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Convergence of graphs

® let Gy be a graph and grow G;;1 from G; by some random
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Convergence of graphs

® let Gy be a graph and grow G;;1 from G; by some random
process. What the graphs G, for large n looks like?

® |Let G be an infinite graph, can we approximate its properties
by finite graphs?
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First-order logic

First-order formula may contain the following:
® Variables x,y, z, ...
® Quantifiers Vx, dy

Logical connectives =, A, V, ...
Relational symbols R, S, T, ...
Equality =

Constants a, b, c, ...

Function f, g, h,...
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Logic of graphs

We consider formulas in the language of graphs containing a single
relational symbol ~. Denote them by FO.

The property “There is a triangle.” is expressed by a formula ¢:
¢:(I)Ey)EFz)(x ~yAx~zAy~2z).

If a graph G satisfies the property, we write G = ¢.

The property “Vertex x is not universal." is expressed by
B(x) : (Fy)(x £ y).

Some properties cannot be expressed. For example
® “The graph is connected.”

® “The graph contains a Hamiltonian path.”
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Structural convergence

Definition
Let G be a finite graph and ¢ a first-order with p > 0 free
variables, i.e. ¢ € FO,. We define the Stone pairing of ¢ and G to

be
_ 1#(6)|
<¢’ G> — |V(G)|pa

where ¢(G) = {v € V(G)P: G = ¢(v)} is the solution set of ¢ in
G. )




Structural convergence

Definition
Let G be a finite graph and ¢ a first-order with p > 0 free
variables, i.e. ¢ € FO,. We define the Stone pairing of ¢ and G to

be
_ 1e(6)]
<¢’ G> — |V(G)|pa

where ¢(G) = {v € V(G)P: G = ¢(v)} is the solution set of ¢ in
G.

Definition
A sequence (G,) of finite graphs is FO-convergent if the sequence
({(¢, Gn)) converges for each first-order formula ¢ in the language
of graphs.

.
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Limit structure

Definition

Graph L on a (nice) probability space (V/(L),%;,v;) with the
property that ¢(L) € X} for each ¢ € FO, is called a modeling.
For a modeling L and a formula ¢ € FO,, we define their Stone
pairing as

(6, L) = v{(¢(L)).




Limit structure

Definition

Graph L on a (nice) probability space (V(L), X, ;) with the
property that ¢(L) € X} for each ¢ € FO, is called a modeling.
For a modeling L and a formula ¢ € FO,, we define their Stone
pairing as

(6, L) = v{(¢(L)).

.

Definition
We say that a modeling L is an FO-/imit of an FO-convergent
sequence (Gp,) if for each ¢ € FO we have

nllﬁngo«b? G,-,> = <¢7 L>
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Let G, = K. Does the sequence (G,,) converge?
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Examples of convergence

Let G, = K. Does the sequence (G,,) converge?

Theorem (Trakhtenbrot, 1950)

Given an a sentence ¢, it is undecidable whether there exists a
finite graph G satisfying ¢.
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Ehrenfeucht-Fraissé games

Definition

The Ehrenfeucht-Fraissé game of length k on graphs G, H,
denoted as EF(G; H), is a perfect information game of two
players, Spoiler and Duplicator.

The game lasts for k rounds, each consists of:
® Spoiler chooses G or H and picks a vertex from it,
® Duplicator picks a vertex from the other graph.

Call a; and b; the vertices picked from G and H in the i-th round.

Duplicator wins if {a; — b;} is an isomorphism between
G[al, cooy ak] and H[bl, cocy bk]
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Ehrenfeucht-Fraissé games

Theorem (Fraissé)

For graphs G, H the following are equivalent:
® G and H are indistinguishable by sentences of g-rank k,
@ Duplicator wins EF(A; B).
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Theorem (Fraissé)

For graphs G, H the following are equivalent:
® G and H are indistinguishable by sentences of g-rank k,
@ Duplicator wins EF(A; B).

Example
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Examples of convergence, continuation

* If G, = K,, then (G,) is FO-convergent. The limit is e.g. a
complete graph on [0, 1].

e If G, = G(n,p) for fixed p, then (G,) is almost surely
FO-convergent. A modeling limit does not exists.

o |f

C - G(n,p) n odd,
" 1G(n,q) n even.

for fixed p < g, then G, is almost surely not FO-convergent.
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Relation to other notions of graph convergence

Example (Homomorphism convergence)

Consider a finite graph F on [|[V(F)I[]. Let ¢r(xa, ..., xv(F)) be
the formula /\ijeE(F) x; ~ xj. Then for any finite graph G we have

t(F7 G) = <¢)F7 G>7

where t(F, G) is the homomorphism density of F in G.




Relation to other notions of graph convergence

Example (Homomorphism convergence)

Consider a finite graph F on [|[V(F)I[]. Let ¢r(xa, ..., xv(F)) be
the formula /\ijeE(F) x; ~ xj. Then for any finite graph G we have

t(F7 G) = <¢)F7 G>7

where t(F, G) is the homomorphism density of F in G.

Example (Benjamini-Schramm convergence)

Consider a finite graph F rooted at vertex o. Let ¢(r o)(x) be the
formula expressing “the neighborhood of x is isomorphic to
(F,0)". Then for any finite graph G we have

p((F,0),G) = <¢(F,o)7 G),

where p((F, o), G) is the “density of balls (F,0)" in G.

g =

.
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Rooted graphs

Definition

Consider a graph G with a vertex r, then (G, r) denotes the graph
G rooted in r.




Rooted graphs

Definition
Consider a graph G with a vertex r, then (G, r) denotes the graph
G rooted in r. )

Definition

The language of rooted graphs consists of the adjacency relation ~
and the constant ‘Root’. The symbol FO™ stands for the set of
formulas in the language of rooted graphs.

\,
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Question (Ne3etfil, Ossona de Mendez)

Suppose that a modeling L is an FO-limit of a sequence (G,). Let
r be a vertex of L. Is it true that there are vertices r, € V(Gp)
such that (L, r) is the FO-limit of the sequence ((Gp, rn))?

Theorem (Christofides, Kral")
@ There is an example of (G,), L, and r such that the required
sequence (r,) does not exists.

@ If the root r is selected at random (using v, ), the sequence
(rn) exists almost surely.
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Our contribution

It is not clear how to decide for a given vertex r € V(L) whether
the desired sequence (r,) exists or not.

Definition

A formula ¢ € FO; is called algebraic in a graph G if the solution
set ¢(G) is finite. A vertex v € V(G) is algebraic in G if there is
an algebraic formula ¢ € FO; in G such that G |= ¢(v).

Suppose that a modeling L is an FO-limit of a sequence (G,) and r
is an algebraic vertex of L. Then there exist vertices r, € V(G,)
such that (L, r) is an FO-limit of the sequence ((Gp, ).

This is tight: if r contained in just a countable definable set, the
sequence (r,) needs not to exist.
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Release our hands

Suppose that a modeling L is an FO-limit of a sequence (G,) and
¢ is an algebraic formula in L. Then there exist vertices r, € £(G,,)
and r € £(L) such that (L, r) is an FO-limit of the sequence

((Gn, 1n))-

°
or
L
®
G
G
Gs




o



Given (Gn), L, and é_

o> <aFr o

Q>



Simplify

Given (Gp), L, and €.

There exist roots r, € £(Gy), r € (L) such that for any ¢ € FO*
we have

lim(, (Gn, rn)) = (9, (L, r)).
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Simplify

For any ¢ € FO™ there exist roots r, € £(G,), r € £(L) such that
we have

|im<¢,(Gn7 rn)) = <¢7(L7 r)) J

For any ¢1,...,¢x € FOT there exist roots r, € £(G,), r € £(L)
such that for each i € [k] we have

|im<¢)i,(Gn7 rn)) = <¢i7(La r)>

Then use a compactness argument to prove Theorem 2.

.
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we have
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Proof of Lemma 1

For any ¢ € FO™ there exist roots r, € £(G,), r € £(L) such that
we have

Iim((b, (GI‘H rn)) = <¢7 (L7 r))

¢

Take r, € £(Gp), resp. r € &(L), that minimize (¢, (Gp, rn)). If
Lemma 1 holds, this has to work.

\,




o



Let

Po(x)= [I (x—(¢.(Gn u))
ueé(Gn)
and define P; for the modeling L analogously.
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Proof of Lemma 1

Let

Po(x)= [I (x—(¢.(Gn u))

ue&(Gn)
and define P for the modeling L analogously.

We want to prove that P, — P, to get convergence of roots.

Theorem (Girard-Newton formulas)

The coefficients of the polynomial p(x) = [[7_;(x — a;) can be

obtained by basic arithmetic operations from values z1, . . ., zp,

where z, = > 1, ak.

We show that
Z <¢a (Gn’ uf)>k - <¢k7 G>
uc(Gn)
for some formula ¢ € FO, k € [|£(G,)]].
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Proof of Lemma 1, continuation

For a graph G, define a probability measure 11, on 25(6n) as the
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Proof of Lemma 1, continuation

For a graph G, define a probability measure 11, on 25(6n) as the
push-forward of the measure v, (on G,) via f : V(G,)P — 2¢(6n)
defined as

f(v) = {u € &(Gn) : (G, u) = o(v)}.

We are interested in values ) g.,cs 1n(S) for u € £(G,) as

S 1nlS) = (6, (G ).

S:ues

Replace the constant Root in ¢(x) € FO;r by a new free variable y
to obtain ¢~ (x,y) € FOp41.



Proof of Lemma 1, continuation

We use formulas 1) ¢(x) defined as follows:

k £
ERNT) (/\E(y, A y;#w/\/\/\qﬁ(xfwyj))

1<i<j<t i=1j=1
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Theorem 1 is tight

Let G(n1, n2, p) be a random bipartite graph with distinguished
parts A and B of size n; and ny with edges between parts with
probability p.

Proposition
Fix 0 < p < g < 1. The sequence

o {G(n, n?,p) n odd,

G(n,n%,q) n even.

is almost surely FO-convergent and admits a modeling limit L
whose smaller part A, is countable.

There is no sequence of vertices r, € A, such that the sequence
(Gn, rn) even converges. In particular, (L, r) for r € A; is not a
limit of (Gp, ).
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Proof of convergence

® The graphs G, eventually satisfy a bipartite analog of
k-extension property for each k € N.

e If a G, has (k + p)-extension property, then behavior of
p-tuples w.r.t formulas with quantifier rank k is determined by
their quantifier-free type.

® Thus, the question FO-convergence reduces to
QF-convergence < homomorphism convergence.

® The sequence clearly converges.
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Construction of a limit

® There is a construction of Goldstern, Grossberg, and Kojman?!
of a homogeneous bipartite graph with parts A = w and
B C {infinite sequences of natural numbers} where |B| = 2“.

® |t remains to show that this graph can be regarded as a
modeling.

® |t is defined on a standard Borel space.
® All the definable sets are Borel.

e Which is not difficult.

!Goldstern, M., Grossberg, R., & Kojman, M. (1996). Infinite homogeneous
bipartite graphs with unequal sides. Discrete Mathematics, 149(1-3), 69-82.
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Concluding remarks

® The set of all algebraic vertices is of measure 0 while the
result of Christofides and Kral' states that a random r € V(L)
works with probability 1.

® Can we decide about the other vertices?

® Can we decide about set of vertices of measure > 07
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