1-3), 69-82.

Construction of a limit

- There is a construction of Goldstern, Grossberg, and Kojman¹ of a homogeneous bipartite graph with parts A = ω and B ⊆ {infinite sequences of natural numbers} where |B| = 2^ω.
- It remains to show that this graph can be regarded as a modeling.
 - It is defined on a standard Borel space.
 - All the definable sets are Borel.
- Which is not difficult.

¹Goldstern, M., Grossberg, R., & Kojman, M. (1996). Infinite homogeneous bipartite graphs with unequal sides. Discrete Mathematics, 149(1-3), 69-82.

Concluding remarks

 The set of all algebraic vertices is of measure 0 while the result of Christofides and Král' states that a random r ∈ V(L) works with probability 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Concluding remarks

 The set of all algebraic vertices is of measure 0 while the result of Christofides and Král' states that a random r ∈ V(L) works with probability 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Can we decide about the other vertices?

Concluding remarks

 The set of all algebraic vertices is of measure 0 while the result of Christofides and Král' states that a random r ∈ V(L) works with probability 1.

- Can we decide about the other vertices?
- Can we decide about set of vertices of measure > 0?

Thank you.

This work is part of a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 810115 – Dynasnet).

Questions?