Lower bounds on the size of SDP relaxations
James R. Lee, Prasad Raghavendra, David Steurer
Presented by Martin Böhm
Combinatorics PhD Seminar, 2014/15, MFF UK

Some notation
1. \(P_2(n) \) is a set of all subsets of \([n]\) of size at most 2t.
2. \(\mathbb{N}_{\geq}^n \) is a set of all monomials in \(n \) variables of degree at most \(t \).
3. \(||\cdot||_p \) is the Frobenius norm, defined as \(\sqrt{\text{Tr}(A^t A)} \).
4. For a polynomial \(p(x) \) and a monomial \(\alpha \), \(||p||_{\alpha} \) is the coefficient of the monomial \(\alpha \).
5. \(\text{vec}(p) \) is a vectorization of a polynomial \(p \) via \(\text{vec}(p) \) is therefore in \(\mathbb{R}^n \).

Semidefinite programming
\(\mathbb{D} \): A symmetric matrix \(M \in \mathbb{R}^{n \times n} \) is positive semidefinite if for all \(v \in \mathbb{R}^n \), \(v^t M v \geq 0 \). We define \(M \) to be positive semidefinite iff it has a square root, i.e., there exists \(U \) such that \(U^t U = M \). We write \(U = \sqrt{M} \).

\(\mathbb{D}(S_k) \): The set (cone) of all positive semidefinite matrices in \(\mathbb{R}^{k \times k} \) will be denoted \(S_k^+ \).

\(\mathbb{D} \): An linear operator \(\bullet \) : \(\mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \rightarrow \mathbb{R} \) as defined as \(A \bullet B = \text{Tr}(A^t B) \).

\(\mathbb{D} \): A semidefinite program is a convex optimization program of the form:
\[\begin{align*}
\text{max} \quad & C \bullet X \quad \text{subject to constraints} \quad A_i \bullet X = b_i \quad \text{and} \quad X \succeq 0.
\end{align*} \]

Extended formulations
\(\mathbb{D}(\text{Linear lift}) \): Consider some polytope \(P \). We say that a polytope \(Q \) is a linear lift of \(P \) if \(P \) is an image of \(Q \) under some linear map. We measure the size of the lift as the number of facets. The polytope \(Q \) is also called extension of \(P \).

\(\mathbb{D}(\text{PSD lift}) \): We say that a polytope \(P \) of dimension \(n \) admits a positive semidefinite lift if \(A \) is a positive semidefinite matrix such that there exists a finite set \(S \) of \(n \times n \) matrices such that \(P = \{ x : A x = b \} \) and \(x \in \mathbb{R}^n \).

Lasserre hierarchy

\(\mathbb{D}(\text{Moment matrix}) \): \(M_{t+1}(y) \) is the moment matrix of \(y \) of degree \(t+1 \), which is the set of all \(t \)-th moments of \(y \).

\(\mathbb{D}(\text{Moments of polynomials}) \): For some function \(f \) of degree \(\ell \), \(M_\ell(f)(y) \) is the \(\ell \)-th moment of \(f \). Then \(L_{\ell}(K) \) is the set of vectors \(y \in \mathbb{R}^{2d} \) that satisfy
\[\begin{align*}
M_{\ell}(y) & \succeq 0; \\
M_{\ell}(y) & \succeq 0 \quad \forall \ell \in [m]; \\
\rho & = 1.
\end{align*} \]

Intuition: \(M_{t+1}(y) \geq 0 \) ensures consistency (y behaves locally as a distribution) while \(M_{t}(y) \geq 0 \) guarantees that \(y \) satisfies the \(t \)-th linear constraint.

We can solve any problem \(y \) in a pseudo-distribution of a pseudo-density of vertices of the polytope. In our \(\{0,1\}^n \) setting, it is a pseudo-density on \(\{0,1\}^n \).

Note: In our case, we only deal with problems of the form \(\max f(x) \) subject to \(x \in \{0,1\}^n \), and so we can simplify our Lasserre system to:
\[\begin{align*}
\max f(y_1, y_2, \ldots, y_n) \quad \text{s.t.} \quad M_{t+1}(y) \geq 0; \\
y_0 = 1.
\end{align*} \]

Sum of Squares upper bounds

\(\mathbb{D} \): For a polynomial \(f : \{0,1\}^n \rightarrow \mathbb{R} \), a sum of squares program of degree \(d \) is a program of the form:
\[\begin{align*}
\min & \quad \rho \\
\text{s.t.} & \quad \forall x \in \{0,1\}^n : \rho - f(x) = \sum_{i=1}^{k} g_i(x)^2; \\
& \quad \forall i \in [k] : \deg(g_i) \leq d/2.
\end{align*} \]

The number \(\rho \) is called the sum of squares upper bound of degree \(d \).

Original idea: verify that \(\forall x : \rho - f(x) \geq 0 \) using a sum of squares (which is always non-negative).

\(\mathbb{D} \): We can compute the sum of squares upper bound using a semidefinite program of size \(n^{O(d)} \).

The semidefinite program is as follows: the variable matrix \(X \) is indexed by a pair of monomials \(\alpha, \beta \) of degree at most \(d/2 \) each. The program itself is:
\[\begin{align*}
\min & \quad \rho \\
\text{s.t.} & \quad \forall \gamma \in \mathbb{N}_{\geq}^n : \sum_{\alpha, \beta : |\alpha - \beta| = |\gamma|} X_{\alpha, \beta} = [\gamma](\rho - f); \\
& \quad X \geq 0.
\end{align*} \]

(L-eye-open lemma): A sum of squares semidefinite program of degree \(d \) is dual to the \(t/2 \)-th level of the Lasserre hierarchy.

Sum of squares vs. PSD rank

\(\mathbb{D} \): A degree of a function \(\{0,1\}^n \rightarrow \mathbb{R} \) will be the degree of the unique multilinear polynomial agreeing with \(f \) on every point of \(\{0,1\}^\ell \).

\(\mathbb{D}(\text{Sos degree}) \): Consider a non-negative function \(f : \{0,1\}^\ell \rightarrow \mathbb{R} \). We say that \(f \) has a sum-of-squares certificate of degree \(d \) if there exist functions \(g_1, \ldots, g_k : \{0,1\}^\ell \rightarrow \mathbb{R} \) such that \(\deg(g_i) \leq d/2 \) and \(f(x) = \sum_{i=1}^{k} g_i(x)^2 \) for all \(x \in \{0,1\}^\ell \).

We say that \(f \) has sos degree \(d' \) and write \(\text{deg}_{sos}(f) = d' \) if \(d' \) is the minimal degree of a sum-of-squares certificate for \(f \).

\(\mathbb{D}(\text{Main theorem}) \): For every \(m \geq 1 \) and \(f : \{0,1\}^m \rightarrow \mathbb{R} \), there exists a constant \(C > 0 \) such that the following holds: for \(n \gg 2m \), if \(\text{deg}_{sos}(f) = d + 2 \), then
\[1 + n^{d+4/2} \geq \text{rk}_{\text{psd}}(M_{d+1}(y)) \geq C \left(\frac{n}{\log n} \right)^{d/4}. \]
The main theorem gives us a good lower bound on \(f \) if \(\deg_{\text{sos}}(f) = d + 2 \). We finalize the proof of Theorem Bound on psd rank by applying the following:

\[
f : \{0, 1\}^m \to \mathbb{R}
\]

\[
f(x) = \left(\frac{m}{2} - \sum_{i=1}^{m} x_i \right)^2 - \frac{1}{4}.
\]

\((\text{Grigoriev}) \): For every odd integer \(m \geq 1 \), the following function

Further reading