Rooting algebraic vertices of convergent sequences

Tomáš Hons

Computer Science Institute of Charles University
Joint work with David Hartman and Jaroslav Nešetřil
Doctoral seminar 26. 10. 2023

Convergence of graphs

Convergence of graphs

- Let G_{0} be a graph and grow G_{i+1} from G_{i} by some random process. What the graphs G_{n} for large n looks like?

Convergence of graphs

- Let G_{0} be a graph and grow G_{i+1} from G_{i} by some random process. What the graphs G_{n} for large n looks like?
- Let G be an infinite graph, can we approximate its properties by finite graphs?

First-order logic

First-order logic

First-order formula may contain the following:

First-order logic

First-order formula may contain the following:

- Variables x, y, z, \ldots

First-order logic

First-order formula may contain the following:

- Variables x, y, z, \ldots
- Quantifiers $\forall x, \exists y$

First-order logic

First-order formula may contain the following:

- Variables x, y, z, \ldots
- Quantifiers $\forall x, \exists y$
- Logical connectives $\neg, \wedge, \vee, \ldots$

First-order logic

First-order formula may contain the following:

- Variables x, y, z, \ldots
- Quantifiers $\forall x, \exists y$
- Logical connectives $\neg, \wedge, \vee, \ldots$
- Relational symbols R, S, T, \ldots

First-order logic

First-order formula may contain the following:

- Variables x, y, z, \ldots
- Quantifiers $\forall x, \exists y$
- Logical connectives $\neg, \wedge, \vee, \ldots$
- Relational symbols R, S, T, \ldots
- Equality =

First-order logic

First-order formula may contain the following:

- Variables x, y, z, \ldots
- Quantifiers $\forall x, \exists y$
- Logical connectives $\neg, \wedge, \vee, \ldots$
- Relational symbols R, S, T, \ldots
- Equality =
- Constants a, b, c, \ldots

First-order logic

First-order formula may contain the following:

- Variables x, y, z, \ldots
- Quantifiers $\forall x, \exists y$
- Logical connectives $\neg, \wedge, \vee, \ldots$
- Relational symbols R, S, T, \ldots
- Equality =
- Constants a, b, c, \ldots
- Function f, g, h, \ldots

Logic of graphs

Logic of graphs

We consider formulas in the language of graphs containing a single relational symbol \sim. Denote them by FO.

Logic of graphs

We consider formulas in the language of graphs containing a single relational symbol \sim. Denote them by FO.

The property "There is a triangle." is expressed by a formula ϕ :

$$
\phi:(\exists x)(\exists y)(\exists z)(x \sim y \wedge x \sim z \wedge y \sim z)
$$

If a graph G satisfies the property, we write $G \models \phi$.

Logic of graphs

We consider formulas in the language of graphs containing a single relational symbol \sim. Denote them by FO.

The property "There is a triangle." is expressed by a formula ϕ :

$$
\phi:(\exists x)(\exists y)(\exists z)(x \sim y \wedge x \sim z \wedge y \sim z)
$$

If a graph G satisfies the property, we write $G \models \phi$.
The property "Vertex x is not universal." is expressed by

$$
\phi(x):(\exists y)(x \nsim y) .
$$

Logic of graphs

We consider formulas in the language of graphs containing a single relational symbol \sim. Denote them by FO.

The property "There is a triangle." is expressed by a formula ϕ :

$$
\phi:(\exists x)(\exists y)(\exists z)(x \sim y \wedge x \sim z \wedge y \sim z)
$$

If a graph G satisfies the property, we write $G \models \phi$.
The property "Vertex x is not universal." is expressed by

$$
\phi(x):(\exists y)(x \nsim y) .
$$

Some properties cannot be expressed. For example

- "The graph is connected."
- "The graph contains a Hamiltonian path."

Structural convergence

Structural convergence

Definition

Let G be a finite graph and ϕ a first-order with $p \geq 0$ free variables, i.e. $\phi \in \mathrm{FO}_{p}$. We define the Stone pairing of ϕ and G to be

$$
\langle\phi, G\rangle=\frac{|\phi(G)|}{|V(G)|^{p}}
$$

where $\phi(G)=\left\{\boldsymbol{v} \in V(G)^{p}: G \models \phi(\boldsymbol{v})\right\}$ is the solution set of ϕ in G.

Structural convergence

Definition

Let G be a finite graph and ϕ a first-order with $p \geq 0$ free variables, i.e. $\phi \in \mathrm{FO}_{p}$. We define the Stone pairing of ϕ and G to be

$$
\langle\phi, G\rangle=\frac{|\phi(G)|}{|V(G)|^{p}}
$$

where $\phi(G)=\left\{\boldsymbol{v} \in V(G)^{p}: G \models \phi(\boldsymbol{v})\right\}$ is the solution set of ϕ in G.

Definition

A sequence $\left(G_{n}\right)$ of finite graphs is FO-convergent if the sequence ($\left\langle\phi, G_{n}\right\rangle$) converges for each first-order formula ϕ in the language of graphs.

Limit structure

Limit structure

Definition

Graph L on a (nice) probability space $\left(V(L), \Sigma_{L}, \nu_{L}\right)$ with the property that $\phi(L) \in \Sigma_{L}^{p}$ for each $\phi \in \mathrm{FO}_{p}$ is called a modeling. For a modeling L and a formula $\phi \in \mathrm{FO}_{p}$, we define their Stone pairing as

$$
\langle\phi, L\rangle=\nu_{L}^{p}(\phi(L)) .
$$

Limit structure

Definition

Graph L on a (nice) probability space $\left(V(L), \Sigma_{L}, \nu_{L}\right)$ with the property that $\phi(L) \in \Sigma_{L}^{p}$ for each $\phi \in \mathrm{FO}_{p}$ is called a modeling. For a modeling L and a formula $\phi \in \mathrm{FO}_{p}$, we define their Stone pairing as

$$
\langle\phi, L\rangle=\nu_{L}^{p}(\phi(L)) .
$$

Definition

We say that a modeling L is an FO-limit of an FO-convergent sequence $\left(G_{n}\right)$ if for each $\phi \in$ FO we have

$$
\lim _{n \rightarrow \infty}\left\langle\phi, G_{n}\right\rangle=\langle\phi, L\rangle .
$$

Examples of convergence

Examples of convergence

Let $G_{n}=K_{n}$. Does the sequence $\left(G_{n}\right)$ converge?

Examples of convergence

Let $G_{n}=K_{n}$. Does the sequence $\left(G_{n}\right)$ converge?
Theorem (Trakhtenbrot, 1950)
Given an a sentence ϕ, it is undecidable whether there exists a finite graph G satisfying ϕ.

Ehrenfeucht-Fraïssé games

Ehrenfeucht-Fraïssé games

Definition

The Ehrenfeucht-Fraïssé game of length k on graphs G, H, denoted as $\mathrm{EF}_{k}(G ; H)$, is a perfect information game of two players, Spoiler and Duplicator.

Ehrenfeucht-Fraïssé games

Definition

The Ehrenfeucht-Fraïssé game of length k on graphs G, H, denoted as $\mathrm{EF}_{k}(G ; H)$, is a perfect information game of two players, Spoiler and Duplicator.

The game lasts for k rounds, each consists of:

- Spoiler chooses G or H and picks a vertex from it,
- Duplicator picks a vertex from the other graph.

Call a_{i} and b_{i} the vertices picked from G and H in the i-th round.

Ehrenfeucht-Fraïssé games

Definition

The Ehrenfeucht-Fraïssé game of length k on graphs G, H, denoted as $\mathrm{EF}_{k}(G ; H)$, is a perfect information game of two players, Spoiler and Duplicator.

The game lasts for k rounds, each consists of:

- Spoiler chooses G or H and picks a vertex from it,
- Duplicator picks a vertex from the other graph.

Call a_{i} and b_{i} the vertices picked from G and H in the i-th round.
Duplicator wins if $\left\{a_{i} \mapsto b_{i}\right\}$ is an isomorphism between $G\left[a_{1}, \ldots, a_{k}\right]$ and $H\left[b_{1}, \ldots, b_{k}\right]$.

Ehrenfeucht-Fraïssé games

Ehrenfeucht-Fraïssé games

Theorem (Fraïssé)

For graphs G, H the following are equivalent:
(i) G and H are indistinguishable by sentences of q-rank k,
(i) Duplicator wins $\mathrm{EF}_{k}(\mathbf{A} ; \mathbf{B})$.

Ehrenfeucht-Fraïssé games

Theorem (Fraïssé)

For graphs G, H the following are equivalent:
(i) G and H are indistinguishable by sentences of q-rank k,
(i) Duplicator wins $\mathrm{EF}_{k}(\mathbf{A} ; \mathbf{B})$.

Example

Examples of convergence, continuation

Examples of convergence, continuation

- If $G_{n}=K_{n}$, then $\left(G_{n}\right)$ is FO-convergent. The limit is e.g. a complete graph on $[0,1]$.

Examples of convergence, continuation

- If $G_{n}=K_{n}$, then $\left(G_{n}\right)$ is FO-convergent. The limit is e.g. a complete graph on $[0,1]$.
- If $G_{n}=G(n, p)$ for fixed p, then $\left(G_{n}\right)$ is almost surely FO-convergent. A modeling limit does not exists.

Examples of convergence, continuation

- If $G_{n}=K_{n}$, then $\left(G_{n}\right)$ is FO-convergent. The limit is e.g. a complete graph on $[0,1]$.
- If $G_{n}=G(n, p)$ for fixed p, then $\left(G_{n}\right)$ is almost surely FO-convergent. A modeling limit does not exists.
- If

$$
G_{n}= \begin{cases}G(n, p) & n \text { odd } \\ G(n, q) & n \text { even }\end{cases}
$$

for fixed $p<q$, then G_{n} is almost surely not FO-convergent.

Relation to other notions of graph convergence

Relation to other notions of graph convergence

Example (Homomorphism convergence)

Consider a finite graph F on $[|V(F)|]$. Let $\phi_{F}\left(x_{1}, \ldots, x_{|V(F)|}\right)$ be the formula $\bigwedge_{i j \in E(F)} x_{i} \sim x_{j}$. Then for any finite graph G we have

$$
t(F, G)=\left\langle\phi_{F}, G\right\rangle
$$

where $t(F, G)$ is the homomorphism density of F in G.

Relation to other notions of graph convergence

Example (Homomorphism convergence)

Consider a finite graph F on $[|V(F)|]$. Let $\phi_{F}\left(x_{1}, \ldots, x_{|V(F)|}\right)$ be the formula $\bigwedge_{i j \in E(F)} x_{i} \sim x_{j}$. Then for any finite graph G we have

$$
t(F, G)=\left\langle\phi_{F}, G\right\rangle
$$

where $t(F, G)$ is the homomorphism density of F in G.

Example (Benjamini-Schramm convergence)

Consider a finite graph F rooted at vertex o. Let $\phi_{(F, o)}(x)$ be the formula expressing "the neighborhood of x is isomorphic to (F, o) ". Then for any finite graph G we have

$$
\rho((F, o), G)=\langle\phi(F, o), G\rangle
$$

where $\rho((F, o), G)$ is the "density of balls (F, o) " in G.

Rooted graphs

Rooted graphs

Definition
Consider a graph G with a vertex r, then (G, r) denotes the graph G rooted in r.

Rooted graphs

Definition

Consider a graph G with a vertex r, then (G, r) denotes the graph G rooted in r.

Definition

The language of rooted graphs consists of the adjacency relation \sim and the constant 'Root'. The symbol FO ${ }^{+}$stands for the set of formulas in the language of rooted graphs.

Question (Nešetřil, Ossona de Mendez)

Suppose that a modeling L is an FO-limit of a sequence $\left(G_{n}\right)$. Let r be a vertex of L. Is it true that there are vertices $r_{n} \in V\left(G_{n}\right)$ such that (L, r) is the FO-limit of the sequence $\left(\left(G_{n}, r_{n}\right)\right)$?

Question (Nešetřil, Ossona de Mendez)

Suppose that a modeling L is an FO-limit of a sequence $\left(G_{n}\right)$. Let r be a vertex of L. Is it true that there are vertices $r_{n} \in V\left(G_{n}\right)$ such that (L, r) is the FO-limit of the sequence $\left(\left(G_{n}, r_{n}\right)\right)$?

Theorem (Christofides, Král')

(i) There is an example of $\left(G_{n}\right), L$, and r such that the required sequence $\left(r_{n}\right)$ does not exists.

Question (Nešetřil, Ossona de Mendez)

Suppose that a modeling L is an FO-limit of a sequence $\left(G_{n}\right)$. Let r be a vertex of L. Is it true that there are vertices $r_{n} \in V\left(G_{n}\right)$ such that (L, r) is the FO-limit of the sequence $\left(\left(G_{n}, r_{n}\right)\right)$?

Theorem (Christofides, Král')

(i) There is an example of $\left(G_{n}\right), L$, and r such that the required sequence $\left(r_{n}\right)$ does not exists.
(1) If the root r is selected at random (using ν_{L}), the sequence $\left(r_{n}\right)$ exists almost surely.

Our contribution

Our contribution

It is not clear how to decide for a given vertex $r \in V(L)$ whether the desired sequence $\left(r_{n}\right)$ exists or not.

Our contribution

It is not clear how to decide for a given vertex $r \in V(L)$ whether the desired sequence $\left(r_{n}\right)$ exists or not.

Definition

A formula $\phi \in \mathrm{FO}_{1}$ is called algebraic in a graph G if the solution set $\phi(G)$ is finite. A vertex $v \in V(G)$ is algebraic in G if there is an algebraic formula $\phi \in \mathrm{FO}_{1}$ in G such that $G \models \phi(v)$.

Our contribution

It is not clear how to decide for a given vertex $r \in V(L)$ whether the desired sequence $\left(r_{n}\right)$ exists or not.

Definition

A formula $\phi \in \mathrm{FO}_{1}$ is called algebraic in a graph G if the solution set $\phi(G)$ is finite. A vertex $v \in V(G)$ is algebraic in G if there is an algebraic formula $\phi \in \mathrm{FO}_{1}$ in G such that $G \models \phi(v)$.

Theorem 1

Suppose that a modeling L is an FO-limit of a sequence $\left(G_{n}\right)$ and r is an algebraic vertex of L. Then there exist vertices $r_{n} \in V\left(G_{n}\right)$ such that (L, r) is an FO-limit of the sequence $\left(\left(G_{n}, r_{n}\right)\right)$.

Our contribution

It is not clear how to decide for a given vertex $r \in V(L)$ whether the desired sequence $\left(r_{n}\right)$ exists or not.

Definition

A formula $\phi \in \mathrm{FO}_{1}$ is called algebraic in a graph G if the solution set $\phi(G)$ is finite. A vertex $v \in V(G)$ is algebraic in G if there is an algebraic formula $\phi \in \mathrm{FO}_{1}$ in G such that $G \models \phi(v)$.

Theorem 1

Suppose that a modeling L is an FO-limit of a sequence $\left(G_{n}\right)$ and r is an algebraic vertex of L. Then there exist vertices $r_{n} \in V\left(G_{n}\right)$ such that (L, r) is an FO-limit of the sequence $\left(\left(G_{n}, r_{n}\right)\right)$.

This is tight: if r contained in just a countable definable set, the sequence (r_{n}) needs not to exist.

Release our hands

Theorem 1

Suppose that a modeling L is an FO-limit of a sequence $\left(G_{n}\right)$ and r is an algebraic vertex of L. Then there exist vertices $r_{n} \in V\left(G_{n}\right)$ such that (L, r) is an FO-limit of the sequence $\left(\left(G_{n}, r_{n}\right)\right)$.

Theorem 2

Suppose that a modeling L is an FO-limit of a sequence $\left(G_{n}\right)$ and ξ is an algebraic formula in L. Then there exist vertices $r_{n} \in \xi\left(G_{n}\right)$ and $r \in \xi(L)$ such that (L, r) is an FO-limit of the sequence $\left(\left(G_{n}, r_{n}\right)\right)$.

Release our hands

Theorem 2

Suppose that a modeling L is an FO-limit of a sequence $\left(G_{n}\right)$ and ξ is an algebraic formula in L. Then there exist vertices $r_{n} \in \xi\left(G_{n}\right)$ and $r \in \xi(L)$ such that (L, r) is an FO-limit of the sequence $\left(\left(G_{n}, r_{n}\right)\right)$.

Release our hands

Theorem 2

Suppose that a modeling L is an FO-limit of a sequence $\left(G_{n}\right)$ and ξ is an algebraic formula in L. Then there exist vertices $r_{n} \in \xi\left(G_{n}\right)$ and $r \in \xi(L)$ such that (L, r) is an FO-limit of the sequence $\left(\left(G_{n}, r_{n}\right)\right)$.

Release our hands

Theorem 2

Suppose that a modeling L is an FO-limit of a sequence $\left(G_{n}\right)$ and ξ is an algebraic formula in L. Then there exist vertices $r_{n} \in \xi\left(G_{n}\right)$ and $r \in \xi(L)$ such that (L, r) is an FO-limit of the sequence $\left(\left(G_{n}, r_{n}\right)\right)$.

Release our hands

Theorem 2

Suppose that a modeling L is an FO-limit of a sequence $\left(G_{n}\right)$ and ξ is an algebraic formula in L. Then there exist vertices $r_{n} \in \xi\left(G_{n}\right)$ and $r \in \xi(L)$ such that (L, r) is an FO-limit of the sequence $\left(\left(G_{n}, r_{n}\right)\right)$.

Simplify

Simplify

Given $\left(G_{n}\right), L$, and ξ.

Simplify

Given $\left(G_{n}\right), L$, and ξ.

Theorem 2

There exist roots $r_{n} \in \xi\left(G_{n}\right), r \in \xi(L)$ such that for any $\phi \in \mathrm{FO}^{+}$ we have

$$
\lim \left\langle\phi,\left(G_{n}, r_{n}\right)\right\rangle=\langle\phi,(L, r)\rangle
$$

Simplify

Given $\left(G_{n}\right), L$, and ξ.

Theorem 2

There exist roots $r_{n} \in \xi\left(G_{n}\right), r \in \xi(L)$ such that for any $\phi \in \mathrm{FO}^{+}$ we have

$$
\lim \left\langle\phi,\left(G_{n}, r_{n}\right)\right\rangle=\langle\phi,(L, r)\rangle .
$$

Lemma 1

For any $\phi \in \mathrm{FO}^{+}$there exist roots $r_{n} \in \xi\left(G_{n}\right), r \in \xi(L)$ such that we have

$$
\lim \left\langle\phi,\left(G_{n}, r_{n}\right)\right\rangle=\langle\phi,(L, r)\rangle
$$

Simplify

Lemma 1

For any $\phi \in \mathrm{FO}^{+}$there exist roots $r_{n} \in \xi\left(G_{n}\right), r \in \xi(L)$ such that we have

$$
\lim \left\langle\phi,\left(G_{n}, r_{n}\right)\right\rangle=\langle\phi,(L, r)\rangle .
$$

Simplify

Lemma 1

For any $\phi \in \mathrm{FO}^{+}$there exist roots $r_{n} \in \xi\left(G_{n}\right), r \in \xi(L)$ such that we have

$$
\lim \left\langle\phi,\left(G_{n}, r_{n}\right)\right\rangle=\langle\phi,(L, r)\rangle
$$

Lemma 2

For any $\phi_{1}, \ldots, \phi_{k} \in \mathrm{FO}^{+}$there exist roots $r_{n} \in \xi\left(G_{n}\right), r \in \xi(L)$ such that for each $i \in[k]$ we have

$$
\lim \left\langle\phi_{i},\left(G_{n}, r_{n}\right)\right\rangle=\left\langle\phi_{i},(L, r)\right\rangle
$$

Simplify

Lemma 1

For any $\phi \in \mathrm{FO}^{+}$there exist roots $r_{n} \in \xi\left(G_{n}\right), r \in \xi(L)$ such that we have

$$
\lim \left\langle\phi,\left(G_{n}, r_{n}\right)\right\rangle=\langle\phi,(L, r)\rangle
$$

Lemma 2

For any $\phi_{1}, \ldots, \phi_{k} \in \mathrm{FO}^{+}$there exist roots $r_{n} \in \xi\left(G_{n}\right), r \in \xi(L)$ such that for each $i \in[k]$ we have

$$
\lim \left\langle\phi_{i},\left(G_{n}, r_{n}\right)\right\rangle=\left\langle\phi_{i},(L, r)\right\rangle
$$

Then use a compactness argument to prove Theorem 2.

Proof of Lemma 1

Lemma 1

For any $\phi \in \mathrm{FO}^{+}$there exist roots $r_{n} \in \xi\left(G_{n}\right), r \in \xi(L)$ such that we have

$$
\lim \left\langle\phi,\left(G_{n}, r_{n}\right)\right\rangle=\langle\phi,(L, r)\rangle
$$

Proof of Lemma 1

Lemma 1

For any $\phi \in \mathrm{FO}^{+}$there exist roots $r_{n} \in \xi\left(G_{n}\right), r \in \xi(L)$ such that we have

$$
\lim \left\langle\phi,\left(G_{n}, r_{n}\right)\right\rangle=\langle\phi,(L, r)\rangle
$$

Idea

Take $r_{n} \in \xi\left(G_{n}\right)$, resp. $r \in \xi(L)$, that minimize $\left\langle\phi,\left(G_{n}, r_{n}\right)\right\rangle$. If Lemma 1 holds, this has to work.

Proof of Lemma 1

Proof of Lemma 1

Let

$$
P_{n}(x)=\prod_{u \in \xi\left(G_{n}\right)}\left(x-\left\langle\phi,\left(G_{n}, u\right)\right\rangle\right)
$$

and define P_{L} for the modeling L analogously.

Proof of Lemma 1

Let

$$
P_{n}(x)=\prod_{u \in \xi\left(G_{n}\right)}\left(x-\left\langle\phi,\left(G_{n}, u\right)\right\rangle\right)
$$

and define P_{L} for the modeling L analogously.
We want to prove that $P_{n} \rightarrow P_{L}$ to get convergence of roots.

Proof of Lemma 1

Let

$$
P_{n}(x)=\prod_{u \in \xi\left(G_{n}\right)}\left(x-\left\langle\phi,\left(G_{n}, u\right)\right\rangle\right)
$$

and define P_{L} for the modeling L analogously.
We want to prove that $P_{n} \rightarrow P_{L}$ to get convergence of roots.

Theorem (Girard-Newton formulas)

The coefficients of the polynomial $p(x)=\prod_{i=1}^{n}\left(x-a_{i}\right)$ can be obtained by basic arithmetic operations from values z_{1}, \ldots, z_{n}, where $z_{k}=\sum_{i=1}^{n} a_{i}^{k}$.

Proof of Lemma 1

Let

$$
P_{n}(x)=\prod_{u \in \xi\left(G_{n}\right)}\left(x-\left\langle\phi,\left(G_{n}, u\right)\right\rangle\right)
$$

and define P_{L} for the modeling L analogously.
We want to prove that $P_{n} \rightarrow P_{L}$ to get convergence of roots.

Theorem (Girard-Newton formulas)

The coefficients of the polynomial $p(x)=\prod_{i=1}^{n}\left(x-a_{i}\right)$ can be obtained by basic arithmetic operations from values z_{1}, \ldots, z_{n}, where $z_{k}=\sum_{i=1}^{n} a_{i}^{k}$.

We show that

$$
\sum_{u \in \xi\left(G_{n}\right)}\left\langle\phi,\left(G_{n}, u_{i}\right)\right\rangle^{k}=\left\langle\psi_{k}, G\right\rangle
$$

for some formula $\psi_{k} \in \operatorname{FO}, k \in\left[\left|\xi\left(G_{n}\right)\right|\right]$.

Proof of Lemma 1, continuation

Proof of Lemma 1, continuation

For a graph G_{n}, define a probability measure μ_{n} on $2^{\xi\left(G_{n}\right)}$ as the push-forward of the measure $\nu_{n}\left(\right.$ on $\left.G_{n}\right)$ via $f: V\left(G_{n}\right)^{p} \rightarrow 2^{\xi\left(G_{n}\right)}$ defined as

$$
f(\boldsymbol{v})=\left\{u \in \xi\left(G_{n}\right):\left(G_{n}, u\right) \models \phi(\boldsymbol{v})\right\} .
$$

Proof of Lemma 1, continuation

For a graph G_{n}, define a probability measure μ_{n} on $2^{\xi\left(G_{n}\right)}$ as the push-forward of the measure $\nu_{n}\left(\right.$ on $\left.G_{n}\right)$ via $f: V\left(G_{n}\right)^{p} \rightarrow 2^{\xi\left(G_{n}\right)}$ defined as

$$
f(\boldsymbol{v})=\left\{u \in \xi\left(G_{n}\right):\left(G_{n}, u\right) \models \phi(\boldsymbol{v})\right\} .
$$

We are interested in values $\sum_{S: u \in S} \mu_{n}(S)$ for $u \in \xi\left(G_{n}\right)$ as

$$
\sum_{S: u \in S} \mu_{n}(S)=\left\langle\phi,\left(G_{n}, u\right)\right\rangle
$$

Proof of Lemma 1, continuation

For a graph G_{n}, define a probability measure μ_{n} on $2^{\xi\left(G_{n}\right)}$ as the push-forward of the measure $\nu_{n}\left(\right.$ on $\left.G_{n}\right)$ via $f: V\left(G_{n}\right)^{p} \rightarrow 2^{\xi\left(G_{n}\right)}$ defined as

$$
f(\boldsymbol{v})=\left\{u \in \xi\left(G_{n}\right):\left(G_{n}, u\right) \models \phi(\boldsymbol{v})\right\} .
$$

We are interested in values $\sum_{S: u \in S} \mu_{n}(S)$ for $u \in \xi\left(G_{n}\right)$ as

$$
\sum_{S: u \in S} \mu_{n}(S)=\left\langle\phi,\left(G_{n}, u\right)\right\rangle
$$

Replace the constant Root in $\phi(\boldsymbol{x}) \in \mathrm{FO}_{p}^{+}$by a new free variable y to obtain $\phi^{-}(\boldsymbol{x}, y) \in \mathrm{FO}_{p+1}$.

Proof of Lemma 1, continuation

We use formulas $\psi_{k, \ell}(\boldsymbol{x})$ defined as follows:

$$
\left(\exists y_{1}, \ldots, y_{\ell}\right)\left(\bigwedge_{i=1}^{\ell} \xi\left(y_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq \ell} y_{i} \neq y_{j} \wedge \bigwedge_{i=1}^{k} \bigwedge_{j=1}^{\ell} \phi^{-}\left(\boldsymbol{x}_{i}, y_{j}\right)\right)
$$

Theorem 1 is tight

Let $G\left(n_{1}, n_{2}, p\right)$ be a random bipartite graph with distinguished parts A and B of size n_{1} and n_{2} with edges between parts with probability p.

Theorem 1 is tight

Let $G\left(n_{1}, n_{2}, p\right)$ be a random bipartite graph with distinguished parts A and B of size n_{1} and n_{2} with edges between parts with probability p.

Proposition

Fix $0<p<q<1$. The sequence

$$
G_{n}= \begin{cases}G\left(n, n^{2}, p\right) & n \text { odd } \\ G\left(n, n^{2}, q\right) & n \text { even }\end{cases}
$$

is almost surely FO-convergent and admits a modeling limit L whose smaller part A_{L} is countable.

Theorem 1 is tight

Let $G\left(n_{1}, n_{2}, p\right)$ be a random bipartite graph with distinguished parts A and B of size n_{1} and n_{2} with edges between parts with probability p.

Proposition

Fix $0<p<q<1$. The sequence

$$
G_{n}= \begin{cases}G\left(n, n^{2}, p\right) & n \text { odd } \\ G\left(n, n^{2}, q\right) & n \text { even }\end{cases}
$$

is almost surely FO-convergent and admits a modeling limit L whose smaller part A_{L} is countable.

There is no sequence of vertices $r_{n} \in A_{n}$ such that the sequence $\left(G_{n}, r_{n}\right)$ even converges. In particular, (L, r) for $r \in A_{L}$ is not a limit of $\left(G_{n}, r_{n}\right)$.

Proof of convergence

- The graphs G_{n} eventually satisfy a bipartite analog of k-extension property for each $k \in \mathbb{N}$.

Proof of convergence

- The graphs G_{n} eventually satisfy a bipartite analog of k-extension property for each $k \in \mathbb{N}$.
- If a G_{n} has $(k+p)$-extension property, then behavior of p-tuples w.r.t formulas with quantifier rank k is determined by their quantifier-free type.

Proof of convergence

- The graphs G_{n} eventually satisfy a bipartite analog of k-extension property for each $k \in \mathbb{N}$.
- If a G_{n} has $(k+p)$-extension property, then behavior of p-tuples w.r.t formulas with quantifier rank k is determined by their quantifier-free type.
- Thus, the question FO-convergence reduces to QF-convergence \Leftrightarrow homomorphism convergence.

Proof of convergence

- The graphs G_{n} eventually satisfy a bipartite analog of k-extension property for each $k \in \mathbb{N}$.
- If a G_{n} has $(k+p)$-extension property, then behavior of p-tuples w.r.t formulas with quantifier rank k is determined by their quantifier-free type.
- Thus, the question FO-convergence reduces to QF-convergence \Leftrightarrow homomorphism convergence.
- The sequence clearly converges.

Construction of a limit

- There is a construction of Goldstern, Grossberg, and Kojman ${ }^{1}$ of a homogeneous bipartite graph with parts $A=\omega$ and $B \subseteq\{$ infinite sequences of natural numbers $\}$ where $|B|=2^{\omega}$.

[^0]
Construction of a limit

- There is a construction of Goldstern, Grossberg, and Kojman ${ }^{1}$ of a homogeneous bipartite graph with parts $A=\omega$ and $B \subseteq\{$ infinite sequences of natural numbers $\}$ where $|B|=2^{\omega}$.
- It remains to show that this graph can be regarded as a modeling.
- It is defined on a standard Borel space.
- All the definable sets are Borel.

[^1]
Construction of a limit

- There is a construction of Goldstern, Grossberg, and Kojman ${ }^{1}$ of a homogeneous bipartite graph with parts $A=\omega$ and $B \subseteq\{$ infinite sequences of natural numbers $\}$ where $|B|=2^{\omega}$.
- It remains to show that this graph can be regarded as a modeling.
- It is defined on a standard Borel space.
- All the definable sets are Borel.
- Which is not difficult.

[^2]
Concluding remarks

- The set of all algebraic vertices is of measure 0 while the result of Christofides and Král' states that a random $r \in V(L)$ works with probability 1.

Concluding remarks

- The set of all algebraic vertices is of measure 0 while the result of Christofides and Král' states that a random $r \in V(L)$ works with probability 1.
- Can we decide about the other vertices?

Concluding remarks

- The set of all algebraic vertices is of measure 0 while the result of Christofides and Král' states that a random $r \in V(L)$ works with probability 1.
- Can we decide about the other vertices?
- Can we decide about set of vertices of measure >0 ?

Thank you.

This work is part of a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 810115 - Dynasnet).

Questions?

[^0]: ${ }^{1}$ Goldstern, M., Grossberg, R., \& Kojman, M. (1996). Infinite homogeneous bipartite graphs with unequal sides. Discrete Mathematics, 149(1-3), 69-82.

[^1]: ${ }^{1}$ Goldstern, M., Grossberg, R., \& Kojman, M. (1996). Infinite homogeneous bipartite graphs with unequal sides. Discrete Mathematics, 149(1-3), 69-82.

[^2]: ${ }^{1}$ Goldstern, M., Grossberg, R., \& Kojman, M. (1996). Infinite homogeneous bipartite graphs with unequal sides. Discrete Mathematics, 149(1-3), 69-82.

