Handout: Tiling edge-ordered graphs

Authors: I. Araujo, S. Piga, A. Treglown, Z. Xiang
Presented by: Gaurav Kucheriya

14 December 2023

Abstract

Given graphs F and G, a perfect F-tiling in G is a collection of vertex-disjoint copies of F in G that together cover all the vertices in G. The study of the minimum degree threshold forcing a perfect F-tiling in a graph G has a long history, culminating in the Kühn-Osthus theorem which resolves this problem, up to an additive constant, for all graphs F.

In this paper the authors initiate the study of the analogous question for edge-ordered graphs. An edge-ordered graph G is a graph equipped with a total order \leq of its edge set $E(G)$. In particular, Araujo et. al. characterize edge-ordered graphs F for which this problem is well-defined.

1 Introduction

Definition 1.1 (Turánable). An edge-ordered graph F is Turánable if there exists a $t \in \mathbb{N}$ such every edge-ordering of the graph K_{t} contains a copy of F.

Gerbner, Methuku, Nagy, Pálvölgyi, Tardos, and Vizer initiated a systematic study of Turán problem for edge-ordered graphs. In particular, they proved the following result:

Theorem 1.2 (Turánable characterization). An edge-ordered graph F on f vertices is Turánable if and only if all four canonical edge-orderings of K_{f} contain a copy of F.

Definition 1.3. Given $n \in \mathbb{N}$, we denote by $\left\{v_{1}, \ldots, v_{n}\right\}$ the vertex set of the complete graph K_{n}. The following labelings L_{1}, L_{2}, L_{3}, and L_{4} induce the canonical orderings of K_{n}.

- \min ordering: For $1 \leq i<j \leq n$ the label of the edge $v_{i} v_{j}$ is $L_{1}\left(v_{i} v_{j}\right)=2 n i+j-1$.
- max ordering: For $1 \leq i<j \leq n$ the label of the edge $v_{i} v_{j}$ is $L_{2}\left(v_{i} v_{j}\right)=(2 n-1) j+i$.
- inverse min ordering: For $1 \leq i<j \leq n$ the label of the edge $v_{i} v_{j}$ is $L_{3}\left(v_{i} v_{j}\right)=(2 n+1) i-j$.
- inverse max ordering: For $1 \leq i<j \leq n$ the label of the edge $v_{i} v_{j}$ is $L_{4}\left(v_{i} v_{j}\right)=2 n j-i+n$.

2 Main result

Definition 2.1 (Tileable). An edge-ordered graph F on f vertices is tileable if there exists a $t \in \mathbb{N}$ divisible by f such that every edge-ordering of the graph K_{t} contains a perfect F-tiling.

Theorem 2.2 (Tileable characterization). An edge-ordered graph F on f vertices is tileable if and only if all twenty \star-canonical orderings of K_{f} contain a copy of F.

Definition 2.3. Let $\left\{x, v_{1}, \ldots, v_{n}\right\}$ denote the vertex set of K_{n+1}. Suppose $L: E\left(K_{n+1}\right) \rightarrow \mathbb{R}$ is a labeling of the edges of K_{n+1} such that its restriction to $K_{n+1}-x$ is canonical with one of the standard labelings L_{1}, L_{2}, L_{3}, or L_{4}. Moreover, suppose that the labels $x_{i}:=L\left(x v_{i}\right)$ for $i \in[n]$ satisfy one of the following:

- Larger increasing orderings: $x_{n}>\cdots>x_{2}>x_{1}>\max _{i<j}\left\{L\left(v_{i} v_{j}\right)\right\}$.
- Larger decreasing orderings: $x_{1}>x_{2}>\cdots>x_{n}>\max _{i<j}\left\{L\left(v_{i} v_{j}\right)\right\}$.
- Smaller increasing orderings: $x_{1}<x_{2}<\cdots<x_{n}<\min _{i<j}\left\{L\left(v_{i} v_{j}\right)\right\}$.
- Smaller decreasing orderings: $x_{n}<\cdots<x_{2}<x_{1}<\min _{i<j}\left\{L\left(v_{i} v_{j}\right)\right\}$.
- Middle increasing orderings: $x_{i}=2 n i$ for all $i \in[n]$.

Then, L induces a \star-canonical ordering of K_{n+1}. We refer to the vertex x as the special vertex.
Proposition 2.4. Consider the edge-ordered graph D_{n} defined as a graph on vertices u_{1}, \ldots, u_{n} containing all edges incident to u_{1} or u_{n}. The edges are ordered as $u_{1} u_{2}<u_{1} u_{3}<\cdots<u_{1} u_{n}<$ $u_{2} u_{n}<\cdots<u_{n-1} u_{n}$. Let $n \geq 4$. Then D_{n} is Turánable but is not tileable.

Lemma 2.5. An edge-ordered graph F is tileable if and only if there exists an $n \in \mathbb{N}$ such that the following holds. Every edge-ordering of K_{n} such that $K_{n}-x$ is canonical for some vertex $x \in V\left(K_{n}\right)$ contains a copy of F that covers x.

3 Concluding remarks

For the characterization of Turánable graphs, namely Theorem 1.2, all four canonical orderings are necessary in the following sense: for every $n \geq 4$ and every canonical ordering K_{n}^{\leq}of K_{n}, there is a non-Turánable edge-ordered n-vertex graph F such that F can be embedded into all the canonical orderings of K_{n} other than K_{n}^{\leq}. Thus, it is natural to raise the following question.

Question 3.1. Are all twenty *-canonical orderings necessary in Theorem 2.2? That is, does Theorem 2.2 still hold if we omit some of the \star-canonical orderings from the statement?

