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Convergence of graphs

• Let G0 be a graph and grow Gi+1 from Gi by some random
process. What the graphs Gn for large n looks like?

• Let G be an infinite graph, can we approximate its properties
by finite graphs?
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Logic of graphs

We consider formulas in the language of graphs containing a single
relational symbol ∼. Denote them by FO.

The property “There is a triangle.” is expressed by a formula ϕ:

ϕ : (∃x)(∃y)(∃z)(x ∼ y ∧ x ∼ z ∧ y ∼ z).

If a graph G satisfies the property, we write G |= ϕ.

The property “Vertex x is not universal.” is expressed by

ϕ(x) : (∃y)(x ̸∼ y).

Some properties cannot be expressed. For example

• “The graph is connected.”

• “The graph contains a Hamiltonian path.”
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Structural convergence

Definition

Let G be a finite graph and ϕ a first-order with p ≥ 0 free
variables, i.e. ϕ ∈ FOp. We define the Stone pairing of ϕ and G to
be

⟨ϕ,G ⟩ = |ϕ(G )|
|V (G )|p

,

where ϕ(G ) = {v ∈ V (G )p : G |= ϕ(v)} is the solution set of ϕ in
G .

Definition

A sequence (Gn) of finite graphs is FO-convergent if the sequence
(⟨ϕ,Gn⟩) converges for each first-order formula ϕ in the language
of graphs.
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Limit structure

Definition

Graph L on a (nice) probability space (V (L),ΣL, νL) with the
property that ϕ(L) ∈ Σp

L for each ϕ ∈ FOp is called a modeling.
For a modeling L and a formula ϕ ∈ FOp, we define their Stone
pairing as

⟨ϕ, L⟩ = νpL (ϕ(L)).

Definition

We say that a modeling L is an FO-limit of an FO-convergent
sequence (Gn) if for each ϕ ∈ FO we have

lim
n→∞

⟨ϕ,Gn⟩ = ⟨ϕ, L⟩.
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Definition

The Ehrenfeucht-Fräıssé game of length k on graphs G ,H,
denoted as EFk(G ;H), is a perfect information game of two
players, Spoiler and Duplicator.

The game lasts for k rounds, each consists of:

• Spoiler chooses G or H and picks a vertex from it,

• Duplicator picks a vertex from the other graph.

Call ai and bi the vertices picked from G and H in the i-th round.

Duplicator wins if {ai 7→ bi} is an isomorphism between
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Examples of convergence, continuation

• If Gn = Kn, then (Gn) is FO-convergent. The limit is e.g. a
complete graph on [0, 1].

• If Gn = G (n, p) for fixed p, then (Gn) is almost surely
FO-convergent. A modeling limit does not exists.

• If

Gn =

{
G (n, p) n odd,

G (n, q) n even.

for fixed p < q, then Gn is almost surely not FO-convergent.
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Relation to other notions of graph convergence

Example (Homomorphism convergence)

Consider a finite graph F on [|V (F )|]. Let ϕF (x1, . . . , x|V (F )|) be
the formula

∧
ij∈E(F ) xi ∼ xj . Then for any finite graph G we have

t(F ,G ) = ⟨ϕF ,G ⟩,

where t(F ,G ) is the homomorphism density of F in G .

Example (Benjamini-Schramm convergence)

Consider a finite graph F rooted at vertex o. Let ϕ(F ,o)(x) be the
formula expressing “the neighborhood of x is isomorphic to
(F , o)”. Then for any finite graph G we have

ρ((F , o),G ) = ⟨ϕ(F ,o),G ⟩,

where ρ((F , o),G ) is the “density of balls (F , o)” in G .
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Definition

Consider a graph G with a vertex r , then (G , r) denotes the graph
G rooted in r .

Definition

The language of rooted graphs consists of the adjacency relation ∼
and the constant ‘Root’. The symbol FO+ stands for the set of
formulas in the language of rooted graphs.
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Question (Nešeťril, Ossona de Mendez)

Suppose that a modeling L is an FO-limit of a sequence (Gn). Let
r be a vertex of L. Is it true that there are vertices rn ∈ V (Gn)
such that (L, r) is the FO-limit of the sequence ((Gn, rn))?

Theorem (Christofides, Král’)

i There is an example of (Gn), L, and r such that the required
sequence (rn) does not exists.

ii If the root r is selected at random (using νL), the sequence
(rn) exists almost surely.
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Our contribution

It is not clear how to decide for a given vertex r ∈ V (L) whether
the desired sequence (rn) exists or not.

Definition

A formula ϕ ∈ FO1 is called algebraic in a graph G if the solution
set ϕ(G ) is finite. A vertex v ∈ V (G ) is algebraic in G if there is
an algebraic formula ϕ ∈ FO1 in G such that G |= ϕ(v).

Theorem 1

Suppose that a modeling L is an FO-limit of a sequence (Gn) and r
is an algebraic vertex of L. Then there exist vertices rn ∈ V (Gn)
such that (L, r) is an FO-limit of the sequence ((Gn, rn)).

This is tight: if r contained in just a countable definable set, the
sequence (rn) needs not to exist.
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Theorem 2

Suppose that a modeling L is an FO-limit of a sequence (Gn) and
ξ is an algebraic formula in L. Then there exist vertices rn ∈ ξ(Gn)
and r ∈ ξ(L) such that (L, r) is an FO-limit of the sequence
((Gn, rn)).
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Simplify

Given (Gn), L, and ξ.

Theorem 2

There exist roots rn ∈ ξ(Gn), r ∈ ξ(L) such that for any ϕ ∈ FO+

we have
lim⟨ϕ, (Gn, rn)⟩ = ⟨ϕ, (L, r)⟩.

Lemma 1

For any ϕ ∈ FO+ there exist roots rn ∈ ξ(Gn), r ∈ ξ(L) such that
we have

lim⟨ϕ, (Gn, rn)⟩ = ⟨ϕ, (L, r)⟩.
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Lemma 1 holds, this has to work.
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Proof of Lemma 1

Let
Pn(x) =

∏
u∈ξ(Gn)

(x − ⟨ϕ, (Gn, u)⟩)

and define PL for the modeling L analogously.

We want to prove that Pn → PL to get convergence of roots.

Theorem (Girard-Newton formulas)

The coefficients of the polynomial p(x) =
∏n

i=1(x − ai ) can be
obtained by basic arithmetic operations from values z1, . . . , zn,
where zk =

∑n
i=1 a

k
i .

We show that ∑
u∈ξ(Gn)

⟨ϕ, (Gn, ui )⟩k = ⟨ψk ,G ⟩

for some formula ψk ∈ FO, k ∈ [|ξ(Gn)|].
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Proof of Lemma 1, continuation

For a graph Gn, define a probability measure µn on 2ξ(Gn) as the
push-forward of the measure νn (on Gn) via f : V (Gn)

p → 2ξ(Gn)

defined as

f (v) = {u ∈ ξ(Gn) : (Gn, u) |= ϕ(v)}.

We are interested in values
∑

S :u∈S µn(S) for u ∈ ξ(Gn) as∑
S :u∈S

µn(S) = ⟨ϕ, (Gn, u)⟩.

Replace the constant Root in ϕ(x) ∈ FO+
p by a new free variable y

to obtain ϕ−(x , y) ∈ FOp+1.
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Proof of Lemma 1, continuation

We use formulas ψk,ℓ(x) defined as follows:

(∃y1, . . . , yℓ)

 ℓ∧
i=1

ξ(yi ) ∧
∧

1≤i<j≤ℓ

yi ̸= yj ∧
k∧

i=1

ℓ∧
j=1

ϕ−(xi , yj)





Theorem 1 is tight

Let G (n1, n2, p) be a random bipartite graph with distinguished
parts A and B of size n1 and n2 with edges between parts with
probability p.

Proposition

Fix 0 < p < q < 1. The sequence

Gn =

{
G (n, n2, p) n odd,

G (n, n2, q) n even.

is almost surely FO-convergent and admits a modeling limit L
whose smaller part AL is countable.

There is no sequence of vertices rn ∈ An such that the sequence
(Gn, rn) even converges. In particular, (L, r) for r ∈ AL is not a
limit of (Gn, rn).
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Proof of convergence

• The graphs Gn eventually satisfy a bipartite analog of
k-extension property for each k ∈ N.

• If a Gn has (k + p)-extension property, then behavior of
p-tuples w.r.t formulas with quantifier rank k is determined by
their quantifier-free type.

• Thus, the question FO-convergence reduces to
QF-convergence ⇔ homomorphism convergence.

• The sequence clearly converges.
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Construction of a limit

• There is a construction of Goldstern, Grossberg, and Kojman1

of a homogeneous bipartite graph with parts A = ω and
B ⊆ {infinite sequences of natural numbers} where |B| = 2ω.

• It remains to show that this graph can be regarded as a
modeling.

• It is defined on a standard Borel space.
• All the definable sets are Borel.

• Which is not difficult.

1Goldstern, M., Grossberg, R., & Kojman, M. (1996). Infinite homogeneous
bipartite graphs with unequal sides. Discrete Mathematics, 149(1-3), 69-82.
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Concluding remarks

• The set of all algebraic vertices is of measure 0 while the
result of Christofides and Král’ states that a random r ∈ V (L)
works with probability 1.

• Can we decide about the other vertices?

• Can we decide about set of vertices of measure > 0?
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